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Abstract. The first order uniform chemical reaction of a viscous incom-
pressible unsteady flow of fluid passing on an oscillatory infinite long ver-
tical plate is studied with modified temperature and uniform mass diffu-
sivity. The temperature and concentration are raised linearly with respect
to time around the plate . Laplace transformation technique is used to find
the exact solution for the dimensionless governing equations, when plate
moves about its mean position harmonically. The changing results of tem-
perature, concentration and velocity is learned for distinct parameters like
chemical reaction parameter, thermal Grashöf number, Schmidt number,
time and phase angle are discussed through detailed graphical analysis.
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1. INTRODUCTION

Convection flows past a wall have a special interests for researchers in various indus-
trial and engineering systems. This flow help us to understand the mechanism of various
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natural phenomena. Almost all home appliances involving heating or cooling process like
deep freezers refrigerators, air conditioners are governed by this process. It also occurs in
Geo-Hydrological systems like oceans on a large scale. It is observed that convection flow
change incredibly in different processes in industry and nature. The motion in the convec-
tion flow may be extremely slow or it can also be extremely rapid on the other hand, as
in hurricane. In cosmology, it is observed that convection of gases in black holes at speed
almost approaching the speed of light.

Chambre and Young [5] studied about the first order chemical reaction in the neigh-
boring region of a static horizontal plate. The flow with first-order chemical reaction
nearby cylindrical catalyst pellet discussed by Ramanamurthy and Rao [18]. Hetnarski
[12] studied about a simple algorithm for finding inverse Laplace transformations for com-
plicated exponential form. Soundalgekar [23] analyzed the oscillating flow of a viscous, in-
compressible fluid moving on an in-finite iso-thermal vertical wall plane. He also analysed
the effect due to the emulsion of concentration and temperature distinction of the flow
moving on a vertical oscillating plate [22]. Apelblat [2, 3] discussed about the function of
diffusion in the order of convection transport.

Singh [20] analyzed regarding the uniform cross magnetic field for the free convection
flow of an electrically transmitting fluid passing through an exponentially accelerated infi-
nite vertical wall. He considered that the magnetic lines of force remain unchanged with
respect to the fluid and the plate. Das et al. [7] reviewed about the effects of homoge-
neous first order chemical reaction flow which passing through an impulsive movement
on infinite vertical plate with uniform mass transfer and heat flux. Singh and Kumar [21]
also analysed that the free-convection flow of a viscous and incompressible fluid passing
through an exponentially accelerated infinite vertical wall. Muthucumarswamy and Gane-
san [16] analyzed the flow which passing on infinite vertical plate with varying temperature
and consistent mass diffusion. Ganesan and Loganathan [11] considered the incompress-
ible, viscous unsteady flow that passing through a vertically moving cylinder and their
relationship with free convection and thermal radiation, by taking a mass transfer and heat
into account.

Muthucumarsawamy and Minakshisundaram [17] examined the reaction of chemical
and their effects on vertical oscillating plate with varying mass diffusion and temperature.
Lahurikar [15] discussed about the convection flow near an infinite vertical plate which is
surrounded by a fluid and moving impulsively upward. In last decade, a great work dealing
with such flows done by scientists, a few of them are [4, 6, 8, 9, 10, 13, 14]. Another fas-
cinating problem by Rubbab et al. [19] in which shear stress is applied on the fluid forced
by the vertical plate.

Motivated from the papers [17, 19] , we expressed the case, when vertical plate is os-
cillating and its vibratory motion caused the fluid to move around its surrounding. The
rotation and heat of the plate are caused by the flow fluid in the presence of exponential
heating. Initially, the plate is in rest position and after that it begins to oscillate in its own
plane. Solutions corresponding to unsteady incompressible flow on a vertical oscillating
plate with variable exponential temperature are derived by using Laplace transformation.
Initially, the fluid and the plate have the same concentration and temperature. The concen-
tration level and temperature of the plate is increasing linearly with respect to time. The
Boussinesq approximation is used for the governing equations and the expressions for tem-
perature, velocity and concentration are calculated by Laplace transformation. The results
are shown graphically with correspondence of different parameters that are involved like
Schmidt number, chemical reaction parameter, phase angle and time.
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2. GOVERNING EQUATIONS OF THEPROBLEM

Let suppose an infinite vertical plate enclose by an in-compressible and viscous fluid.
Initially, we are taking both the plate and the fluid at rest position with same concentration
C ′∞ and temperatureT∞. We takex′-axis along the plate andy′-axis be at the horizontal
direction perpendicular to thex′-axis. When timet′ = 0+, the plate begins moving about
its initial position with velocityu0cosω

′t′, whereω′t′ is phase angle andu0 is the velocity
of plate. The temperature of the plate that changes exponentially, is increased toT∞ +
Tω(1 − a′exp(−b′t′)), whereTω is constant temperature. Here we assume that the effect
of dissipation due to viscosity is trivial. The governing equations, by keeping it in mind
that the boundary layer and Boussinesq approximations, for such flow are [17]

∂u

∂t′
= gβ(T − T∞) + gβ∗(C ′ − C ′∞) + ν

∂2u

∂y′2
, (2. 1)

ρCp
∂T

∂t′
= k

∂2T

∂y′2
, (2. 2)

∂C ′

∂t′
= D

∂2C

∂y′2
−KlC

′, (2. 3)

whereu is the velocity component along thex′-axis,g is acceleration due to gravity,β∗

is volumetric coefficient of expansion with concentration,β is volumetric coefficient of
thermal expansion,ν is kinematic viscosity,ρ is density,Cp is specific heat at constant
pressure,k is the coefficient of thermal conductivity,C ′ is species concentration in the
fluid, T is the temperature,D is mass diffusion coefficient andKl is the reaction of chem-
ical parameter.

