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1. INTRODUCTION

Let (921, %4, 1) and (922, X, u2) be measure spaces with positiveinite measures,
k: Qy x Q2 — R be a measurable and non-negative kernel, and

K(z) = /k(m,y) dus(y) < oo, © € . (1.1)
Qa
Throughout this paper we suppok&z) > 0 a.e. orf; and by a weight function (shortly:

a weight) we mean a non-negative measurable function on the actual set.
Let U (k) denote the class of measurable functign€); — R with the representation

o(z) = / k(. 9) f (0)dpa(v),

Qo
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wheref : Q, — R is a measurable function.

In[16] K. Kruli € et al. studied some new weighted Hardy-type inequalitig$n, , u1),
(Q9, X5, o), measure spaces withfinite measures with an integral operatby defined
by

1
AS@) = s [ ) F)dato) L2)
Qo

wheref : Qs — R is a measurable functiodk” be defined by(1.1) and they proved the
following result:

THEOREM 1.1. Letu : ©; — R be a weight function. Assume that— u(:z:)k}((z(f)) is
locally integrable ort2; for each fixed; € Q2. Definev by

v(y) == /u(w) kl((x(f)) dps(x) < 0. (1. 3)
Q
If @ is a convex function on the intervalC R, then the inequality
[ @@ < [ ow)etrw)de) (L 4
Q1 Q2

holds for all measurable functiong: 2, — R, such thatimf C I, whereA;, is defined
by (1.2).

The following refinement of Theorem 1.1 is given in [5].

THEOREM 1.2, Let (Qq, %4, 1) and (Qq, X9, uo) be measure spaces withfinite mea-

suresu be a weight function of2;, k be a non-negative measurable functionfonx €,
and K be defined ofi2; by (1.1). Suppose that the functian— w(z) kz(;(f)) is integrable
on 2, for each fixedy € Q,, and thatv is defined o2, by (1.3). If ® is convex on the
intervalI C R, andy : I — R is any function, such that(z) € 0®(x) forall z € Int I,

then the inequality

/ o(4)® () dua(y) — / (@)@ (A f () dpn () > / ;;((3 / Kz, y)
Q1

Qo Q1 Qo

< [@(f(y)) — (Arf (@) — [o(Anf (@)1 (y) — Arf ()| [ dp2(y) dpa (x) (L. 5)

holds for all measurable functiong: 5 — R, such thatf(y) € I, for all fixedy € Q9
whereAy is defined by(1.2).

S. Igbal et al. in their recent paper [8] proved an inequality for arbitrary convex function
with some applications for fractional integrals and fractional derivatives. Also, recently
Ciimeéija et al. proved new Hardy-type inequalities and their refinements (see [5], [6],
[7]). Now the area of fractional integrals and derivatives is investigated a lot (see [9]-
[14]). This book [17] contains a lot of information concerning convex functions and related

inequalities.

Here we want to give new improved results. For this purpose if we substitute) by
k(z,y)f2(y) and f by f1/f2, wheref; : Qo — R, (i = 1,2) are measurable functions in
Theorem 1.1 and Theorem 1.2 we obtain the following result.
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THEOREM 1.3 Let (Q1, %1, 1) and (Qq, X9, uo) be measure spaces withfinite mea-
sures,u be a weight function ofi2; and k be a non-negative measurable function on

Q1 x Qs. Suppose that the function — u(a:)kg(%f)) is integrable onQ2; for each fixed
y € o, and thatv is defined o2, by

v(y) = fz(y)/

Qq

ula)h(z,y),

(D) w1 (x) < oo.

If & is convex on the interval C R, andy : I — R is any function, such that(z) €
0% (x) for all x € Int I, then the inequality

Q/ oo (158 duaty) - / ) (20 (o) > / Ll / k(1) o)

‘¢<§Ez§)_¢(gg;)‘_‘@(gm‘ Ko 9@,

f(y)  g2(x)
holds for all measurable functions : Q, — R, such that§;§§§ el

Let us emphasize on the next remark that connects our central result to [8, Theorem
2.1].

