Punjab University Journal of Mathematics (ISSN 1016-2526) Vol.48(1)(2016) pp. 19-28

Refinements of Hardy-type Integral Inequalities with Kernels

Sajid Iqbal
Department of Mathematics,
University of Sargodha,
Sub-Campus Bhakkar, Bhakkar, Pakistan
Email: sajid_uos2000@yahoo.com

Kristina Krulić Himmelreich Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia Email: kkrulic@ttf.hr

Josip Pečarić
Faculty of Textile Technology,
University of Zagreb,
Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
Email: pecaric@element.hr

Received: 14 October, 2015 / Accepted: 20 November, 2015 / Published online: 08 January, 2016

Abstract. The aim of this paper is to give new refinements of the Hardy-type inequality for arbitrary convex function with different kernels.

AMS (MOS) Subject Classification Codes: 26D15; 26D10; 26A33

Key Words: Hardy-type Inequalities, Convex Function, Kernel, Fractional Integrals, Fractional Derivatives.

1. Introduction

Let $(\Omega_1, \Sigma_1, \mu_1)$ and $(\Omega_2, \Sigma_2, \mu_2)$ be measure spaces with positive σ -finite measures, $k: \Omega_1 \times \Omega_2 \to \mathbb{R}$ be a measurable and non-negative kernel, and

$$K(x) = \int_{\Omega_2} k(x, y) \, d\mu_2(y) < \infty, \ x \in \Omega_1.$$
 (1. 1)

Throughout this paper we suppose K(x) > 0 a.e. on Ω_1 and by a weight function (shortly: a weight) we mean a non-negative measurable function on the actual set.

Let U(k) denote the class of measurable functions $g:\Omega_1\to\mathbb{R}$ with the representation

$$g(x) = \int_{\Omega_2} k(x, y) f(y) d\mu_2(y),$$

where $f:\Omega_2\to\mathbb{R}$ is a measurable function

In [16] K. Krulić et al. studied some new weighted Hardy-type inequalities on $(\Omega_1, \Sigma_1, \mu_1)$, $(\Omega_2, \Sigma_2, \mu_2)$, measure spaces with σ -finite measures with an integral operator A_k defined by

$$A_k f(x) := \frac{1}{K(x)} \int_{\Omega_2} k(x, y) f(y) d\mu_2(y), \tag{1.2}$$

where $f: \Omega_2 \to \mathbb{R}$ is a measurable function, K be defined by (1.1) and they proved the following result:

THEOREM 1.1. Let $u: \Omega_1 \to \mathbb{R}$ be a weight function. Assume that $x \mapsto u(x) \frac{k(x,y)}{K(x)}$ is locally integrable on Ω_1 for each fixed $y \in \Omega_2$. Define v by

$$v(y) := \int_{\Omega_1} u(x) \frac{k(x,y)}{K(x)} d\mu_1(x) < \infty.$$
 (1.3)

If Φ is a convex function on the interval $I \subseteq \mathbb{R}$, then the inequality

$$\int_{\Omega_1} u(x)\Phi(A_k f(x))d\mu_1(x) \le \int_{\Omega_2} v(y)\Phi(f(y))d\mu_2(y) \tag{1.4}$$

holds for all measurable functions $f: \Omega_2 \to \mathbb{R}$, such that $Im f \subseteq I$, where A_k is defined by (1.2).

The following refinement of Theorem 1.1 is given in [5].

THEOREM 1.2. Let $(\Omega_1, \Sigma_1, \mu_1)$ and $(\Omega_2, \Sigma_2, \mu_2)$ be measure spaces with σ -finite measures, u be a weight function on Ω_1 , k be a non-negative measurable function on $\Omega_1 \times \Omega_2$, and K be defined on Ω_1 by (1.1). Suppose that the function $x \mapsto u(x) \frac{k(x,y)}{K(x)}$ is integrable on Ω_1 for each fixed $y \in \Omega_2$, and that v is defined on Ω_2 by (1.3). If Φ is convex on the interval $I \subseteq \mathbb{R}$, and $\varphi : I \to \mathbb{R}$ is any function, such that $\varphi(x) \in \partial \Phi(x)$ for all $x \in Int I$, then the inequality

$$\int_{\Omega_{2}} v(y)\Phi(f(y)) d\mu_{2}(y) - \int_{\Omega_{1}} u(x)\Phi(A_{k}f(x)) d\mu_{1}(x) \ge \int_{\Omega_{1}} \frac{u(x)}{K(x)} \int_{\Omega_{2}} k(x,y) \\
\times ||\Phi(f(y)) - \Phi(A_{k}f(x))| - |\varphi(A_{k}f(x))| \cdot |f(y) - A_{k}f(x)| |d\mu_{2}(y) d\mu_{1}(x) \quad (1.5)$$

holds for all measurable functions $f: \Omega_2 \to \mathbb{R}$, such that $f(y) \in I$, for all fixed $y \in \Omega_2$ where A_k is defined by (1.2).