The initial and boundary conditions are given as

u = 0, T = T∞, C ′ = C ′∞ for all y′ at t′ ≤ 0, (2. 4)

u = u0H(t′) cos ω′t′, T = T∞ + Tω(1− a′exp(−b′t′)),
C ′ = C ′∞ + C ′ω(1− a′ exp(−b′t′)) at y′ = 0 for t′ > 0, (2. 5)

u = 0, T → 0, C ′ → C ′∞ as y′ →∞, (2. 6)

wherea′ ≥ 0 and b′ > 0 are constants andH(t′) is Heaviside step function which is
defined as

H(t′) =

{
0 if t′ < 0
1 if t′ ≥ 0 .

We define here the dimensionless variables, for non-dimensionlizing our problem, are
as follows:

U =
u

u0
, t =

t′u2
0

ν
, y =

y′u0

ν
, θ =

T − T∞
Tω

,

Gr =
gβν(Tω − T∞)

u3
0

, C =
C ′ − C ′∞
C ′ω − C ′∞

, Gc =
νgβ∗(C ′ω − C ′∞)

u3
0

,

P r =
µCp

K
,Sc =

ν

D
,K =

νKl

u2
0

, ω =
ω′ν
u2

0

, (2. 7)
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wherePr is the prandtl number,Gr is the thermal Grasḧof number,Gc is the mass Grashöf
number,Sc is the Schmidt number,ω′ is frequency andθ is the temperature. Eqs. (2.1)-
(2.6) reduce to the following non-dimensional form

∂U

∂t
= Grθ + GcC +

∂2U

∂t2
, (2. 8)

∂θ

∂t
=

1
Pr

∂2θ

∂y2
, (2. 9)

∂C

∂t
=

1
Sc

∂2C

∂y2
−KC. (2. 10)

Initial and boundary conditions in the non-dimensional form are

U = 0, θ = 0, C = 0 for all y, for t ≤ 0, (2. 11)

U = H(t) cos ωt, θ = 1− a′exp(−b′t), at y = 0 for t > 0, (2. 12)

C = 1− a′exp(−b′t), at y = 0 for t > 0, (2. 13)

U = 0, θ → 0, C → 0, as y →∞. (2. 14)

3. SOLUTION OF THE PROBLEM

The problem defined by the Eqs. (2.8)-(2.10) along with initial and boundary conditions
(2.11)-(2.14) is solved by using Laplace transformation. Taking Laplace transform of the
Eq. (2.9) and initial and boundary conditions (2.11)-(2.12) for temperature, we obtain

Pr[sθ̄(y, s)− θ(y, 0)] =
d2θ̄

dy2
. (3. 15)

Using initial conditionθ(y, 0) = 0, Eq. (3.15) becomes

Prsθ̄(y, s) =
d2θ̄

dy2
, (3. 16)

whereθ̄(y, s) is the Laplace transform ofθ(y, t) ands is the Laplace transform parameter.
The solution of the ordinary differential Eq. (3.16) is given by

θ̄ = (
1
s
− a′

s + b′
)exp(−y

√
Prs). (3. 17)

For the inverse Laplace transformation, we used the Hetnarski’s algorithm [3],

L−1

[
e(−c

√
s+b)

s− a

]
=

eat

2

[
e(−c

√
a+b)erfc

(
c

2
√

t
−

√
(a + b)t

)]

+
eat

2

[
e(c

√
a+b)erfc

(
c

2
√

t
+

√
(a + b)t

)]
. (3. 18)

Applying this above result to Eq. (3.17), we obtain the expression for temperature field

θ = erfc(η
√

b′) +
a′exp(−b′t)

2
[exp(−2ηi

√
Prb′t)erfc(η

√
Pr −

√
b′t)

+ exp(2ηi
√

Prb′t)erfc(η
√

Pr +
√

b′t)], (3. 19)
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whereη = y

2
√

t
.

