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Abstract. First order tangent complex is studied by Siddiqui in [11].
There he has introduced morphisms for the first order tangent complex
and connected this complex to the famous Grassmannian complex. In this
paper we will extend the discussion of tangent complex for the second or-
der. To do this we will introduce second order tangent group, denoted by
TB%(F), and form a tangent complex of order 2. Then we will write mor-
phisms in order to connect this complex with the famous Grassmannian
complex.
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1. INTRODUCTION

In [8] Siddiui uses configurations to relate the Grassmannian complex (28&2
d : Ci(X) = Cm-a(X)

where
m

d:(Xe,..., Xm) — Z(—l)m(xl,...,f(i,...,xm)
i=0
to both infinitesimal and tangential complexes.

In one hand he connected the Grassmannian complex to the variant of Cathelineau’s
complexes by introducing homomorphisms for both weight 2 and weight 3. He also proved
the commutativity of corresponding diagrams. On the other hand he presented the cross-
ratio of four points and the famous Siegel’'s cross-ratio identity in tangential settings and
also proved that the Goncharov’s projected five term relation can also be defined for tangent
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group TB,(F). By using these constructions he defined maps to link the Grassmannian
sub complex and Cathelineau’s tangential complex for both weight 2 and 3. To connect
Grassmannian sub complex

d d
Cs(Afp,) = Cal(AFr,) = Ca(AF(,)
to Cathelineau’s tangent complex

2
TB(F) 5 FeF o \F

for n = 2 he gives the morphismg, and} . Forn = 3 he uses morphisms), ;73 _and
73, to relate

d d
Co(AFy,),) = Cs(AFy,,) = Ca(AF,,)

to the Cathelineau’s tangent complex of weight 3 (see chapter 4 of [8]).

He studied these complexes for the first order tangent group but in the appendix of [8]
he discussed a little bit about the second order tangent gF®#¢F). There he gives
the morphisms between Grassmannian complex and Cathelineau’s complex by taking only
pure terms occurred in the definition of maps and neglected the non pure terms. But he
himself does not consider it as an authentic work because there is no logic behind ignoring
the non pure terms that’s why he put that work in the appendix of his dissertation. However
that work gives us a guideline to move toward higher order.

In this work we have tried to study the polyloagrithmic complexes in tangential settings
for second order . The second section is devoted for the essential prerequisites and basic
definitions as usual. In third section we have discussed second order tangent groups. Where
we have tried to define the second order tangent groups of weight 2 and 3 ,denoted by
TB§(F) and TB%(F) respectively. We also have mentioned the relations exist in these
groups . Then we moved forward to describe the geometry of configuratio‘hggﬁF),
which includes the construction of Grassmannian complex for tangential settings in higher
order, building of the cross ratio and triple- ratio T$§(F). Then we move to write
morphismsrj , and? , forn = 2andz] ,, 73 , and73 , for n = 3in order to connect
the Grassmannian complex to the the Cathelineau’s tangent complex. At last we write the
proofs of the commutativity of resulting diagrams (see theorems (4.2),(7.1)and (7.2)).

2. NOTATIONS AND PRELIMINARIES

2.1. Configurations. LetC,(X) be afree abelian group generated by elemgats. ., Xm) €
X™ For any group acting on a non empty s&tthe elements of the s€t/X™, consisting
of them-tuples , is called configurations &fwhereG is acting diagonally orX™ (see[5])

A configuration(xj|Xq, ..., X, ..., Xm) Of vectors inVp,1/(X) (Vh;1 be a vector space of
dimensionn + 1)is said to be a projective configuration and defined as a quotient space
of dimensionn formed by the projection oX; € V,; j # i, projected fronCp,,1(n + 1) to

Cm(n)

2.2. Grassmannian Complex. This complex is introduced by a famous German mathe-
matician "Hermann Grassmann.” The importance of this complex is because of helping in
the investigation of homology of general linear groups.Xdde any non empty set. Con-
siderC(X) be a free abelian group whose generators are configurationgoints, then
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we define a differential mag : C(X) —» C_1(X) as

m
d:(xl,...,xm)HZ(—l)m(xl,...,Ri,...,xm) 2. 1)
i=0
Also if we denoteC,(n) to be a group which is free abelian and whose generators are the
configurations of the elements of astlimensional vector spadg and(x Xy, . . ., %, . . ., Xm)
be the projective configuration of the vectogsalong the vectors;, wherei # j; j =
1,...,m, then we define a projective map: Cim.)(N+ 1) = Cy(n) as

d (X, ..., Xm) Z(—l)m(mxl,...,x,...,xm) (2. 2)
i=0

by using these differential maps and free abelian groups generated by configurations we
have a bi- complex called Grassmannian bi-Complex (see section 2 of [8]) .
From this bi-complex we can form many sub-complexes like
Co2(+2) L Cra(n+ 1) L Con(n)
or ) )
C:m+2(n) - Cm+1(n) - Cm(n)
These sub-complexes known as Grassmannian Sub-Complexes

2.3. Tangential Configuration Space. For any fieldF with zero characteristic, we define
the ring ofvth truncated polynomial by

Fle], := Fle]/e”
wherev > 1. First we will defineAf; . as an affine space over the the ring of truncated

Flel,
al 0 al,s
ap 0 A o
1 —_ n L n
polynomial F[e],. We choosé = .| € AR e I = : € Af and upto
an 0 ne
ag -1
ag’evfl )
o 1= . € A, then one can write (se€])
an g1
yt+ayet+--+ al,gvflsv‘l
1 Qt+ap.e+---+ az’gv-uﬁ‘v_l
F=l+lg+ - lpae™ = . € Ay,

8n+aneE+ e+ a1t
Consider the free abelian gro@n(AE[Slv) whose generators are the configurations
(3,....15) of mvectors inA';[S]V. For these configurations, we can define the differential
mapd as

d: Cm+1(A'|1[£]V) - Cm(AE[s]V)
whered is defined in(2.1). another differential magd’ with projection can be defined as
d : Crmua(ARy,) = C(ARS
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whered’ is defined in(2.2)

Letw € detV; be the volume element inra dimensional vector spadé, (see section 3 of

[5]) , we define an x ndeterminaniA(X], ..., X;) = {w, X1 A X2 A ... A Xq) Xi € Vp,
For simplicity, we consider the the following cases