S. Iqbal et al. in their recent paper [8] proved an inequality for arbitrary convex function with some applications for fractional integrals and fractional derivatives. Also, recently Čižmešija et al. proved new Hardy-type inequalities and their refinements (see [5], [6], [7]). Now the area of fractional integrals and derivatives is investigated a lot (see [9]–[14]). This book [17] contains a lot of information concerning convex functions and related inequalities.

Here we want to give new improved results. For this purpose if we substitute k(x,y) by $k(x,y)f_2(y)$ and f by f_1/f_2 , where $f_i:\Omega_2\to\mathbb{R}, (i=1,2)$ are measurable functions in Theorem 1.1 and Theorem 1.2 we obtain the following result.

THEOREM 1.3. Let $(\Omega_1, \Sigma_1, \mu_1)$ and $(\Omega_2, \Sigma_2, \mu_2)$ be measure spaces with σ -finite measures, u be a weight function on Ω_1 and k be a non-negative measurable function on $\Omega_1 \times \Omega_2$. Suppose that the function $x \mapsto u(x) \frac{k(x,y)}{g_2(x)}$ is integrable on Ω_1 for each fixed $y \in \Omega_2$, and that v is defined on Ω_2 by

$$v(y) := f_2(y) \int_{\Omega_1} \frac{u(x)k(x,y)}{g_2(x)} d\mu_1(x) < \infty.$$

If Φ is convex on the interval $I \subseteq \mathbb{R}$, and $\varphi : I \to \mathbb{R}$ is any function, such that $\varphi(x) \in \partial \Phi(x)$ for all $x \in Int\ I$, then the inequality

$$\int_{\Omega_{2}} v(y) \Phi\left(\frac{f_{1}(y)}{f_{2}(y)}\right) d\mu_{2}(y) - \int_{\Omega_{1}} u(x) \Phi\left(\frac{g_{1}(x)}{g_{2}(x)}\right) d\mu_{1}(x) \ge \int_{\Omega_{1}} \frac{u(x)}{g_{2}(x)} \int_{\Omega_{2}} k(x, y) f_{2}(y) \\
\times \left| \left| \Phi\left(\frac{f_{1}(y)}{f_{2}(y)}\right) - \Phi\left(\frac{g_{1}(x)}{g_{2}(x)}\right) \right| - \left| \varphi\left(\frac{g_{1}(x)}{g_{2}(x)}\right) \right| \cdot \left| \frac{f_{1}(y)}{f_{2}(y)} - \frac{g_{1}(x)}{g_{2}(x)} \right| \right| d\mu_{2}(y) d\mu_{1}(x) \tag{1. 6}$$

holds for all measurable functions $f_i: \Omega_2 \to \mathbb{R}$, such that $\frac{f_1(y)}{f_2(y)} \in I$.

Let us emphasize on the next remark that connects our central result to [8, Theorem 2.1].

REMARK 1. If we take $\Omega_1 = \Omega_2 = (a,b)$, $d\mu_1(x) = dx$ and $d\mu_2(y) = dy$ the inequality (1. 6) becomes the refinement of the inequality given in [8, Theorem 2.1].

This paper is organized in the following way: After introduction in Section 2, we give new refinements of the Hardy-type inequality for fractional integral of a function with respect to another increasing function, Riemann-Liouville, Hadamard-type and Erdélyi-Kober-type fractional integrals. In Section 3, we give refinements for fractional derivative of Riemann-Liouville, Canavati and Caputo-type involving an arbitrary convex function.

2. Refinements of Hardy-type inequalities for fractional integrals

We recall the definition of the *fractional integrals of a function f with respect to given function g*. For details see e.g. [15, p. 99].

Let $(a,b), -\infty \leq a < b \leq \infty$ be a finite or infinite interval of the real line $\mathbb R$ and $\alpha > 0$. Also let g be an increasing function on (a,b] and g' be a continuous function on (a,b). The left-sided fractional integral of a function f with respect to another function g in [a,b] is given by

$$(I_{a+;g}^{\alpha}f)(x) = \frac{1}{\Gamma(\alpha)} \int_{a}^{x} (g(x) - g(y))^{\alpha - 1} g'(y) f(y) dy, \qquad (x > a).$$
 (2. 7)

Our first result about the fractional integrals is given in the following theorem.

THEOREM 2.1. Let u be a weight function on (a,b), g be an increasing function on (a,b] such that g' be a continuous function on (a,b) and $\alpha > 0$. $I_{a_+;g}^{\alpha}f$ denotes the left-sided fractional integral of a function f with respect to another function g in [a,b]. Define v on (a,b) by

$$v(y) := \frac{f_2(y)}{\Gamma(\alpha)} \int_{u}^{b} u(x) \frac{g'(y)(g(x) - g(y))^{\alpha - 1}}{(I_{a+;g}^{\alpha} f_2)(x)} dx < \infty.$$