ReEMARK 1. If we takeQ; = Qo = (a,b), dui(x) = dx andduq(y) = dy the
inequality (1. 6 ) becomes the refinement of the inequality given in [8, Theorem 2.1].

X

‘ dp2(y) dpi ()
(1. 6)

This paper is organized in the following way: After introduction in Section 2, we give
new refinements of the Hardy-type inequality for fractional integral of a function with
respect to another increasing function, Riemann-Liouville, Hadamard-type a®ityiErd
Kober-type fractional integrals. In Section 3, we give refinements for fractional derivative
of Riemann-Liouville, Canavati and Caputo-type involving an arbitrary convex function.

2. REFINEMENTS OFHARDY-TYPE INEQUALITIES FOR FRACTIONAL INTEGRALS

We recall the definition of th&actional integrals of a functiorf with respect to given
functiong. For details see e.g. [15, p. 99].

Let (a,b), —0o < a < b < oo be a finite or infinite interval of the real lin& and
a > 0. Also let g be an increasing function qf, b] andg’ be a continuous function on
(a,b). The left-sided fractional integral of a functighwith respect to another functian
in [a, b] is given by

€T

(Lot,f)(@) = %) /(g(w) -9 g W fwdy,  (z>a) .7

() J

Ouir first result about the fractional integrals is given in the following theorem.

THEOREM 2.1 Letu be a weight function ofu, b), g be an increasing function ofw, b]
such thaty’ be a continuous function ofu,b) anda > 0. I3 . f denotes the left-sided
fractional integral of a functiory’ with respect to another functiopin [a, b]. Definev on
(a,b) by

dr < oo.

b
_ L@ [ g W)e) — ()
v(y) == (o) y/ (@) (I¢4.qf2)(x)
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If @ is convex on the interval C R, andy : I — R is any function, such thap(z) €
0®(z) for all x € Int I, then the following inequality holds:

b

b b o .
[row (Gg) = o (522060 )= i | .
/ o s | () - ( :Zfz 3)’

(Lo f1) (@ )) hly)  (&yef1) (@) ‘
e[ — dydzx. (2.8)
‘ <( 134, gfz)( ) 2(y) (Lo f2)(2)
Proof. Applying Theorem 1.3 witl); = Q3 = (a,b), dpi(x) = dx, dui(y) = dy,
1 g .
k(z,y) = { (o) W@ g =2 @SYST
0, x<y<hb,
and replacingy; by I, ., fi, (i = 1,2), we obtain(2.8). [ ]

REMARK 2. Since right-hand side of inequality ( 2. 8 ) is non-negative, we obtain the
following inequality:

b b
U2eof)@ - [ e (40)
! oy (s ) e < / we (20 4 2.9
In particular for the weight function(z) = ¢'(z) I3, f2(y), we obtain
v(y) = tarn )9 () (9(b) — 9(y))* and(2 9) reduces to

/b § @) I3y ) () <m> ”

( a+;g (I)

f2)
a+1 /bg ) faly)® (283) dy. (2.10)

Sinceg is an increasing functior{g(b) — g(y))* < (g(b) — g(a))?, (2.10) becomes

a

<

/b J (@) I2 o ) (@) (m) dr

b
(9(b) — gl@)* [, f(y)
= W/g (y) fo(y) @ (fz(y)) dy. (2.11)

For g(z) = 2z in (2. 7 ), we obtain the well known left-sided Riemann-Liouville
fractional integral of ordet. > 0 which is defined by

a

18, f(2) = ﬁ / (x— 9" fy)dy, (x> a),

a
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and we obtain the related result for Riemann-Liouville fractional integral in upcoming
corollary.