Taking Laplace transform of the Eq. (2.10) and initial and boundary conditions (2.11)-
(2.14) for concentration, we obtain

d2C̄

dy2
= Sc

[
sC̄(y, s)− C̄(y, 0) + KC̄(y, s)

]
. (3. 20)

Using initial C̄(y, 0) = 0, The Eq. (3.20) becomes

d2C̄

dy2
= Sc(s + K)C̄(y, s), (3. 21)

whereC̄(y, s) is the Laplace transform ofC(y, t).
The solution of the ordinary differential Eq. (3.21) is given by

C̄ = (
1
s
− a′

s + b′
)exp(−y

√
Sc(s + k)). (3. 22)

Taking Laplace inverse of Eq. (3.22) by using Eq. (3.18), we get the solution for concen-
tration

C =
1
2
[exp(2η

√
KtSc)erfc(η

√
Sc +

√
Kt) + exp(−2η

√
KtSc)erfc(η

√
Sc

−
√

Kt)]− a′exp(−b′t)
2

[exp(2ηi
√

Scb′t)erfc(η
√

Sc + i
√

b′t)

+ exp(−2ηi
√

Scb′t)erfc(η
√

Sc− i
√

b′t)]. (3. 23)

Now we apply the Laplace transformation to the Eq. (2.8), we obtain

d2Ū

dy2
= s Ū(y, s)−Gr θ̄(y, s)−Gc C̄(y, s), (3. 24)

whereθ̄ andC̄ is given from Eq. (3.17) and Eq. (3.22). Substituting the values ofθ̄(y, s)
andC̄(y, s) on right hand side of Eq. (3.24), we have

d2Ū

dy2
= s Ū(y, s)−Gr

[(
1
s
− a′

s + b′

)
exp

(
−y
√

Prs
)]

− Gc

[(
1
s
− a′

s + b′

)
exp

(
−y
√

Prs
)]

. (3. 25)

Taking the Laplace transform of boundary condition(2.12)1, we have

Ū(0, s) = L[cosωt] =
s

s2 + ω2
=

1
2(s + iω)

+
1

2(s− iω)
. (3. 26)

Using undetermined coefficient method, we obtain the solution for Eq. (3.25) as

Ū = exp(−y
√

s)
[

1
2(s + iω)

+
1

2(s− iω)
+

c

s2
− a′c

sb′
+

a′c
b′(s + b′)

+
ad

s
− ad

s− a

+
a2a′d

(s + b′)(b′ − a)
+

a2a′d
(s− a)(a + b′)

]
− exp(−y

√
Prs)

[
c

s2
+

a′c
sb′

− a′c
b′(s + b′)

]

− exp(−y
√

Sc(s + K))
[
ad

s
− ad

s− a
− a2a′d

(s + b′)(b′ − a)

]
, (3. 27)

where

η =
y

2
√

t
, a =

KSc

1− Sc
, c =

Gr

Pr − 1
and d =

Gc

a2(1− Sc)
.
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Taking inverse Laplace transform of Eq. (3.27) and using the Hetnarski algorithm [12], we
obtain the expression for velocity

U =
eiωt

4

[
exp(2η

√
iωt)erfc(η +

√
iωt) + exp(−2η

√
iωt)erfc(η −

√
iωt)

]

+
e−iωt

4

[
exp(2η

√−iωt)erfc(η +
√−iωt) + exp(−2η

√−iωt)erfc(η −√−iωt)
]

+ c t

[
(1 + 2η2)erfc(η)− 2η

1
π

exp(−η2)
]
− ct

[
(1 + 2η2Pr)erfc(η

√
Pr)

− 2η

√
Pr

π
exp(−η

√
(Pr))

]
− ca′

b′
erfc(η) +

a′c
b′

exp(−b′)
2

[
exp(−2ηi

√
b′t)

× erfc(η − i
√

b′t) + exp(2ηi
√

b′t)erfc(η + i
√

b′t)
]

+ ad erfc(η)

− ad eat

2

[
exp(−2η

√
at)erfc(η −

√
at) + exp(2η

√
at)erfc(η +

√
at)

]

+
a2a′d e−b′t

2(b′ − a)

[
exp(−2ηi

√
b′t)erfc(η − i

√
b′t) + exp(2ηi

√
b′t)erfc(η + i

√
b′t)

]

+
a2a′d exp−b′t

2(a + b′)

[
exp(−2η

√
at)erfc(η −

√
at) + exp(2η

√
at)erfc(η +

√
at)

]

+
a′c e−b′t

2b′

[
exp(−2ηi

√
Prb′t)erfc(η

√
Pr −

√
b′t) + exp(2ηi

√
Prb′t)

× erfc(η
√

Pr +
√

b′t)
]
− a d

2

[
exp(−2η

√
ScKt)erfc(η

√
Sc−

√
Kt)

+ exp(2η
√

ScKt)erfc(η
√

Sc +
√

Kt)
]

+
a d exp(at)

2

[
exp(−2η

√
Sc(S + K)t)

× erfc(η
√

Sc−
√

(a + K)t) + exp(2η
√

Sc(S + K)t)erfc(η
√

Sc +
√

(a + K)t)
]

− a2a′d e−b′

2(b′ − a)

[
exp(−2ηi

√
b′t)erfc(η − i

√
b′t) + exp(2ηi

√
b′t)erfc(η + i

√
b′t)

]

+
a2a′d

(a + b′)

[
exp(−2η

√
Sc(a + K)t)erfc(η

√
Sc−

√
(a + K)t)

+ exp(2η
√

Sc(a + K)t)erfc(η
√

Sc +
√

(a + K)t)
]
. (3. 28)

In order to get the physical insight into the problem, the numerical values of temperature,
concentration and velocity have been computed from (3.19), (3.23) and (3.28). While eval-
uating these expressions which observed that argument of the error function is complicated
for which the following formula [1] is used:

erf(a + ib) = erf(a) +
e−a2

2πaS
[1− cos(2ab) + isin(2ab)]

+
2e−a2

π

∞∑
n=1

−n2/4
n2 + 4n2

[fn(a, b) + ign(a, b) + ε(a, b)] . (3. 29)
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where

fn(a, b) = 2a− 2acosh(nb)cos(2ab) + nsinh(nb)sin(2ab) and

gn(a, b) = 2acos(nb)sin(2ab) + nsinh(nb)cos(2ab), | ε(a, b) |≈ 10−16 | erf(a + ib) | .