If Φ is convex on the interval $I \subseteq \mathbb{R}$, and $\varphi : I \to \mathbb{R}$ is any function, such that $\varphi(x) \in \partial \Phi(x)$ for all $x \in Int\ I$, then the following inequality holds:

$$\int_{a}^{b} v(y) \Phi\left(\frac{f_{1}(y)}{f_{2}(y)}\right) dy - \int_{a}^{b} u(x) \Phi\left(\frac{(I_{a+;g}^{\alpha}f_{1})(x)}{(I_{a+;g}^{\alpha}f_{2})(x)}\right) dx \ge \frac{1}{\Gamma(\alpha)} \int_{a}^{b} \frac{u(x)}{(I_{a+;g}^{\alpha}f_{2})(x)}
\times \int_{a}^{x} \frac{g'(y)f_{2}(y)}{(g(x) - g(y))^{1-\alpha}} \left| \left| \Phi\left(\frac{f_{1}(y)}{f_{2}(y)}\right) - \Phi\left(\frac{(I_{a+;g}^{\alpha}f_{1})(x)}{(I_{a+;g}^{\alpha}f_{2})(x)}\right) \right|
- \left| \varphi\left(\frac{(I_{a+;g}^{\alpha}f_{1})(x)}{(I_{a+;g}^{\alpha}f_{2})(x)}\right) \right| \cdot \left| \frac{f_{1}(y)}{f_{2}(y)} - \frac{(I_{a+;g}^{\alpha}f_{1})(x)}{(I_{a+;g}^{\alpha}f_{2})(x)} \right| \right| dy dx. \quad (2.8)$$

Proof. Applying Theorem 1.3 with $\Omega_1 = \Omega_2 = (a, b), \ d\mu_1(x) = dx, \ d\mu_1(y) = dy,$

$$k(x,y) = \begin{cases} \frac{1}{\Gamma(\alpha)} \frac{g'(y)}{(g(x) - g(y))^{1-\alpha}}, & a \le y \le x; \\ 0, & x < y \le b, \end{cases}$$

and replacing g_i by $I_{a+:q}^{\alpha} f_i$, (i = 1, 2), we obtain (2.8).

REMARK 2. Since right-hand side of inequality (2. 8) is non-negative, we obtain the following inequality:

$$\int_{a}^{b} u(x)\Phi\left(\frac{(I_{a+;g}^{\alpha}f_{1})(x)}{(I_{a+;g}^{\alpha}f_{2})(x)}\right)dx \le \int_{a}^{b} v(y)\Phi\left(\frac{f_{1}(y)}{f_{2}(y)}\right)dy \tag{2.9}$$

In particular for the weight function $u(x)=g'(x)I^{\alpha}_{a+;g}f_2(y)$, we obtain $v(y)=\frac{1}{\Gamma(\alpha+1)}f_2(y)g'(y)(g(b)-g(y))^{\alpha}$ and (2.9) reduces to

$$\int_{a}^{b} g'(x) (I_{a+;g}^{\alpha} f_{2})(x) \Phi\left(\frac{(I_{a+;g}^{\alpha} f_{1})(x)}{(I_{a+;g}^{\alpha} f_{2})(x)}\right) dx$$

$$\leq \frac{1}{\Gamma(\alpha+1)} \int_{a}^{b} g'(y) (g(b) - g(y))^{\alpha} f_{2}(y) \Phi\left(\frac{f_{1}(y)}{f_{2}(y)}\right) dy. \quad (2. 10)$$

Since g is an increasing function, $(g(b) - g(y))^{\alpha} \le (g(b) - g(a))^{\alpha}$, (2.10) becomes

$$\int_{a}^{b} g'(x) (I_{a+;g}^{\alpha} f_{2})(x) \Phi\left(\frac{(I_{a+;g}^{\alpha} f_{1})(x)}{(I_{a+;g}^{\alpha} f_{2})(x)}\right) dx$$

$$\leq \frac{(g(b) - g(a))^{\alpha}}{\Gamma(\alpha + 1)} \int_{a}^{b} g'(y) f_{2}(y) \Phi\left(\frac{f_{1}(y)}{f_{2}(y)}\right) dy. \quad (2. 11)$$

For g(x) = x in (2. 7), we obtain the well known left-sided Riemann-Liouville fractional integral of order $\alpha > 0$ which is defined by

$$I_{a^+}^{\alpha} f(x) = \frac{1}{\Gamma(\alpha)} \int_{a}^{x} (x - y)^{\alpha - 1} f(y) dy, \quad (x > a),$$

and we obtain the related result for Riemann-Liouville fractional integral in upcoming corollary.

COROLLARY 2.1. Let u be a weight function on (a,b) and $\alpha > 0$. $I_{a^+}^{\alpha}f$ denotes the Riemann-Liouville fractional integral of f. Define v on (a,b) by

$$v(y) := \frac{f_2(y)}{\Gamma(\alpha)} \int_y^b \frac{u(x)(x-y)^{\alpha-1}}{I_{a+}^{\alpha} f_2(x)} dx < \infty.$$