2.3.1. Casen = 2 andv = 3. In this situation, we can write
A(Xp, Xg) = A, Xg)e0 + A(XG, Xg)sre + A(X, x;;)gza2

whereA(X,, Xi)0 = A(Xp, Xg),  A(Xp, Xi)e1& = A(Xp, Xqe) + AXpe, Xq) @NAA(X, X5).2 =
A(Xp, Xg.e2) + A(Xps, Xq.e) + A(Xp 2, Xg)

2.3.2. Casen=3andy = 3.
AXps X Xr) = A(Xps Xg X7)e0 + A(Xp, Xg X7)s28 + A(Xp, X X))

whereA(x*F;, xa,x;‘)go = A(Xp, Xg» Xr), A(x*r;, xa,x;‘)gls = A(Xp, Xgs Xr.s) + A(Xp, Xges Xr) +
A(Xp.e» Xg, Xr) @and

A(Xp, Xgs X7 )e2 =A(Xp, Xg, %) + A(Xps Xg, Xre) + AlXp, Xqes %) + A(Xp,e0 X, Xr)
+AXps Xg Xr.2) + A(Xps X Xr) + A(Xp, Xge2, %) + AlXp.e, Xg X )
+A(Xp.es Xges Xr) + A(Xp 2, Xg, %)

2.4. Cross-ratio in F[e],. Let (x5, X[, %5, X3) € C4(A§[S]V) be the configuration of four
points, then their cross ratio is

* * * £Y A(XE’ X;)A(XI’ Xz)
r(Xo: X1, X5, Xg) = G XG)ACK X)) (2.3)
But expansion of (x;, X, X5, X3) over the truncated polynomial rirfge]s is
MG X50 X5, X5) = (Vo0 + Yoo + 1287 (X0, X3, %G, X5) (2. 4)
which gives us the following values(see [8] and [9] ). Put 1, we get
. A(Xo, X3)A(X1,
(X X X X5) = Foo (X X X0 X5) = F(X0u X0, X, X3) = % (2. 5)
o o oy AGG XR)A(X, X)) {A(XG: X5)A(X], X3))e
"0, %1, %: %3) = A(Xo, X2)A(X1, X3) = 1002, %2, %) A(X0, X2)A(X1, X3) (2.6)
o Ur o k) {(XS’ Xg)()q.’ XZ)}SZ N N N {(Xa’ XZ)(X?I(.’ Xg)}g
o2 (00 %1. 26 X5) = (%o, %2) (X1, Xa3) 100 %126 X5) (%o, X2) (X1, X3)
*, * X*, ok 62
_ r(xo’ X1, X2, XS)M (2 7)

(X0, X2) (X1, X3)
where(ab), = a;b + ab, and(ab),. = a,-b + a,b, + ab,.
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2.5. First Order Tangent Group. Foranya, & € F and(a; a'] = [a+a'¢]-[a] € Z[F[&]2]
, we define the first order tangent Group, denoted B¢(F), is aZ-module generated by
the elements of the forrg; a'] € Z[F[£]2] an quotient by the expression

wrr-on- (|-
+<a(1— b)_(a(l— b))’

, ab#0,la#b (aaceF) (2. 8)

b(1-a)'\b(1-a)
where
b\ ab-ab  (1-b) (1-ba-(1-ab
(5) I (1—a) - (1-a)
a(l-b)\"  b(l-b)a -al-ab
(b(l—a)) - (b(1 - a))?

3. SECOND ORDER TANGENT GROUPS

First of all we will give definition ofTBg(F) and will try to construct the cross ra-
tio, triple ratio and identities of the vectors in the configuration sp@g(aAE[sh) for
m=4,...,7;n =23 We will also give the relations satisfied H}B%(F) and will
prove the five term relation.

The tangent group of orderPB5(F) is aZ-module whose generators are the elements

of the form(a; &, &’] € Z[F[¢]3], where(a; &, a’] = [a+ac+a’s?] —[a], (a, &, a” € F)
and quotient by the expression (see appendix of [8])

oo LT 1-(3 2

al "\a
a(l-b) (a(1-b)\ [a(l-Db)\”
(e (bazs) (fa=g) |- 2vrorare e
where
b\” ab” —aba’ - adal’ +b@)?> (1-b\” A
(5) ) a ’ (l—a) T (1-a®
a(l-b)\” B
(b(l—a)) = 1oy (3.10)
where
A=(1-a)(1-bja’ - (1-a)b”’ - (1-a)ab +(1-b)a)?>
and

B =(b')%a® — bb’a® + 2bb’a® — 2(b')%a® — bb’a + (b')%a + balda’ — ba'b’
+blaa’ - b¥@)? — b%a” — b?aa’ + b?(@)? + b*a” (3. 11)
3.1. Functional Equations ofTBg(F). ThetangentgrouﬁBg(F) satisfies the following
relations (see [7])
(1) Two term relationxa; by, b,]3 = —(1 — a; —by, —b,]3
(2) Inversion relationsa; by, by]2 = <% -5 - abz;—gbﬂ?]j
(3) The five term relation oTB%(F) is equation ( 3. 9) above.
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Lemma 3.2. For (X5, X], X5, X3) € C4(A Flels ), we have
A(XO’ Xl)A(XZ’ X3) &2 = A(XO? XZ)A(X]_’ X3) g2 — {A(X(*), X;)A(X;_, X;)}sz
Proof. See Lemma (4.4) of [9] for proof. O
4. DILOGARATHMIC COMPLEXES OFTANGENT GROUPS

Cathelineau formed a complex using tangents groups known as tangent complex and
we have another well known complex known as Grassmannian complex. In his work
Sidddiqui connected these two complexes by defining n?ré[;)andriE forn=2;v = 2.

In this section we also connect the complexes mentioned above for the ea&e = 3.