Using the above formula (3.29), separating the real and imaginary parts of Eq. (3.19),
the real partθ1 is

θ1 = 1− erf(η
√

Pr) +
a′e−b′t

2

[
cos(2η

√
Prb′t)(1− erf(x1)

− e−x2
1

2πx1
(1− cos(2x1y1))− 2e−x2

1−1/4

π(1 + 4x2
1)

f1(x1, y1)− 2e−x2
1−1

π(4 + 4x1)
f2(x1, y1)

]

− sin(2η
√

Prb′t)
[

e−x2
1

2πx1
sin(2x1y1) +

2e−x2
1−1/4

π(1 + 4x2
1)

g1(x1, y1)

+
2e−x2

1−1

π(4 + 4x1)
g2(x1, y1)

]
+ cos(2η

√
Prb′t)

[
1− erf(x2)

− e−x2
2

2πx2
(1− cos(2x2y2))− 2e−x2

2−1/4

π(1 + 4x2
2)

f1(x2, y2)− 2e−x2
2−1

π(4 + 4x2)
f2(x2, y2)

]

+ sin(2η
√

Prb′t)
[

e−x2
2

2πx2
sin(2x2y2) +

2e−x2
1−1/4

π(1 + 4x2
1)

g1(x2, y2)

+
2e−x2

2−1

π(4 + 4x2)
g2(x2, y2))

]
, (3. 30)

and the imaginary partθ2 is

θ2 =
a′e−b′t

2

[
− sin(2η

√
Prb′t)(1− erf(x1)− e−x2

1

2πx1
(1− cos(2x1y1))

− 2e−x2
1−1/4

π(1 + 4x2
1)

f1(x1, y1)− 2e−x2
1−1

π(4 + 4x1)
f2(x1, y1))

]
− cos(2η

√
Prb′t)

×
[

e−x2
1

2πx1
sin(2x1y1) +

2e−x2
1−1/4

π(1 + 4x2
1)

g1(x1, y1) +
2e−x2

1−1

π(4 + 4x1)
g2(x1, y1)

]

+ sin(2η
√

Prb′t)
[
1− erf(x2)− e−x2

2

2πx2
(1− cos(2x2y2))− 2e−x2

2−1/4

π(1 + 4x2
2)

× f1(x2, y2)− 2e−x2
1−1

π(4 + 4x1)
f2(x2, y2)

]
− cos(2η

√
Prb′t)

[
e−x2

2

2πx2
sin(2x2y2)

+
2e−x2

2−1/4

π(1 + 4x2
2)

g1(x2, y2) +
2e−x2

2−1

π(4 + 4x2)
g2(x2, y2))

]
. (3. 31)
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Similarly from Eq. (3.23), the real partC1 is

C1 =
1
2

[
exp(−2η

√
ScKt)erfc(η

√
Sc−

√
Kt) + exp(2η

√
ScKt)erfc(η

√
Sc

+
√

Kt)
]
− a′e−b′t

2

[
cos(2η

√
Scb′t)[(1− erf(x3)− e−x2

3

2πx3
(1− cos(2x3y3))

− 2e−x2
3−1/4

π(1 + 4x2
3)

f1(x3, y3)− 2e−x2
3−1

π(4 + 4x3)
f2(x3, y3))

]
− sin(2η

√
Scb′t)

×
[

e−x2
3

2πx3
sin(2x3y3) +

2e−x2
3−1/4

π(1 + 4x2
3)

g1(x3, y3) +
2e−x2

3−1

π(4 + 4x3)
g2(x3, y3)

]

+ cos(2η
√

Scb′t)
[
(1− erf(x4)− e−x2

4

2πx4
(1− cos(2x4y4))

− 2e−x2
4−1/4

π(1 + 4x2
4)

f1(x4, y4)− 2e−x2
4−1

π(4 + 4x4)
f2(x4, y4))

]
+ sin(2η

√
Scb′t)

×
[

e−x2
4

2πx4
sin(2x4y4) +

2e−x2
4−1/4

π(1 + 4x2
4)

g1(x4, y4) +
2e−x2

4−1

π(4 + 4x4)
g2(x4, y4)

]
,(3. 32)

and the imaginary partC2 is

C2 =
a′e−b′t

2

[
− sin(2η

√
Scb′t)(1− erf(x3)− e−x2

3

2πx3
(1− cos(2x3y3))

− 2e−x2
3−1/4

π(1 + 4x2
3)

f1(x3, y3)− 2e−x2
3−1

π(4 + 4x3)
f2(x3, y3))