If Φ is convex on the interval $I \subseteq \mathbb{R}$, and $\varphi : I \to \mathbb{R}$ is any function, such that $\varphi(x) \in \partial \Phi(x)$ for all $x \in Int\ I$, then the following inequality holds:

$$\int_{a}^{b} v(y) \Phi\left(\frac{f_{1}(y)}{f_{2}(y)}\right) dy - \int_{a}^{b} u(x) \Phi\left(\frac{I_{a+}^{\alpha} f_{1}(x)}{I_{a+}^{\alpha} f_{2}(x)}\right) dx \ge \frac{1}{\Gamma(\alpha)} \int_{a}^{b} \frac{u(x)}{I_{a+}^{\alpha} f_{2}(x)} \int_{a}^{x} (x-y)^{\alpha-1} \times f_{2}(y) \left| \left| \Phi\left(\frac{f_{1}(y)}{f_{2}(y)}\right) - \Phi\left(\frac{I_{a+}^{\alpha} f_{1}(x)}{I_{a+}^{\alpha} f_{2}(x)}\right) \right| - \left| \varphi\left(\frac{I_{a+}^{\alpha} f_{1}(x)}{I_{a+}^{\alpha} f_{2}(x)}\right) \right| \cdot \left| \frac{f_{1}(y)}{f_{2}(y)} - \frac{I_{a+}^{\alpha} f_{1}(x)}{I_{a+}^{\alpha} f_{2}(x)} \right| dy dx.$$

$$(2. 12)$$

REMARK 3. Inequality (2. 12) is a refinement of inequality

$$\int_{a}^{b} u(x)\Phi\left(\frac{I_{a+}^{\alpha}f_{1}(x)}{I_{a+}^{\alpha}f_{2}(x)}\right)dx \leq \int_{a}^{b} v(y)\Phi\left(\frac{f_{1}(y)}{f_{2}(y)}\right)dy$$

which is given in [8]. Also, for g(x) = x inequality (2.11) reduces to

$$\int_{a}^{b} I_{a+}^{\alpha} f_2(x) \Phi\left(\frac{I_{a+}^{\alpha} f_1(x)}{I_{a+}^{\alpha} f_2(x)}\right) dx \le \frac{(b-a)^{\alpha}}{\Gamma(\alpha+1)} \int_{a}^{b} f_2(y) \Phi\left(\frac{f_1(y)}{f_2(y)}\right) dy.$$

REMARK 4. If we set $g(x) = \log x$, then $I_{a_+;x}^{\alpha} f(x)$ reduces to $J_{a_+}^{\alpha} f(x)$ left-sided Hadamard-type fractional integral that is defined for $\alpha > 0$ by

$$(J_{a_+}^{\alpha}f)(x) = \frac{1}{\Gamma(\alpha)} \int_a^x \left(\log \frac{x}{y}\right)^{\alpha-1} \frac{f(y)dy}{y}, \quad x > a.$$

The inequality (2.8) becomes:

$$\begin{split} \int_{a}^{b} v(y) \Phi\left(\frac{f_{1}(y)}{f_{2}(y)}\right) dy &- \int_{a}^{b} u(x) \Phi\left(\frac{(J_{a_{+}}^{\alpha} f_{1})(x)}{(J_{a_{+}}^{\alpha} f_{2})(x)}\right) dx \geq \frac{1}{\Gamma(\alpha)} \int_{a}^{b} \frac{u(x)}{(J_{a_{+}}^{\alpha} f_{2})(x)} \\ &\times \int_{a}^{x} (\log x - \log y)^{\alpha - 1} f_{2}(y) \left| \left| \Phi\left(\frac{f_{1}(y)}{f_{2}(y)}\right) - \Phi\left(\frac{(J_{a_{+}}^{\alpha} f_{1})(x)}{(J_{a_{+}}^{\alpha} f_{2})(x)}\right) \right| \\ &- \left| \varphi\left(\frac{(J_{a_{+}}^{\alpha} f_{1})(x)}{(J_{a_{+}}^{\alpha} f_{2})(x)}\right) \right| \cdot \left| \frac{f_{1}(y)}{f_{2}(y)} - \frac{(J_{a_{+}}^{\alpha} f_{1})(x)}{(J_{a_{+}}^{\alpha} f_{2})(x)} \right| \left| \frac{dy}{y} \, dx \right| \end{split}$$

and the inequality (2.11) given in Remark 2 becomes

$$\int\limits_{a}^{b} (J_{a_+}^{\alpha} f_2)(x) \Phi\left(\frac{(J_{a_+}^{\alpha} f_1)(x)}{(J_{a_+}^{\alpha} f_2)(x)}\right) \frac{dx}{x} \leq \frac{(\log b - \log a)^{\alpha}}{\Gamma(\alpha + 1)} \int\limits_{a}^{b} f_2(y) \Phi\left(\frac{f_1(y)}{f_2(y)}\right) \frac{dy}{y}.$$

We also recall the definition of Erdélyi-Kober type fractional integrals. For details see [18].