Let us denote':m(A ) is a free abelian group whose generators are the configuration
(Xgs-ves X ) € AFM for any affine spacc;é\,z:[gl3 over F[¢]3 then we have the following
Grassmannlan complex

d d
e CS(A|2:[513) - C4(A,2:[€]3) - C3(A,2:[8]3)
m

420G %) = Y1 (K &0 X0
i=0

Consider the following diagram

CS(AF[S] ) H C4(A|:[g ) 4> C3(AF[E]3) (D)
aE
TBYF) ——>F@F @ \2F

where

(1-a (1-a?
b? b?
NV 20, b
a 1-a) (1-a)?
Now we come to define the vertical magfs, andz? ,of the diagram. The magp ,

can be written as the sum of two maps

2 _ 1 2
TO,EZ_T + 7T

2 2
(abl,bz]H(%—Z—) ®(1-a)+ (2b2 + by )@a)

) o a, bl, b2 eF (4 12)

where
2 sk % 2
i (XI ’ Xi+l) 2 (XI ’ Xi+1) (Xi, Xi+2) :
17y ot 2 Y _ | € €
T06%06) = ;( Y [(2 (6 %is1) (%, %i41)? )® (Xis1,Xi52) )’ | mod 3
(4. 13)
and
(XB X1, X5)

(% Xi+1) (%, Xi+1)? (X, %ie2) (X, Xis2)?

2 H gk )2 Ky w gk )2
Z [( (X.,ml)ez_wwE]A[z(mmz)g_(&,XHZ)E]]’ mod 3

(4. 14)
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The mapr! carries the elements ﬁg(AE[gh) into F ® F* and the image of the elements
of C3(AZ,,,,) under the map? is in A*F.
320G - X5) = (F(X0 - > X)s T3 - - ), T (- .- » X5)] (4. 15)

wherer(Xo, ..., X3) , F(Xg, - - ., X3) andra(xg, . . ., X3) are the respective coefficients of the
&%, &' ands? in the cross ratio. First we have to show the mgps andr7 , are both well

defined. Since we have definef:ie2 as the cross ratio of four points so it is not necessary
to check. Therefore we only check fojez.

Lemma4.1. TS .. does not depend upon the volume fasrby the vectors.

Proof. According to the definition we can Wriht% 2 as

2 i (Xi*’ Xi*+l)ez (XI*’ Xi*+l)25 (Xi’ Xi+2)
;;(_1) [[2 06 X)) (6 Xie)? ]® (Xi+1,xi+2)}

L] e | X0 (LK 06X
+;):(_1) [[2 (Xi’Xi+l) - (Xi’xi+1)2 ]A(Z ()(i7)(i+2) - (Xi,xi+2)2 ]]’I mod 3

Due to the homogeneity between the factors of the terms of above expression it is not
possible to get a different value by replacing the volume elemdit Aw. This shows that
the maprg .2 IS independent of the volume element. O

Theorem 4.2. The diagram (D) commutes.i.e.
Tg,ez od= 652 ° Tifz

Proof. We have already defined the maiaez(x;g, . X3) as

Tiez(XB, X)) = (KOs XR) TG s X5), T2 (X, -5 X))
For simplicity we puta = r(Xo, ..., X3) , b1 = re(X;, ..., X5) andby = r2(xg, . . ., x3) then

2 ,(%.. ... X5) = (& by, o]

[
Here we evaluate value of the expressf?gh— 2- Since we have

L A XA X)) (A0S, X5)A0G, X5)le
b1 =r.(lg,....15) = Ao, X2)A(x1, X5) —r(Xo, ..., X3) Ao, X2) A0, X6) (4. 16)
Dividing by "a” and using a shorthantl(x’, X3), = (X Xj):, we have
2_bz _ b_i _2(()(5)(;)82 + (XIXZ)aZ _ (XS)%*)SZ _ (XXXE)SZ)
a @ "\ (ox) () (o) (XaXe)
_O96R 0962 0008 | 0902 @ 17
(xX3)?  (Xax)?  (Xo%2)?  (XuXg)? '
Similarly we can evaluate the expression as
2b2 _ bi _2(()(6)(;)52 " (X;F_Xg)sz _ (XEY)XD.EZ _ (X;Xé;)sz)
1-a (1-a2 "\ (oX)  (axs) (X))  (XeXs)
# ok \2 %k \2 s k)2 sk \ 2
(XOX2)8 (XlXS)g (Xoxl)a (X2X3)6 (4 18)

C(0%)? (axa)? (ox)? (XoXs)?
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Now by taking composition of the maﬁ .. With the mapi., we get a large expression.
Therefore by using homomorphic property we can split this composition into two parts to
explain them separately

de2 072 2(X .. X5) = 0% ((& by, 0]3) + 0% ((a by, b)3) (4.19)

whered’, carries the elements Gf85(F) into F @ F* and 4% carries the elements of
TB2(F) into A?F. Therefore we have

1 . 2\ _ 2b, bi 2b, bi
9% (¢as by, bo]3) _(? - §)®(1—a) +((1_a) + (1_a)2)®a

(XSX;,)EZ (X;X;)ez _ (XS)%*)EZ _ (XIXQ)EZ (Xa’ XZ)ZG
{2 (XoX3) e (X1%2) 2 (XoX2) 2 (X1%3) ’ (X0, X2)?
(X, X5)%, B (% %)%, Rt XZ)Zs} 2 (XoX1) (X2X3)

(X1, %3)? (X0, X3)? (X1, X2)? (XoX2)(X1X3)
(X(*)XZ)EZ (XIXE)EZ _ (X?)Xi)ez _ (X;XZ)EZ
+{2 o) T Elaxe) Cox) (o)

(XS’ X;)ZE ()%*’ X;)i (XS9 )%*)3 (Xz, X,j;’)g (X0X3)(X]_X2)
b? b2
7 (@b bl =(2%2 } a_;) " ((12?2a) i@ —la)2)

_ (ngg)ez (X;_XZ)EZ _ (XE)X;)eZ _ (szg)ez (XS’ XZ)ZE
‘{2 S B A B s S o W e
0067 062 (6 x;)i} . {Z(Xz;x;)ez RCROR
(X1, %32 (X0, %3)2 (X1, %2)? (XoX2) (X1%3)
L00)e L 000)e | 06XV, 0667 06X (5 x3>}
(XoX1) (xox3) (X0, X%1)? (X2, X%3)? (X0, %2)? (X1, (>§,)221)

Using (4. 13 ) and (4. 14 ), we split the second mrég o d(xg, ..., X3) into two parts.
First part can be written as

trod(X, . . ., X3)

N 2 i (XI*’ Xi*+1)52 (Xi*’ Xi*+l)25 (Xi, Xi+2) o
_Alt(0123){;(_1) [(2 (G %ir1) (% %is1)? )® (X1, xi+2)]}" mod 3 (4.22)

whereAﬁ(mg) denotes the alternation sum.
The expansion of inner expression give us a total of six terms. From which three will

X < XE)2
be of the fornQ(?);x;(?§z ® l; and other three will of the for );’);’J))” ® ;X, Using the property

a® % =a®b-a®c, terms will become double and form of the terms will { )QX)‘(?)Z ® X

* XF)2
and% ®y. Then we will expand the alternation sum which gives us a total of 48 terms.
After simplification we will obtain an expression identical with ( 4. 20).