]
− cos(η

√
Scb′t)

[
e−x2

3

2πx3

× sin(2x3y3) +
2e−x2

3−1/4

π(1 + 4x2
3)

g1(x3, y3) +
2e−x2

3−1

π(4 + 4x3)
g2(x3, y3)

]

+ sin(2η
√

Scb′t)
[
1− erf(x4)

e−x2
4

2πx4
(1− cos(2x4y4))− 2e−x2

4−1/4

π(1 + 4x2
4)

× f1(x4, y4)− 2e−x2
4−1

π(4 + 4x4)
f2(x4, y4)

]
+ cos(2η

√
Scb′t)

[
e−x2

4

2πx4
sin(2x4y4)

+
2e−x2

4−1/4

π(1 + 4x2
4)

g1(x4, y4) +
2e−x2

4−1

π(4 + 4x4)
g2(x4, y4)

]
. (3. 33)

Separating the velocity parts from Eq. (3.28), the real partU1 is

U1 =
1
4
[eη

√
2wtcos(wt + η

√
2wt)(1− erf(x5)− e−x2

5

2πx5
(1− cos(2x5y5))

− 2e−x2
5−1/4

π(1 + 4x2
5)

f1(x5, y5)− 2e−x2
5−1

π(4 + 4x5)
f2(x5, y5)) + eη

√
2wtsin(wt− η

√
2wt)

× (
e−x2

5

2πx5
sin(2x5y5) +

2e−x2
5−1/4

π(1 + 4x2
5)

g1(x5, y5) +
2e−x2

5−1

π(4 + 4x5)
g2(x5, y5))]

+
1
4
[e−η

√
2wtcos(wt− η

√
2wt)(1− erf(x6)− e−x2

6

2πx6
(1− cos(2x6y6))

− 2e−x2
6−1/4

π(1 + 4x2
6)

f1(x6, y6)− 2e−x2
6−1

π(4 + 4x6)
f2(x6, y6)) + e−η

√
2wtsin(wt− η

√
2wt)
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+
e−x2

6

2πx6
sin(2x6y6) +

2e−x2
5−1/4

π(1 + 4x2
5)

g1(x6, y6) +
2e−x2

6−1

π(4 + 4x6)
g2(x6, y6))]

+
1
4
[eη

√
2wtcos(wt + η

√
2wt)(1− erf(x7)− e−x2

7

2πx7
(1− cos(2x7y7))

− 2e−x2
7−1/4

π(1 + 4x2
7)

f1(x7, y7)− 2e−x2
7−1

π(4 + 4x7)
f2(x7, y7))− eη

√
2wtsin(wt + η

√
2wt)

× (
e−x2

7

2πx7
sin(2x7y7) +

2e−x2
7−1/4

π(1 + 4x2
7)

g1(x7, y7) +
2e−x2

7−1

π(4 + 4x7)
g2(x7, y7))]

+
1
4
[eη

√
2wtcos(wt− η

√
2wt)(1− erf(x8)− e−x2

8

2πx8
(1− cos(2x8y8))

− 2e−x2
8−1/4

π(1 + 4x2
8)

f1(x8, y8)− 2e−x2
8−1

π(4 + 4x8)
f2(x8, y8))− e−η

√
2wtsin(wt− η

√
2wt)

× (
e−x2

8

2πx8
sin(2x8y8) +

2e−x2
8−1/4

π(1 + 4x2
8)

g1(x8, y8) +
2e−x2

8−1

π(4 + 4x8)
g2(x8, y8))]

+
a′c
b′

e−b′

2
[cos(2η

√
b′t)(1− erf(x9)− e−x2

9

2πx9
(1− cos(2x9y9))

− 2e−x2
9−1/4

π(1 + 4x2
9)

f1(x9, y9)− 2e−x2
9−1

π(4 + 4x9)
f2(x9, y9)))− sin(2η

√
b′t)(

e−x2
9

2πx9
sin(2x9y9)

+
2e−x2

9−1/4

π(1 + 4x2
9)

g1(x9, y9) +
2e−x2

9−1

π(4 + 4x9)
g2(x9, y9)) + cos(2η

√
b′t)(1− erf(x10)

− e−x2
10

2πx10
(1− cos(2x10y10))− 2e−x2

10−1/4

π(1 + 4x2
10)

f1(x10, y10)− 2e−x2
10−1

π(4 + 4x10)
f2(x10, y10))

+ sin(2η
√

b′t)
e−x2

10

2πx10
sin(2x10y10) + (

e−x2
10

2πx10
sin(2x10y10) +

2e−x2
10−1/4

π(1 + 4x2
10)

g1(x10, y10)

+
2e−x2

10−1

π(4 + 4x10)
g2(x10, y10))] +

2e−x2
10−1/4

π(1 + 4x2
10)

g1(x10, y10) +
2e−x2

10−1

π(4 + 4x10)
g2(x10, y10))]

+
a2a′d
b′ − a

e−b′

2
[cos(2η

√
b′t)(1− erf(x11)− e−x2

11

2πx11
)(1− cos(2x11y11))