Let $(a,b), (0 \le a < b \le \infty)$ be finite or infinite interval of \mathbb{R}_+ . Let $\alpha > 0, \sigma > 0$, and $\eta \in \mathbb{R}$. The left-sided Erdélyi-Kober type fractional integral of order $\alpha > 0$ is defined by

$$(I_{a_+;\sigma;\eta}^{\alpha}f)(x) = \frac{\sigma x^{-\sigma(\alpha+\eta)}}{\Gamma(\alpha)} \int_a^x \frac{y^{\sigma\eta+\sigma-1}}{(x^{\sigma}-y^{\sigma})^{1-\alpha}} f(y) dy, \quad x > a.$$

COROLLARY 2.2. Let u be a weight function on (a,b), ${}_2F_1(a,b;c;z)$ denotes the hypergeometric function and $I^{\alpha}_{a_+;\sigma;\eta}f$ denotes the Erdélyi–Kober type fractional left-sided integral. Define v by

$$v(y):=\frac{\sigma f_2(y)}{\Gamma(\alpha)}\int\limits_y^b\frac{u(x)x^{-\sigma(\alpha+\eta)}y^{\sigma\eta+\sigma-1}}{(I^\alpha_{a_+;\sigma;\eta}f_2)(x)(x^\sigma-y^\sigma)^{1-\alpha}}dx<\infty.$$

If Φ is convex on the interval $I \subseteq \mathbb{R}$, and $\varphi : I \to \mathbb{R}$ is any function, such that $\varphi(x) \in \partial \Phi(x)$ for all $x \in Int\ I$, then the following inequality holds:

$$\int_{a}^{b} v(y) \Phi\left(\frac{f_{1}(y)}{f_{2}(y)}\right) dy - \int_{a}^{b} u(x) \Phi\left(\frac{(I_{a_{+};\sigma;\eta}^{\alpha} f_{1})(x)}{(I_{a_{+};\sigma;\eta}^{\alpha} f_{1})(x)}\right) dx \ge \frac{\sigma}{\Gamma(\alpha)} \int_{a}^{b} \frac{u(x)}{(I_{a_{+};\sigma;\eta}^{\alpha} f_{2})(x)}$$

$$\times \int_{a}^{x} \frac{x^{-\sigma(\alpha+\eta)} y^{\sigma\eta+\sigma-1}}{(x^{\sigma} - y^{\sigma})^{1-\alpha}} f_{2}(y) \left| \left| \Phi\left(\frac{f_{1}(y)}{f_{2}(y)}\right) - \Phi\left(\frac{(I_{a_{+};\sigma;\eta}^{\alpha} f_{1})(x)}{(I_{a_{+};\sigma;\eta}^{\alpha} f_{1})(x)}\right) \right| - \left| \varphi\left(\frac{(I_{a_{+};\sigma;\eta}^{\alpha} f_{1})(x)}{(I_{a_{+};\sigma;\eta}^{\alpha} f_{1})(x)}\right) \right| \cdot \left| \frac{f_{1}(y)}{f_{2}(y)} - \frac{(I_{a_{+};\sigma;\eta}^{\alpha} f_{1})(x)}{(I_{a_{+};\sigma;\eta}^{\alpha} f_{1})(x)} \right| dy dx.$$

Proof. Proof is similar to the proof of the Theorem 2.1.

REMARK 5. Here we give results only for left-sided fractional integrals. Likewise we can give results for right-sided fractional integrals, but here we omit the details.

3. Refinements of Hardy-type inequalities for fractional derivatives

We continue with new refinements of Hardy-type inequalities for different fractional derivatives. First we give a result with respect to the generalized Riemann–Liouville fractional derivative. Let us recall the definition.

Let $\alpha > 0$ and $n = [\alpha] + 1$ where $[\cdot]$ is the integral part and we define the generalized Riemann-Liouville fractional derivative of f of order α by

$$(D_a^{\alpha} f)(x) = \frac{1}{\Gamma(n-\alpha)} \left(\frac{d}{dx}\right)^n \int_a^x (x-y)^{n-\alpha-1} f(y) \, dy \, .$$

In addition, we stipulate

$$D_a^0f:=f=:I_a^0f,\quad I_a^{-\alpha}f:=D_a^\alpha f \text{ if } \alpha>0.$$

If $\alpha \in \mathbb{N}$ then $D_a^{\alpha} f = \frac{d^{\alpha} f}{dx^{\alpha}}$, the ordinary α -order derivative.

The following lemma summarizes conditions in identity for generalized Riemann-Liouville fractional derivative. For details see [2].

LEMMA 3.1. Let $\beta > \alpha \geq 0$, $n = [\beta] + 1$, $m = [\alpha] + 1$. Identity

$$D_a^{\alpha} f(x) = \frac{1}{\Gamma(\beta - \alpha)} \int_a^x (x - y)^{\beta - \alpha - 1} D_a^{\beta} f(y) dy, \quad x \in [a, b].$$

is valid if one of the following conditions holds:

- $\begin{array}{ll} (i) & f \in I_a^\beta \left(L(a,b) \right). \\ (ii) & I_a^{n-\beta} f \in AC^n[a,b] \ \text{and} \ D_a^{\beta-k} f(a) = 0 \ \text{for} \ k = 1, \dots n. \\ (iii) & D_a^{\beta-k} f \in C[a,b] \ \text{for} \ k = 1, \dots, n, \ D_a^{\beta-1} f \in AC[a,b] \ \text{and} \ D_a^{\beta-k} f(a) = 0 \ \text{for} \end{array}$
- $(iv) \ f \in AC^{n}[a,b], \ D_{a}^{\beta}f \in L(a,b), \ D_{a}^{\alpha}f \in L(a,b), \ \beta \alpha \notin \mathbb{N}, \ D_{a}^{\beta-k}f(a) = 0 \ for \ k = 1, \dots, n \ and \ D_{a}^{\alpha-k}f(a) = 0 \ for \ k = 1, \dots, m.$ $(v) \ f \in AC^{n}[a,b], \ D_{a}^{\beta}f \in L(a,b), \ D_{a}^{\alpha}f \in L(a,b), \ \beta \alpha = l \in \mathbb{N}, \ D_{a}^{\beta-k}f(a) = 0 \ for \ k = 1, \dots, m.$
- $(vi) \ f \in AC^n[a,b], \ D_a^{\beta}f \in L(a,b), \ D_a^{\alpha}f \in L(a,b) \ and \ f(a) = f'(a) = \cdots = f'(a)$ $f^{(n-2)}(a) = 0.$
- (vii) $f \in AC^n[a,b]$, $D_a^{\beta}f \in L(a,b)$, $D_a^{\alpha}f \in L(a,b)$, $\beta \notin \mathbb{N}$ and $D_a^{\beta-1}f$ is bounded in a neighborhood of t = a.

COROLLARY 3.1. Let u be a weight function on (a, b) and let assumptions in Lemma 3.1 be satisfied. Define v on (a, b) by

$$v(y) := \frac{D_a^{\beta} f_2(y)}{\Gamma(\beta - \alpha)} \int_{-\pi}^{b} \frac{u(x)(x - y)^{\beta - \alpha - 1}}{D_a^{\alpha} f_2(x)} dx < \infty.$$

If Φ is convex on the interval $I \subseteq \mathbb{R}$, and $\varphi : I \to \mathbb{R}$ is any function, such that $\varphi(x) \in$ $\partial \Phi(x)$ for all $x \in Int I$, then the following inequality holds:

$$\int_{a}^{b} v(y) \Phi\left(\frac{D_{a}^{\beta} f_{1}(y)}{D_{a}^{\beta} f_{2}(y)}\right) dy - \int_{a}^{b} u(x) \Phi\left(\frac{D_{a}^{\alpha} f_{1}(x)}{D_{a}^{\alpha} f_{2}(x)}\right) dx \ge \frac{1}{\Gamma(\beta - \alpha)} \int_{a}^{b} \frac{u(x)}{D_{a}^{\alpha} f_{2}(x)}$$

$$\times \int_{a}^{x} (x - y)^{\beta - \alpha - 1} D_{a}^{\beta} f_{2}(y) \left| \Phi\left(\frac{D_{a}^{\beta} f_{1}(y)}{D_{a}^{\beta} f_{2}(y)}\right) - \Phi\left(\frac{D_{a}^{\alpha} f_{1}(x)}{D_{a}^{\alpha} f_{2}(x)}\right) \right|$$

$$- \left| \varphi\left(\frac{D_{a}^{\alpha} f_{1}(x)}{D_{a}^{\alpha} f_{2}(x)}\right) \right| \cdot \left| \frac{D_{a}^{\beta} f_{1}(y)}{D_{a}^{\beta} f_{2}(y)} - \frac{D_{a}^{\alpha} f_{1}(x)}{D_{a}^{\alpha} f_{2}(x)} \right| dy dx. \quad (3.13)$$

Proof. Applying Theorem 1.3 with $\Omega_1 = \Omega_2 = (a, b)$, $d\mu_1(x) = dx$, $d\mu_2(y) = dy$,

$$k(x,y) = \begin{cases} \frac{(x-y)^{\beta-\alpha-1}}{\Gamma(\beta-\alpha)}, & a \le y \le x; \\ 0, & x < y \le b, \end{cases}$$

and replacing f_i by $D_a^{\beta} f_i$ then, by Lemma 3.1, $g_i = D_a^{\alpha} f_i$, (i = 1, 2) and we get (3. 13).

REMARK 6. Since right-hand side of inequality (3. 13) is non-negative, we obtain the following inequality:

$$\int_{a}^{b} u(x)\Phi\left(\frac{D_{a}^{\alpha}f_{1}(x)}{D_{a}^{\alpha}f_{2}(x)}\right)dx \leq \int_{a}^{b} v(y)\Phi\left(\frac{D_{a}^{\beta}f_{1}(y)}{D_{a}^{\beta}f_{2}(y)}\right)dy \tag{3. 14}$$

that is given in [8].

Now we recall the Canavati-type fractional derivative (ν -fractional derivative of f). We consider

$$C^{\nu}([0,1]) = \{ f \in C^{n}([0,1]) : I_{1-\bar{\nu}}f^{(n)} \in C^{1}([0,1]) \},$$

 $\nu > 0, \ n = [\nu], [.]$ is the integral part, and $\bar{\nu} = \nu - n, 0 \le \bar{\nu} < 1.$

For $f \in C^{\nu}([0,1])$, the Canavati- ν fractional derivative of f is defined by

$$D^{\nu}f = DI_{1-\bar{\nu}}f^{(n)},$$

where D = d/dx. For further details and proof see [3, Theorem 2.1].