The second part 0%,52 o d(xg, ..., X3) can be written as
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2 * * ok * 2

— 060X, (XX) )
25d(x,. .., X =Alt § -1)y5 12 < - -
T e d %) (0123)i=0( ){[ (%, Xis1) (%, Xi+1)?

- * oyt \2
. (2()(I s Xi+2)€2 B (Xi > Xi+2) e) }; i mod 3 (4. 23)

(Xi’ Xi+2) (Xi, Xi+2)2

The expansion of inner sum will give us a total of 12 terms . From which six will be
Xt 32
of the form 2% A x and remaining six will be of the for );’);’j))” AY. Applying the
alternation sum number of trms will increase up to 48. After cancellation of like terms

with opposite signs we obtain an expression identical to (4. 21).

Since the sum of (4. 20 ) and ( 4. 21) represents the valﬂé @frfez which is equal

to the sum of the values of o d(x;,, ..., x3;) and7? o d(x;,, ..., X5).
o

Corollary 4.3. The following are complexes.
2

o 0.2
(1) Ca(A},) — Cs(AZ,) —> FoF @ A\’F

2
o T2
(2) Cs(Ad,) = Ca(Ady,) = TBs(F)

Proof. To prove above result we have to she§y, od’ = 0andr? ,od’ = Owhich requires

direct calculations. O

5. TRILOGARATHMIC COMPLEXES OFTANGENT GROUPS

This section is devoted to discuss about the suitable maps which connects the Grass-
mannian sub-complex and Cathelineau’s tangential complex of second order for the case
weight 3. We also show the commutativity of the resulting diagram.

5.1. Definition of TB%(F). The second order tangent group for weight 3 is denoted by
TB%(F) is aZ-module over the truncated polynomial rifigj<]s whose generators are
the elements of the forne; &, a’] € Z[F[&]s], where(a; by, by] = [a + bie + bye?] -

[a], (a, by, by € F) and quotient by th&erd where

9 : Z[F[els] — (TB5(F) ® F*) @ (F @ B2(F))
where the map is defined as

0({a by, b, ®c+u®[v]y)

2b, bf 2h, b?
:(?—a—;]éb(l—a)/\c—((l_a)+(1_1a)2)®a/\c
2b, bf 2b b?
+u®(1—v)/\v+(?2—a—;)/\((l_2a) + (1_1a)2) (5. 24)

5.2. Projected Five Term relations in T‘B%(F). We already have projected five term rela-
tions inB,(F) (see [5]) and B»(F) (see [9]). Here we will prove the existence of projected
five term relation irT B5(F).
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Lemma5.3. Letlg,...,I; € ]PE[S]3 be 5 points in generic position, then

4
i i 3 * w1 * i * 2
D (rillon- - B L o B I (T I [E = 0
i=0
(5. 25)

in TB5(F), wherel? = |; + I/'e + 1'% € ]Pﬁ[gh, li, 17,1 € PZ and

e, T ) =r(illos T L) (I T e
T Y ([N SN 4 P
where the LHS denotes the projected cross-ratio of any four pointslfrom, I, € ]PE[E]3
projected from the fifth one.

Proof. See [[7]] for proof. O

5.4. Triple-ratio in F[e]s: Let Ce(Aﬁms) be an abelian group ,preferably free abelian,
whose generators are configurations of six points. Therlfor..,I%) € Ce(Afglgh) the
triple-ratio forv = 3 can be define as(see article (4.1.2) [8] )

= At SN (D)
“ (lol1l4)(A1l2l5)(I2lol3) RO T2 3 ST (1l414) (141215) (210l 3)
—r3(|0,...,|5){(124)(125)(203)} 2} (5. 26)
(lol1la)(11l21s5) (1210l 3)
where
(abc)gz = a,00,0C2 + agobgCg + ag bgzcgo + agbgocg + aebscgz + a,20.,0Cg0 (5. 27)

Using above constructions we are now able to write maps to relate Grassmannian com-
plex with the famous Cathelineau’s tangent complex for weight 3rand.
After connecting we obtain the following diagram

Co(Ad,) — = Cs(AY,) : Ca(AZ,) (A)

3 3 3
T T T
J/ 262 i 162 l 02

TBYF) — =~ (TEUF) & F¥) & (F ® Ba(F) — > (F 8 A\2F¥) & (A F)

where
3 * i * * I *\2
B VAN (S U b DETY ( S U 4 b
ngz(l*,...,ré):Z(_l)'(z (oo il AC ! 3)‘)
? -0 A(|0,...,|i,...,|3) A(lo,...,|i,...,|3)

A(|09"'9ﬂ+1,"-9|3)AA(IOs-"’l’}+39"',|3)
Allo . Bisze e i13)  Allos- . sliszs .. osl3)
3 (ZA(I*,...,I]T,...,IZ)Ez_A(I*,...,IT,...,Ig)ﬁ

+
i=0

j#i

L] ) i mod 4
Ao, ... 1, ....13) Ao, ... 1j, ..., 13)

(5. 28)
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3 * *
N

I, oy A - L
=—§Z(—l)'((r(liuo,...,h,...,|4);rg(li*ll*,...,I*i,...,IZ),rgz(li*Il*,..-,I*i,-.-,|4)]2
i=0

PR V(SN LN [N )4 .
®ﬂA(|i,|j)+Z( A(((;o. S 4)) )@[r(lillo,...,Ii,...,|4)]2

RO (TR [ P

i#]j k=0
k#i
4 % % I #)2
AT T ) .
_Z( ISMARLALL 4s)®[r(li|lo,...,li ..... |4)]2) (5. 29)
S\ Ao, 0l a)
M|
and
3 * * 2 . * * * * * * * * * * * *
(05 15) = 4—5Alt6<r3(lo,...,I5),r3’£(l 515,15, 15), P21 ,|1,|2,|3,|4,|5)]3
(5. 30)
where
(lolals)(I1l2l4)(I2lols)
ra(lo,....ls) = 5.31
o 18) = (L) (Talols) (olola) (5.31)
and
Fae(15, 15,15, 15,15, 15)
A (lolala)(1al2la)(1lols) {01151 (51615) 6. 32