− 2e−x2
11−1/4

π(1 + 4x2
11)

f1(x11, y11)− 2e−x2
11−1

π(4 + 4x11)
f2(x11, y11)))− e−x2

11

2πx11
sin(2η

√
b′t)

× sin(2x11y11) +
2e−x2

11−1/4

π(1 + 4x2
11)

g1(x11, y11) +
2e−x2

11−1

π(4 + 4x11)
g2(x11, y11))

+ cos(2η
√

b′t)(1− erf(x12)− e−x2
12

2πx12
(1− cos(2x12y12))− 2e−x2

12−1/4

π(1 + 4x2
12)

f1(x12, y12)

− 2e−x2
12−1

π(4 + 4x12)
f2(x12, y12))) + sin(2η

√
b′t)

e−x2
12

2πx12
sin(2x12y12) +

2e−x2
12−1/4

π(1 + 4x2
12)

× g1(x12, y12) +
2e−x2

12−1

π(4 + 4x12)
g2(x12, y12))]− a′c e−b′

2b′
[cos(2η

√
b′t)(1− erf(x13)

− e−x2
13

2πx13
(1− cos(2x13y13))− 2e−x2

13−1/4

π(1 + 4x2
13)

f1(x13, y13)− 2e−x2
13−1

π(4 + 4x13)
f2(x13, y13))
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− sin(2η
√

b′t)(
e−x2

13

2πx13
sin(2x13y13) +

2e−x2
13−1/4

π(1 + 4x2
13)

g1(x13, y13) +
2e−x2

13−1

π(4 + 4x13)

× g2(x13, y13)) + cos(2η
√

b′t)(1− erf(x14)− e−x2
14

2πx14
(1− cos(2x14y14))

− 2e−x2
14−1/4

π(1 + 4x2
14)

f1(x14, y14)− 2e−x2
14−1

π(4 + 4x14)
f2(x14, y14)) + sin(2η

√
b′t)(

e−x2
14

2πx14

× sin(2x14y14) +
2e−x2

14−1/4

π(1 + 4x2
14)

g1(x14, y14) +
2e−x2

14−1

π(4 + 4x14)
g2(x14, y14))]

− a2a′d e−b′

2(b′ − a)
[cos(2η

√
b′t)(1− erf(x15)− e−x2

15

2πx15
(1− cos(2x15y15))− 2e−x2

15−1/4

π(1 + 4x2
15)

× f1(x15, y15)− 2e−x2
15−1

π(4 + 4x15)
f2(x15, y15))− sin(2η

√
b′t)(

e−x2
15

2πx15
sin(2x15y15)

+
2e−x2

15−1/4

π(1 + 4x2
15)

g1(x15, y15) +
2e−x2

15−1

π(4 + 4x15)
g2(x15, y15)) + cos(2η

√
b′t)(1− erf(x12)

− e−x2
16

2πx16
(1− cos(2x16y16))− 2e−x2

16−1/4

π(1 + 4x2
16)

f1(x16, y16)− 2e−x2
16−1

π(4 + 4x16)
f2(x16, y16))

+ sin(2η
√

b′t)(
e−x2

16

2πx16

sin(2x16y16)+
2e−x2

16
−1/4

π(1 + 4x2
16

)
g1(x16 , y16)+

2e−x2
16
−1

π(4 + 4x16)
g2(x16 , y16))],

(3. 34)

and the imaginary partU2 is

U2 =
1
4
[eη

√
2wtsin(wt + η

√
2wt)(1− erf(x5)− e−x2

5

2πx5
(1− cos(2x5y5))− 2e−x2

5−1/4

π(1 + 4x2
5)

× f1(x5, y5)− 2e−x2
5
−1

π(4 + 4x5)
f2(x5, y5))− eη

√
2wtcos(wt + η

√
2wt)

e−x2
5

2πx5
sin(2x5y5)

+
2e−x2

5−1/4

π(1 + 4x2
5)

g1(x5, y5) +
2e−x2

5
−1

π(4 + 4x5)
g2(x5, y5))] +

1
4
[e−η

√
2wtsin(wt− η

√
2wt)

× (1− erf(x6)− e−x2
6

2πx6
(1− cos(2x6y6))− 2e−x2

6−1/4

π(1 + 4x2
6)

f1(x6, y6)− 2e−x2
6
−1

π(4 + 4x6)

× f2(x6, y6))− e−η
√

2wtcos(wt− η
√

2wt)(
exp(−x2

6)
2πx6

sin(2x6y6) +
2e−x2

6−1/4

π(1 + 4x2
6)

× g1(x6, y6) +
2e−x2

6
−1

π(4 + 4x6)
g2(x6, y6))] +

1
4
[eη

√
2wtsin(wt + η

√
2wt)(1− erf(x7)

− e−x2
7

2πx7
(1− cos(2x7y7))− 2e−x2

7−1/4

π(1 + 4x2
7)

f1(x7, y7)− 2e−x2
7
−1

π(4 + 4x7)
f2(x7, y7))

− eη
√

2wtcos(wt + η
√

2wt)
e−x2

7

2πx7
sin(2x7y7) +

2e−x2
7−1/4

π(1 + 4x2
7)

g1(x7, y7) +
2e−x2

7
−1

π(4 + 4x7)