LEMMA 3.2. Let $\nu > \gamma > 0$, $n = [\nu]$, $m = [\gamma]$. Let $f \in C^{\nu}([0,1])$, be such that $f^{(i)}(0) = 0$, i = m, m+1, ..., n-1. Then

(i)
$$f \in C^{\gamma}([0,1]),$$

(ii)
$$(D^{\gamma}f)(x) = \frac{1}{\Gamma(\nu-\gamma)} \int_{0}^{x} (x-t)^{\nu-\gamma-1} (D^{\nu}f)(t) dt$$
,

for every $x \in [0, 1]$.

COROLLARY 3.2. Let u be a weight function on (a,b) and let assumptions in Lemma 3.2 be satisfied. Define v on (a,b) by

$$v(y) := \frac{D^{\nu} f_2(x)}{\Gamma(\nu - \gamma)} \int_y^b \frac{u(x)(x - y)^{\nu - \gamma - 1}}{D^{\gamma} f_2(x)} dx < \infty.$$

If Φ is convex on the interval $I \subseteq \mathbb{R}$, and $\varphi : I \to \mathbb{R}$ is any function, such that $\varphi(x) \in \partial \Phi(x)$ for all $x \in Int\ I$, then the following inequality holds:

$$\int_{a}^{b} v(y) \Phi\left(\frac{D^{\nu} f_{1}(y)}{D^{\nu} f_{2}(y)}\right) dy - \int_{a}^{b} u(x) \Phi\left(\frac{D^{\gamma} f_{1}(x)}{D^{\gamma} f_{2}(x)}\right) dx \ge \frac{1}{\Gamma(\nu - \gamma)} \int_{a}^{b} \frac{u(x)}{D^{\gamma} f_{2}(x)}$$

$$\times \int_{a}^{x} (x - y)^{\nu - \gamma - 1} D^{\nu} f_{2}(x) \left| \left| \Phi\left(\frac{D^{\nu} f_{1}(y)}{D^{\nu} f_{2}(y)}\right) - \Phi\left(\frac{D^{\gamma} f_{1}(x)}{D^{\gamma} f_{2}(x)}\right) \right|$$

$$- \left| \varphi\left(\frac{D^{\gamma} f_{1}(x)}{D^{\gamma} f_{2}(x)}\right) \right| \cdot \left| \frac{D^{\nu} f_{1}(y)}{D^{\nu} f_{2}(y)} - \frac{D^{\gamma} f_{1}(x)}{D^{\gamma} f_{2}(x)} \right| dy dx.$$

Proof. Proof is similar to the proof of Corollary 3.1.

Now we recall Caputo fractional derivative, for details see [1, p. 449].

Let $\nu \geq 0$, $n = \lceil \nu \rceil$, $f \in AC^n[a,b]$. The Caputo fractional derivative is given by

$$D_{*a}^{\nu}f(t) = \frac{1}{\Gamma(n-\nu)} \int_{a}^{x} \frac{f^{(n)}(y)}{(x-y)^{\nu-n+1}} dy,$$

for all $x \in [a, b]$. The above function exists almost everywhere for $x \in [a, b]$.

We continue with the following lemma that is given in [4].

LEMMA 3.3. Let $\nu > \gamma \geq 0$, $n = [\nu] + 1$, $m = [\gamma] + 1$ and $f \in AC^n[a,b]$. Suppose that one of the following conditions hold:

- (a) $\nu, \gamma \notin \mathbb{N}_0$ and $f^i(a) = 0$ for i = m, ..., n-1
- (b) $\nu \in \mathbb{N}_0, \gamma \notin \mathbb{N}_0$ and $f^i(a) = 0$ for i = m, ..., n-2(c) $\nu \notin \mathbb{N}_0, \gamma \in \mathbb{N}_0$ and $f^i(a) = 0$ for i = m-1, ..., n-1
- (d) $\nu \in \mathbb{N}_0, \gamma \in \mathbb{N}_0 \text{ and } f^i(a) = 0 \text{ for } i = m-1, ..., n-2$

Then

$$D_{*a}^{\gamma} f(x) = \frac{1}{\Gamma(\nu - \gamma)} \int_{a}^{x} (x - y)^{\nu - \gamma - 1} D_{*a}^{\nu} f(y) dy$$

for all $a \leq x \leq b$.