= (lolila)(Ialals)(2lols) — (Tol1la)(1l2ls)(T2lols)  (lolila)(1l2ls)(I2lols)

\ R (G (G .
allon - 15) = (lol1la)(11215)(12l0l3) faellor - 15
(lolal3)(11l214)(12lols) {Uol1) (T 51)(51513)}e2

{(|6|*1|Z)(|*1|;|E)(|*2|6|’§)}6
(lol1la)(I1l2l5)(I2l0l3)

_ 5. 33
(lolala)(al21s)(I2lol3)  (Tolala)(lal2ls5)(I2l0l3) ( )
we define the map,. as
0% (8 br. by]a @ C+ x® [y]2)
(2, P 2b, bi
_(? 2 ®(1l-a)Ac- i-a - -2y ®aAc
2b, b? 2, b2
+X®(1—y)/\y+(?—¥ A (1—a)+(1—a)2 A X (5. 34)
andfor a by, by, c c,Cc € F*
2c, ¢
0,2((C; €1, C2]3) = (@i by bl i @ a+ (% - C—§)® [al2 (5. 35)

Theorem 5.5. The square right to the diagram (A) is commutes, i.e.

3 _ 3
T © d=0,0 Tie
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Proof. The maprgg is defined in(5.28) which is too lengthy for calculations therefore
we write the mapr? | as sum of two maps and(® then we evaluate ¥ od and
@ od separately. First we find

4
Wod(p,.... I =13, [Z(—l)i(l*, U L |;';)]

i=0

*

A(I*,... 10 A ¥, .12
—A|t(01234 Z( 1) {2 = 2 0 x 2
Ao, Tl Ao, .. T, 15)

A(Io,..l Ll3) A(lo,...,f U )
A(Io,.. 3) A(lo,...,f U )

). i mod4) (5. 36)

whereAlt (o1234)fepresents the alternation sum. We start our calculation from the expansion
of the inner sum. The inner sum gives us four summands and each summand can further
be simplified by using the relations (g+r) = p®q+per; pe(Qr)=peq+prand

pP® 4 — pe®q- p®r in order to obtain 24 terms. And after applying the alternation sum we
have a total of 120 terms containing 60 terms of the fpf@ A r and remaining 60 of the

I |
form 2p,2 ® g A r. After that we combine the terms having common fac A i lk)) ®---

For example the terms having common fac%%ﬁL% ®--- will be
A, 15,15)2
A(lg,12,13)

+A(1,13,12) A A1, 12, 14) = A(I1,13,12) A A(l1, 12,13) + A(l1, 12, 12) A A(lL, 12, |3))

® (A(lo,Is,12) A Alo, 12,13) = Allo, I3, 14) A Allo, I2,12) = A(lo, 12, 14) A Alo, I2, 13)

an the terms with common factéi%@ will be

AL 15 15).2
A(l1,12,13)
+A(l2,13,12) A A(1, 13, 14) = A(l2, 13, 12) A A1, 12, 14) + A(l1, 13, 14) A A(lg, 1o, |4))

® (A(lo,I2,13) A Alo, 11, 12) = Allo, I2,13) A Alo, 11, 13) = A(lo, 11, 13) A Adlo, 11, 12)

and so on. This completes the calculation of first pétto d
The second part® o d can be written as

~ (|*,...,*,...,|§)82 A(|*,...,*,.. ;)2
=A|t(01234) (- 1)' ( ) ] ) i mod4
ZO: A) Aol Ao ilpl)

j#i

(5. 37)

By expanding the inner sum and wedge productifer 0,...,3 ;j =0,...,3 , we
get eight terms of the forra A b A ¢ then pass each sum througfi(01234) the terms will
increase up to 40. This is the final valuer&® o d(I3, ... ., I3).

Now we come to evaluai@. o Tl 5
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First we split this map into two partg, andd? thend,z o 73 , = 9%, 0 Tl 05073,

and then usingb5.29) we can write

652 ° Tl g2

( Z( 1)(r(|||0,..., ..,|4);rg(|;f||*,...,ﬁi,...,|;§),r€z(|;f||*,...,ﬁi,...,lz)]z

4 i
®]_[A(ﬂ,fj)+Z(ZA(|°""’"" |k,...,4)8) [FOlo. - F . 1),

A(lg, . ..,I I, .1

B A(I*,...,A,*,...,I*m,...,IZ)? | A_
(A(|o,-. T 4)]@[r(|.||o,...,|.,...,|4)]2)

b}

o1& r82(|;‘||6,...,rr,...,|2)_[r8(|-*||*,...,I*,.. ;;)]2
3§( 1){[2 r(lillo, ... 01, ., 12) r(lillo, ... 0is. ., 12) ®
(1=rQillo,... T 1)) A T [ AGT))

i#]
) n . . n 2
[l T 1) _[ re(ls, T ]
1=r(illo,.... 0. k) La=r(illo,.... i ... 1a)

& (r(lillo,... T ... 1)) AT JAGLT)

i#]
. Z[ZA(IO,...,. |;,...,|;;)ng Z“:[A(Ig,...,fi*,...,l*r;],...,IZ)g]
7 Ao,y ko) Alloy - Tise s Tmy s 1a)
ki mei

®(L-r(illo,....Ti..... 1)) Ar(illo, ... i, 4)} (5. 38)

The second part of the majp. o Tigz will be
a2zorlsz(l*,...,lj)
* || * * * * || * * * 2
—}Z(—l)i{ 2rgz(li|l I,...,I4) _(rg(lill I,...,I4)]
34 r(lillo, ..., 0., 14) r(lillo, ..., 0., 1a)
|| * * *k *k A* * 2
NE re2(Bilg, .- -, I,...,I4) _( re(illg, ... 15 ... 1) ]
1—r(|i|I0,...,i,...,I4) —r(|i||0,...,i,...,|4)