× g2(x7, y7))]− 1
4
[e−η

√
2wtsin(wt− η

√
2wt)(1− erf(x8)− e−x2

8

2πx8
(1− cos(2x8y8))
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− 2e−x2
8−1/4

π(1 + 4x2
8)

f1(x8, y8)− 2e−x2
8
−1

π(4 + 4x8)
f2(x8, y8)) + e−η

√
2wtcos(wt− η

√
2wt)

e−x2
8

2πx8

× sin(2x8y8) +
2e−x2

8−1/4

π(1 + 4x2
8)

g1(x8, y8) +
2e−x2

8
−1

π(4 + 4x8)
g2(x8, y8))] +

a′c e−b′

2b′

× [−sin(2η
√

b′t)(1− erf(x9)− e−x2
9

2πx9
(1− cos(2x9y9))− 2e−x2

9−1/4

π(1 + 4x2
9)

f1(x9, y9)

− 2e−x2
9
−1

π(4 + 4x9)
f2(x9, y9))− cos(2η

√
b′t)(

e−x2
9

2πx9
sin(2x9y9) +

2e−x2
9−1/4

π(1 + 4x2
9)

g1(x9, y9)

+
2e−x2

9
−1

π(4 + 4x9)
g2(x9, y9)) + sin(2η

√
b′t)(1− erf(x10)− e−x2

10

2πx10
)(1− cos(2x10y10))

− 2e−x2
10−1/4

π(1 + 4x2
10)

f1(x10, y10)− 2e−x2
10
−1

π(4 + 4x10)
f2(x10, y10)))− cos(2η

√
b′t)(

e−x2
10

2πx10

× sin(2x10y10) +
2e−x2

10−1/4

π(1 + 4x2
10)

g1(x10, y10) +
2e−x2

10
−1

π(4 + 4x10)
g2(x10, y10))]

+
a2a′d
b′ − a

e−b′

2
[−sin(2η

√
b′t)(1− erf(x11)− e−x2

11

2πx11
)(1− cos(2x11y11))

− 2e−x2
11−1/4

π(1 + 4x2
11)

f1(x11, y11)− 2e−x2
11
−1

π(4 + 4x11)
f2(x11, y11)− cos(2η

√
b′t)(

e−x2
11

2πx11

× sin(2x11y11)+
2e−x2

11−1/4

π(1 + 4x2
11)

g1(x11, y11)+
2e−x2

11
−1

π(4 + 4x11)
g2(x11, y11))+sin(2η

√
b′t)

× (1− erf(x12)
e−x2

12

2πx12
(1− cos(2x12y12))− 2e−x2

12−1/4

π(1 + 4x2
12)

f1(x12, y12)− 2e−x2
12
−1

π(4 + 4x12)

× f2(x12, y12))− cos(2η
√

b′t)(
e−x2

12

2πx12
sin(2x12y12) +

2e−x2
12−1/4

π(1 + 4x2
12)

g1(x12, y12)

+
2e−x2

12
−1

π(4 + 4x12)
g2(x12, y12))]− a′c e−b′

2b′
[−sin(2η

√
b′t)(1− erf(x13)− e−x2

13

2πx13

× (1− cos(2x13y13))− 2e−x2
13−1/4

π(1 + 4x2
13)

f1(x13, y13)− 2e−x2
13
−1

π(4 + 4x13)
f2(x13, y13))

− cos(2η
√

b′t)(
e−x2

13

2πx13
sin(2x13y13) +

2e−x2
13−1/4

π(1 + 4x2
13)

g1(x13, y13) +
2e−x2

13
−1

π(4 + 4x13)

× g2(x13, y13)) + sin(2η
√

b′t)(1− erf(x14)− e−x2
14

2πx14
)(1− cos(2x14y14))

− 2e−x2
14−1/4

π(1 + 4x2
14)

f1(x14, y14)
2e−x2

14
−1

π(4 + 4x14)
f2(x14, y14))− cos(2η

√
b′t)(sin(2x14y14)

× e−x2
14

2πx14
+

2e−x2
14−1/4

π(1 + 4x2
14)

g1(x14, y14) +
2e−x2

14
−1

π(4 + 4x14)
g2(x14, y14))]− a2a′d e−b′

2(b′ − a)

× [−sin(2η
√

b′t)(1− erf(x15)− e−x2
15

2πx15
(1− cos(2x15y15))− 2e−x2

15−1/4

π(1 + 4x2
15)
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× f1(x15, y15)− 2e−x2
15
−1

π(4 + 4x15)
f2(x15, y15)))− cos(2η

√
b′t)(

e−x2
15

2πx15
sin(2x15y15)

+
2e−x2

15−1/4

π(1 + 4x2
15)

g1(x15, y15) +
2e−x2

15
−1

π(4 + 4x15)
g2(x15, y15)) + sin(2η

√
b′t)(1− erf(x12)

− e−x2
16

2πx16
(1− cos(2x16y16))− 2e−x2

16−1/4

π(1 + 4x2
16)

f1(x16, y16)− 2e−x2
16
−1

π(4 + 4x16)
f2(x16, y16))