COROLLARY 3.3. Let u be a weight function on (a, b) and let assumptions in Lemma 3.3 be satisfied. Define v on (a, b) by

$$v(y) := \frac{D_{*a}^{\nu} f_2(x)}{\Gamma(\nu - \gamma)} \int_{u}^{b} \frac{u(x)(x - y)^{\nu - \gamma - 1}}{D_{*a}^{\gamma} f_2(x)} dx < \infty.$$

If Φ is convex on the interval $I \subseteq \mathbb{R}$, and $\varphi: I \to \mathbb{R}$ is any function, such that $\varphi(x) \in$ $\partial \Phi(x)$ for all $x \in Int I$, then the following inequality holds:

$$\begin{split} \int_{a}^{b} v(y) \Phi \left(\frac{D_{*a}^{\nu} f_{1}(y)}{D_{*a}^{\nu} f_{2}(y)} \right) dy - \int_{a}^{b} u(x) \Phi \left(\frac{D_{*a}^{\gamma} f_{1}(x)}{D_{*a}^{\gamma} f_{2}(x)} \right) dx &\geq \frac{1}{\Gamma(\nu - \gamma)} \int_{a}^{b} \frac{u(x)}{D_{*a}^{\gamma} f_{2}(x)} \\ &\times \int_{a}^{x} (x - y)^{\nu - \gamma - 1} D_{*a}^{\nu} f_{2}(y) \left| \left| \Phi \left(\frac{D_{*a}^{\nu} f_{1}(y)}{D_{*a}^{\nu} f_{2}(y)} \right) - \Phi \left(\frac{D_{*a}^{\gamma} f_{1}(x)}{D_{*a}^{\gamma} f_{2}(x)} \right) \right| \\ &- \left| \varphi \left(\frac{D_{*a}^{\gamma} f_{1}(x)}{D_{*a}^{\gamma} f_{2}(x)} \right) \right| \cdot \left| \frac{D_{*a}^{\nu} f_{1}(y)}{D_{*a}^{\nu} f_{2}(y)} - \frac{D_{*a}^{\gamma} f_{1}(x)}{D_{*a}^{\gamma} f_{2}(x)} \right| \right| dy \, dx. \end{split}$$

Proof. Similar to the proof of Corollary 3.1.

4. ACKNOWLEDGMENTS

The research of J. Pečarić has been fully supported by Croatian Science Foundation under the project 5435.

REFERENCES

- [1] G. A. Anastassiou, Fractional Differentiation Inequalities, Springer Science-Businness Media, LLC, Dordrecht, the Netherlands, 2009.
- M. Andric, J. Pecaric and I. Peric, A multiple Opial type inequality for the Riemann-Liouville fractional derivatives, J. Math. Inequal. 7, No. 1 (2013) 139-150.
- [3] M. Andric, J. Pecaric and I. Peric, Improvements of composition rule for Canavati fractional derivative and applications to Opial-type inequalities, Dynam. Systems Appl. 20, (2011) 383-394.
- [4] M. Andric, J. Pecaric and I. Peric, Composition identities for the Caputo fractional derivatives and applications to Opial-type inequalities, Math. Inequal. Appl. 16, No. 3 (2013) 657670.

- [5] A. Cizmesija, K. Krulic and J. Pecaric, Some new refined Hardy-type inequalities with kernels, J. Math. Inequal. 4, No. 4 (2010) 481-503.
- [6] A. Cizmesija, K. Krulic, and J. Pecaric, On a new class of refined discrete Hardy-type inequalities, Banach J. Math. Anal. 4, (2010) 122-145.
- [7] N. Elezovic, K. Krulic and J. Pecaric, Bounds for Hardy-type differences, Acta Math. Sinica, (Engl. Ser.) 27, No. 4 (2011) 671-684.
- [8] S. Iqbal, J. Pecaric and Y. Zhou, Generalization of an inequality for integral transforms with kernel and related results, J. Inequal. Appl. Artical ID 948430, 2010.
- [9] S. Iqbal, K. Krulic and J. Pecaric, On an inequality of H. G. Hardy, J. Inequal. Appl. Article ID 264347, 2010
- [10] S. Iqbal, K. Krulic and J. Pecaric, On an inequality for convex functions with some applications on fractional derivatives and fractional integrals, J. Math. Inequal. 5, No. 2 (2011) 219-230.
- [11] S. Iqbal, K. Krulic and J. Pecaric, *Improvement of an inequality of G. H. Hardy*, Tamkang J. Math. **43**, No. 3 (2012).
- [12] S. Iqbal, K. Krulic and J. Pecaric, *Improvement of an Inequality of G. H. Hardy via Superquadratic functions*, Panamer. Math. J. **22**, No. 2 (2012) 77-97.
- [13] S. Iqbal, K. Krulic and J. Pecaric, *Improvement of an inequality of G. H. Hardy with fractional integrals and fractional derivatives*, East J. Approx. 17, No. 4 (2011) 337-353.
- [14] S. Iqbal, K. Krulic and J. Pecaric, On refined Hardy-type inequalities with fractional integrals and fractional derivatives, Math. Slovaca, 64, No. 4, (2014) 879-892.
- [15] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Application of Fractinal Differential Equations, North-Holland Mathematics Studies, 204, Elsevier, New York-London, 2006.
- [16] K. Krulic, J. Pecaric and L. E. Persson, Some new Hardy type inequalities with general kernels, Math. Inequal. Appl. 12, (2009) 473-485.
- [17] C. P. Niculescu and L. E. Persson, Convex Functions and Their Applications-A Contemporary Approach, CMS Books in Mathematics, Springer 2006.
- [18] S. G. Samko, A. A. Kilbas and O. J. Marichev, Fractional Integral and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Switzerland, 1993.