N i(zA(l*’” T ..,,|Z)82] Z[A(I*’” . ._,|;n,...,|;)§) } (5. 39)
T DY BT < WX N

ki m#i

First we calculat@1 o Tf (15, -, 13). For this purpose we have to calculate the values
T 2 A A 2
ra(rls,. 1) ([ Fo(Ils ) re( I l2)
of 2 i |4)4 ( o, 1) ) and - 237 (1—r(l.|7o ..... oo ﬁ)) - Take the
case = 4and usmg 25), (2.6) and @.7) we have
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ra(l3l5, 15,15, 15)
( r(lallo, 11,12, 13) )

_I’E(|Z||*,|’{,|Z,|§) re(I3l5, 13,15, 13) B ((|Z|’6|’§)8 . (151515, ~ (I31515)e ~ (|Z|’{|;)8)2
r(lallo, 11,12, 13) " r(lllo, 11,12, 13) (lalols) ~ (lalal2)  (lalol2)  (lalal3)

(5112 N (313192 . (131515)2 N (31119)z . (I31513)e (31310 (algl3)e (131113)e
(lalol3)? ~ (Ial1l2)?  (lalol2)® * (lal1ls)? ~  (lalol3) (lalal2) (Ialol2) (lalal3)

o Ge1)e (3lg13)e  (GIa19)e (G1313)e — (G1a10)e (51315 (G1115)e (151115)e
(Ialol3) (lalol2) (Ialol3) (lalal3) (Ialol2) (lalal2) (I4l113) (|4|1|2)(5 40

and

r82(|2||*, |*1‘, |*2, |g)
~ r(lallo, 11,12, 13)
_(|Z|6|’§)gz (|Z|’i|;)az (|Z|8|;)52 (|Z|’i|§)€2 (IZ|6|§)8 (|Z|*i|"2‘)g B (IZIBIE)S (|Z|i|*3)‘S

~ (l4lol3) + (4112) (o) (alals)  (alols) (alal2) — (lalol2) (lalals)
LG T O S P O S O A (A A R G Y B
(dols)  (alal2) ~ (alol)  (lalals) )( (lalol) * (|4|1|3)) (5. 41)

After a simple calculation we obtain

el B 1) rg(l;fu*,...,f.,*,...,|;))2
) _[ f(lillos. .- 0, 1)
s ((lzlglg)sz e (Gl (|;;|;|;)€2)
(lalols) — (lal1l2) (Ialol2)  (lalal3)

(3ol (3112 (g2 - (GhIZ

_ — .42
(o2~ Qa2 * ol * Qe &%)
similarly
ES I ES A* * ES I ES A* * 2
el T 1) _[ L) ]
1—r(|i||o,...,|i,...,|4) 1—r(|i|I0,...,Ii,...,I4)
:2((|;;|3|;)82 0D GlDe (.
(Ialol2) (I4l113) (Ialol1) (I4l213)
(OAR S N b i (A b P (A By (5. 43)

TUalol22 ~ Uahils? " (aloln? * (alzls)?

By the substitution of (5. 42 )and ( 5. 43 ) we can easily find the values of ( 5. 38 )and
(5. 39) fori = 4. Where (5. 38) contains 384 terms of tyAl"l"Ik)"‘ ®l Amand

ioljslk)
A1
2 G fil.2 ® | A m. In the same way we can calculate the value of (5. 38 ) f00,1,2,3

INURIED)
and get a total 0b x 384 = 1920terms. Then we recombine the terms having common
[ I
factorM ®---. e.g.

A(liljhe)
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EN EN EAY4
The terms having common fact%% ® - -- will be of the form

A 15.15)?2
——=Q® (A(|0, I3,14) A A(lo, 12,13) = A(lo, I3, 14) A A(lo, 12, 14)
A(lg,12,13)

= A(lo, I12,12) A Allo, 12, 13) + A(l1, 13, 12) A A(l1, 12, 14) = A(l1, 13, 12) A A(l1, 12, 13)
+ A(l1, 12, 1) A A(I1, 12, |3))

-3

the coefficient -3 can be canceled with the first fac%ér of (5. 38) and it becomes
identical with that of (5. 36).

Similarly the value 0f(5.39) can be calculated by expanding the sumifer O,...,4
which gives us terms of the foramA b A ¢. After direct calculation we get an expression
equal to(5.37). O

Theorem 5.6. The left part of the diagram (A) commutes, i.e.
T;gz 0dz=do Tiaz
Proof. The maprg’g gives us a large number of terms but most of them are identical due to

symmetry an remains only 120 different terms . Due to the long calculations we will use
the technique of combinatorics. From the definition (5. 30 ), we have

* * 2 * * * * 2
a0 15) = 4—5Alt6<r3(lo,...,I5);r3,8(l sl (G 1D (5. 44)

From now we use a short hand,that is ,we wrig@! Il Imln)instead ofrz(li, 1, I, i, Im, In)
and(l;‘l]fl;;)sz in place ofA(I;“I].‘I*k)gz. In other words we ignora and commas for simplicity.
Now

B2 073 o1y 13)
2 . * * KRR KRR * 2
=4—5A|t6 <r3(|o e |5), r3,8(|0 . |5), r3,82(I0I1I2I3I4I5)]2 ® r3(|o . |5)

rae(ly...1%) B ri (5. 1%)
I’3(|0...|5) r§(|o...|5)

]@[r3(|0|5)]2} (5 45)

. re.2(15--15) _ 12 (I5..15)
We are going to evaluate the vaIueth(lo"_ls) TR

Using (5. 31), (5. 32)and (5. 33) we get

raee(ly...15) r3.05...1%)
r3lo...1s)  r2(lo...ls)
(e e G GH: (e ()

(lolals) — (lalala) — (l2lols)  (lol1la) (lal2ls) — (I2lols)
RN R A D A (A I AN A G

(lol1la)? ~ (lal2ls)? * (lalol3)?  (lolalz)?  (lal2la)?  (l2lols)

(5. 46)
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Then (5. 45) becomes

_2 . . aperepeperan]2 o (lolal3)(1al2la)(I2lols)
_4—5Alt6{ (rallo. . 1s);r3e(ly . 13), 12 (51115150515 © o a) (aloa)

hilDe (e | slele (e (il O3l
(2 (ol T2 o Wds) ~ F oy~ F s (ol

(L2 (5102 G2 G2 Gip? (|;Ig|;)82) }
(ol " (s ¥ (ol ~ (olle? ~ (alola)? ~ (Izlols) ®[r3"°""5)(]52 o