−cos(2η
√

b′t)(
e−x2

16

2πx16
sin(2x16y16)+

2e−x2
16−1/4

π(1 + 4x2
16)

g1(x16, y16)+
2e−x2

16
−1

π(4 + 4x16)
g2(x16, y16))],

(3. 35)

where

x1 = η
√

Pr, y1 = −
√

b′, x2 = η
√

Pr, y2 =
√

b′, x3 = η
√

Sc, y3 = −
√

b′,

x4 = η
√

Sc, y4 =
√

b′, x5 = η +

√
wt

2
, y5 =

√
wt

2
, x6 = η −

√
wt

2
,

y6 = −
√

wt

2
, x7 = η +

√
wt

2
, y7 = −

√
wt

2
, x8 = η −

√
wt

2
, y8 =

√
wt

2
,

x9 = η, y9 = −
√

b′t, x10 = η, y10 =
√

b′t, x11 = η, y11 = −
√

b′t,

x12 = η, y12 =
√

b′t, x13 = η
√

Pr, y13 = −
√

b′t, x14 = η
√

Pr, y14 =
√

b′t,

x15 = η
√

Sc, y15 = −
√

(a + k)t, x16 = η
√

Sc, y16 =
√

(a + k)t.

0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

1.5

2

η

u

ωt=0

ωt=π/4

ωt=π/3

ωt=π/2

FIGURE 1. Profile of the expression for velocity given by Eq. (3.28)
versus similarity parameter forPr = 7, K = 2, Gr = 2, Gc =
2, Sc = 0.6, t = 0.2, a = 1, b = 2 and for different values of phase
angle.

4. DISCUSSION OFRESULTS

For physical review, we have plotted values of velocity and concentration for real
parts against the values ofη. We observed the effect on velocity and concentration profiles
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FIGURE 2. Profile of the expression for velocity given by Eq. (3.28)
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π/3, Gr = 5, Gc = 10, a = 1, b = 2 and for different values of K.
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FIGURE 3. Profile of the expression for velocity given by Eq. (3.28)
versus similarity parameter forPr = 7, K = 0.2, ωt = π/3, Gr =
5, Gc = 5, Sr = 0.6, a = 1, b = 2 and for different values of time.

varying the values of involved parameters like reaction of chemical parameter, Schmidt
number, time and phase angle. The nature of flow and transport is also observed by vary-
ing K, Sc, t andωt.

In Fig. 1, velocity profile given by Eq. (3.28) is depicted against phase angleωt, we
analyzed that the velocity will increase when the decrease occur in phase angle. In Fig.
2, opposite effect is observed in case of chemical reaction parameter against velocity that
is the velocity will increase with increase inK keeping the time constant. The effect of
velocity for different values of time is shown in Fig. 3, it is observed that velocity in-
creases with increase in time with respect to the other parameters involved likePr, Gr,
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FIGURE 4. Profile of the expression for concentration given by Eq.
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and for different values of K.
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FIGURE 5. Profile of the expression for concentration given by Eq.
(3.23) versus similarity parameter forK = 2, t = 0.4, a = 1, b = 2
and for different values of Schmidt number.

Gc, Sc andωt. The effects of concentration for reaction of chemical parameter (K) and
Schmidt number (Sc) are shown in Figs. (4) and (5). All of these figures showing that
the concentration is decreasing when increase occur inK with respect to other two con-
stant parameters (Schmidt number and time) while it is an increasing function for Schmidt
number for constant values ofK andt.
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5. CONCLUSION

In this paper, we considered unsteady flow of incompressible and viscous fluid over
an infinite vertical plate. Initially, the plate and fluid is in rest position with same tempera-
tureT∞ and concentrationC ′∞. We takex′-axis is along the plate andy′-axis be at the hori-
zontal direction perpendicular to thex′-axis. After that when timet′ = 0+, the plate begins
moving about its initial position with velocityu0cosω

′t′, whereω′t′ is phase angle andu0

is the velocity of plate. The temperature of the plate raised toT∞ + Tω(1− a′exp(−b′t′))
that changes exponentially, whereTω is constant temperature. Assuming that the effect
of viscous dissipation is trivial. We obtained the governing equations by considering the
boundary layer and Boussinesq approximation.

Firstly the obtained governing equations are linearized and then the exact solution cor-
responding to unsteady flow of a viscous in-compressible fluid passing through an infinite
oscillating wall vertically with different temperature and mass diffusion are obtained by
taking into consideration the homogeneous chemical reaction of first order. The temper-
ature and concentration level of the plate increased linearly with respect to time. The
technique of Laplace transform is used to solve the linearized dimensionless equations.
The plate will oscillate in its own plane harmonically. The profiles of velocity and concen-
tration are analyzed for different physical parameters like phase angle, chemical reaction
parameter, mass Grashöf number, thermal Grashöf number, Schmidt number and time. The
numerical values corresponding to the different parameters are designed for physical vi-
sion. In the light of above discussion and results, we are able to give the following remarks:
• Velocity of the fluid increases with decrease in phase angle, while it is increasing with
increase in chemical reaction parameter and time.
• Concentration of the fluid increases with decrease in chemical reaction parameter while
it is increasing with increase in Schmidt number.
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