Above expression consist of two summands of the fargnb andc ® [b],.To discuss both
separately, consider the first summand

(lol113)(111214)(I2lol5)

= 435A|t6{ (rallo...1s); rac(lg. .. 12), rg,gz(l(*,l;l;lglzl;)]z ® Gonl )bl i) (5. 48)
Which can further be written as

=Alts{(ra(lo. .. 1s); r3o(l .. 12), a2 (131315151312 ], @ (lolla)}

+Alte {(rallo. .. 1s); rasly .. 12), Ta2 (31315151312 |, @ (1alala))

+Alts {(rallo- .. 1s); 1ol .. 12), a2 (13l315151312)], @ (lalols))

~Alte{(ra(lo. .. 1s); r3ely .. 12), 132 (131315151312 ], @ (lolala)}

—Alts{(rallo- .. 1s); r3cl .. 12). ra (31315151312 |, © (lalals))

~Alts{(ra(lo. .. 1s); r3o(l .. 12), a2 (1313 15151312) ], @ (l2lol3)} (5. 49)

According to the technique used in ([8]) and ([9]) we have
Altg {(ra(lol1lalslals); rae (151513131515, 132 (151313131505) |, © (lolals))
=Alte {(ra(l1l2lolalsla); rse(131315131515), 132 (151313131505) |, © (12121a)
and
(ra(lol1lalslals); rao(1gl513151505), ra.2 (151513151515)
= (ra(lalzlolalsla); rac(131515131215), ras2 (1315 15121513) (5. 50)

And this symmetry is true for all other ratios obtained by going through the alternation.
Therefore (5. 49) becomes

2
= ZeAlts{ (rallolalalalals); rao (513 13130319). Fa. (1315130315 |, © (lolals)
— (ra(lolalzlslals); rac (513 15131315). ra.2(lglil3llal0) |, © (olla))

Applying the odd permutatiofisla) (or (1513))

4 B A e ol Bl o o
= 1eAlts {(ralolalalalals); rac(gl315151312), ra(3l315151515) ], ® (olals)}



Grassmannian Complex and Second Order Tangent Complex 107

Once again using the permutati@isls) ( or (I513)) we get

2 A ES B K3 B K BB B K B K3
= 1—5Alt6{ (ra(lol1lalalals); ra(151315131315), ra.2(151313131215) |, @ (lolala)
—(ra(lallalolals); rac(131115151415), 132 (131115151415) ], ® (slalo)}
we have another symmet(hyl,13) = (I3l1lp) = (lolsl1) up to 2-torsion, then
2 I EIEIEIEI K I EIEIEIEIES
= 1—5Alt6{( (ra(lollalalals); ras(Ig1513151315), r3,£2(|0|1|2|3|4|5)]2
—(ra(lslal2lolals); rac(131313151312), r3,82(|§|;|*2|g|3|g)]2 )& (olls)]  (5.51)

Here again we follow the method used in ([8],[9]) that is we can express the triple ra-
tio as the ratio of two cross ratios. In ([8],[9]) it has been donerfgksl1l2lol4ls) and
r3:(13171515141%), so we will do it only forrs 2 (Igl31515141%). Consider

_ (loll3)(I1l214)(I2lols)
Falohlalslals) = T TaTols) (olola)

Since
EpEpEpEER) LI S | R | 2
ra(lolil5l5151%) = ra(lolalzlalals) + ("3(|o|1|2|3|4|5))5"3 + (r3(|0|1l2l3|4|5))52 &

SO we can write

EYEIEIEIEIES
ra«2(lolil2lslals) = (

Using the projection here dy andl;,

(|;|;|g)(|;|;|z)(|;|glg))
GEDICEII G

ety - (SEGHIHED) (i)
,e“\10'1'2"3"'4 - -
i ° &2 &2

(DI A5 A71513) r(5IsIs5)
Therefore (5. 51) can be written as

2 r(lallalolsls) (rU5NTIGIEN r(sI5I51ELS 2
- D] (e, (TRIEES) (FEESED) [ 6
15 r(lallol2lsla) "\r(13I1G151512) ), \r(3l1G151512) ) 2 |,

_<r(|2||1|3|5|0)'(r(l;”;l;l;lé)) ,(r(lzlljlélélé)) r®(|0|1|3)}

r(lallalzlola) \rIE) ) \r@IsG) ) .

Applying the five term relation iﬁ'Bg(F)

2 B el B K e 2
:1—5Alt6{( (r(12llalolsla); re(I513151515), T2 (1513 151513)]

JEIEIES 2
- (r(l1|I0I2I3I4); re(131115151%), rgz(I§|I;;I2I3I4)]2
r(lo|l1lsl3l r(5IE L r(iE[ELeLL: 2
(e, (TR (feed) | et 652
r(lallolslal2) "\r(3lgI51315) ), "\ r(G151515) ) 2 1,
From above three terms of individual determindgit;|3),Consider the last term. Which is

£A|t6{<r(lz|lll5lglo)_(r(l’glljlglglé)) ’(r(l’glljlglglg)) ]2®(|0|1|3)}

15 r(Tllolslal2) \r@3 M0 )\t ) L),
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Which can further be written as

2 1 r(lallalslalo) (TA5I5IEII0 Y\ (U551 1P
= —Altg{ = Alt ; : lol
15 6{36 (lolals)(12lels) (<r(l1|IoI3I4I2) rneisay) ) \r@eEis) ) 2®(°”)

Consider a permutation subgro8pxSs in Sg, WhereSz permutinglo, 11, |3} and{ly, I4, 15},
which fixes the determinaiflipl;13) as(lol1l3) ~ (Isl1lg) ~ (Isloly) - - - . Take

r(lo)l4lslsl r(EET) r(IEEL) 2
Alt 1415)(1s) {< (fall 530)'( 21530 ) ( 215390 ) ] ® (lol1l3)
& &2

r(lllolslal) " \r@ITsa) ) \r@igsim ),

_ (I2lsla)(ulola) . (55103062} ((lgla)(3lel) |
‘A't“‘"“s“'Z""s){<(Izl5lo)(|1|3|4)’((I;I;Iz;xlzlglz))g’((I;Igla)a;lglz))gjz®('0'1'3)}

This becomes zero if we use odd permutatieh) and ( 5. 52 ) will be of the form

2 * EA B B K * EA B B 2
=1—5Alt6{( (r(I2|I1I0I5I3); re(5113151513), r‘,,;z(I2|I1I0IE-,I3)]2
JE3 BN EIEIEI S 2
- (r(l1|IoI2I3I4); re(1311515151%), rgz(I1|IOI2I3I4)]2 ) ® (|0|1|3)} (5. 53)
Take first term of above

Al {(r(|2||1|0|5|3); AR BRI HHAR (|0|1|3)}

2 1 * ESES B K3 BB B K 3 2
= 1—5A|te {3_6AII(I0I1I3)(I2I4I5) {<r(|2||1|o|5|3): re(15/13151513), f82(|2||1|o|5|3)]2 ® (|o|1|3)}}

Since the ratio is projected by 2 so, the the permutaighils) will have no influence in
above ratio. Therefore we can write above as

= ZAlts {éAIt(|2|4|5) {(r(|2||1|0|5|3); o (3l13150515). re (315 150515) | @ (|o|1|3)}}

By the expansion of inner alternation sum we get

1 BT ES * 2
=4—5Alt6{( (r(allalolala); r 3151515 T T 61515) |
‘ * 2 EXES 2
— (r(zllslolala); raQ315105). rea (U3 Tol i) [ + (rsllatolala); r(Tallslals1s). roa(altyllals) |
2 2
— (r(alldolsta); ra (N 1o105). ra (U lol i) ] + (r(allalolsla): ra(T35T5lsls). ra (315 150515) |

B B e B e ol 2
— (rslalolala); ro(allilgl5l3). ra(igls a3l | ) ® (|0|1|3)}
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Using projected five-term relation far52 5(F)
= JeAlts (r(lollalalala); re(I5l 151515, ra (TGN I5151)]

. 2

— (r(allolalala); ra(3t3lta). rea 13 gI51 510
2

r(1allolalola): ra(3la15 151, ra(l151502)|

~( r(lollalalals); ro(5lI15051%), I}z(|0||l|4|3|5)]
= (r(lullolalsls); re(3E131512), oo (15 1151515)
( )

+(
= (rallolalals); ra(I3I131215), 1.2 (13 ||o|1|4|5)]
(r
®

NN NN

+{r(lollalslalo); (I3 IEIE150), rz (1211 (|1||o|5-,|3|2);rg(|1||0|5|3|;),r82(|1||0|5|3|2)]2

|
|-
|

—(rlallolalsl2); re(I5l1G151E15), re (1511517 1515) ) (lolllg)}

(5. 54)
Use the cyclic permutatiofigl113)(l214l5) we get
1
= 9Alt6{<r(lo|I1I2I3I4) rs(lpl315151%), rgz(I0|I1I2I3I4)] ®(I0I1I3)} (5. 55)
Similarly we will write the second term of (5. 53 ) as
1 2
T —6Altg {(r(l1|lolzl3l4); re(1311515151%), rgz(l*i||3|§|’§|2)]2 ® (I0I1I3)} (5. 56)
Using (5. 55) and (5. 56 ) we can write (5. 53) as
1 BN EIEI B S BN EIEI R ES 2
:4—5Alt6{(9(r(I0|I1I2I3I4); re(l5lE15151%), r82(|0||1|2|3|4)]2
) ) 2
—6(r(|1|I0I2I3I4); rs(11115151512), rgz(l*i|l(’;|§|§|j1)]2 ) ® (|o|1|3)} (5. 57)
The permutatiorflol113)(I214l5) will give us
1
= éAIte {(r(lo|I1I2I3I4) re(lpll315151%), rpz(IO|IlI2I3I4)] ® (|0|1|3)} (5. 58)

This is the final value of the first summand of ( 5. 45). Now we proceed for the second
summand of (5. 45). SincB,(F) satisfies five-term relation therefore second summand
can be written as

1 (olil3)e  (olal3)e2 (51315)z
éA'tG{((lolllg)+ (lolal3) (|o|1|3)2)®[r(loullzlgl“)]z} 5.59)

Use (5.58) and (5. 59) to write (5. 45) as

1 ) 2
=§A|t5{ (r(l0|I1I2I3I4); re(lollal5151%), r82(|6||i|2|§|2)]2 ® (lol1l3)
+( (|0 %) 2 (|’6|§|§)§

(lolals) ~ (lol1l3)

This completes the calculations of one side of the proof.
Now to compute other sideig2 od(lg...15) we will write the mapris in the form of

]®[r(|o||1|2|3|4)]2} (5. 60)
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alternation sum. That is

* * 1 ENEI EIES K N EIEIEI K 2
73 (05 13) =§Alt5{ (r(lollal2lala); ra(g 151312 Tz (515151 | ® (oll2)

KR P (K
+[2(((|)01-1i) _ E|2|1|32]® [r(|0||1|2|3|4)]2} (5. 61)

Applying the cycle(lpl1l2l3l4ls) for the mapd and the expansion through the alternation
Alts we get

2 od(y...12) :éAIte{ (r(lollalalala); r(l 13130, T (all13151) |, ® (lolal2)

(Z(Igl’il*z)sz ~ (Igl’ilg)ﬁ
(lolzl2)  (lol1l2)?
The odd cycl€l,l3) will make (5. 62) like

)® [r(|o||1|2|3|4)]2} (5. 62)

1 2
2 od(y...12) =§Alt6{ (r(lolllalala); Tl 131505). re(alillst |2 @ (olala)
(2(|;;|;|g)gz (512
(lol1ls)  (lol1l3)?

At last two-term relation irTB%(F) and®B,(F) will give us the correct sign. The final result
obtained is same as (5. 60).

)® ["(|0||1|2|3|4)]2} (5. 63)

]

Corollary 5.7. The maps defined below are zero

d/ T3\£2
(1) Cs(Al,,) = Ca(AY,) — FoF*® \°F
3

(2) ColAL,) D Co(ad,,) 5 (TBF) & F) @ (F & 8:(F))

Proof. Simply we have to show? , od’ = 0andz} , od =0 i

1,62
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