COROLLARY 2.1 Letu be a weight function oria,b) and o > 0. 12, f denotes the
Riemann-Liouville fractional integral of. Definev on (a, b) by

b
2(y) [u
da: < 00.
/ -73+f2
Y

If @ is convex on the interval C R, andy : I — R is any function, such thap(z) €
0®(z) for all z € Int I, then the following inequality holds:

[ (20 [t (B L [ oo
oo (B0 o (B |, (et | fencs
futo (B ar < fuo (10 o
[ s (B g < G [0 (20

REMARK 4. If we setg(z) = logz, thenI? . f(x) reduces ta/g f(z) left-sided
Hadamard-type fractional integral that is defineddor 0 by

(Jo, F(x) = 1“(101)/96 (log ;3)‘1—1 f(yy)dy’ x> a.

a

’dy dx.

The inequality(2.8) becomes:
b b
AN g0~ [ wore [ o)) 1 u(z)
a/”(y)q’<f2<y>)dy a/<><1><(p f2><x>>d I )/(Ja 72)(@)
f y J:ll+f1 v
- @( o )\

X/(logx—logy)“_lfz( )
| (@] A e @)
P\ )@ )| | Fly) ~ g, fo)(@)
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and the inequality2.11) given in Remark 2 becomes

b
e (Ja fu)(@)\ dx (logbfloga 1(y dy
/(Ja+f2’<x)q’<ua fz)(x)> EE RSV /f2 *(50)

a

We also recall the definition of Eédlyi-Kober type fractional integrals. For details see
[18].

Let (a,b), (0 < a < b < o0) be finite or infinite interval oR .. Leta > 0,0 > 0, and
n € R. The left-sided Erélyi-Kober type fractional integral of order > 0 is defined by

—o(a+n) ont+o—1
120 @) = “ i [ GE—yes {0, v >

COROLLARY 2.2. Letu be a weight function ofia, b), 2F(a, b; c; z) denotes the hy-
pergeometric function and f denotes the Eflyi—Kober type fractional left-sided
integral. Definev by

a+(rn

Uf2(y)/b u(a:)m_”(“'*‘ﬂ)yon—&-a—l
M) ) T Y@@ =570

If @ is convex on the interval C R, andy : I — R is any function, such thap(z) €
0®(z) for all z € Int I, then the following inequality holds:

b b b
f1ly) R . (L&, o /1) () . o u(x)
[rwe (f) o / ( >‘I’<<Iaa,mf1><x>>d ol A

a a
T
—o’(a+17) o’n—i—o’ 1
X
(z7 —y7)
a

v(y) =

dx < 0.
«

(I& o nfl)(zv)
-0 ((m - f1)(33)>'

( at; Unfl)( ) fl( ) (Ig+0'77 )(.’E)
_ . dyd
7 <<1a+;mf1>< >> R 2@ ||
Proof. Proof is similar to the proof of the Theorem 2.1. ]

REMARK 5. Here we give results only for left-sided fractional integrals. Likewise we
can give results for right-sided fractional integrals, but here we omit the details.

3. REFINEMENTS OFHARDY-TYPE INEQUALITIES FOR FRACTIONAL DERIVATIVES

We continue with new refinements of Hardy-type inequalities for different fractional
derivatives. First we give a result with respect to the generalized Riemann-Liouville frac-
tional derivative. Let us recall the definition.

Leta > 0 andn = [a] + 1 where[] is the integral part and we define the generalized
Riemann-Liouville fractional derivative of of ordera by

0w = ot () [ ) dy

In addition, we stipulate
DOf:=f=1 I;%f:=D%fif a>0.
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If « € NthenD$ f = the ordinaryw-order derivative.

d (1!
The following lemma summarizes conditions in identity for generalized Riemann-Liouville

fractional derivative. For details see [2].

LEMMA 3.1 Let3 > a > 0,n = [3] + 1, m = [ao] + 1. Identity

J@—w e Dirwdy, we o).

a

1

Dy f(z) = m

is valid if one of the following conditions holds:
(i) f €I (L(a,b)).
(ii) IP=Pf € AC™[a,bland D5k f(a) =0fork =1,...n.
(i) D2~k f € Cla,b]fork = 1,...,n, DS~ f € AC|a,b] and D?~* f(a) = 0 for
k=1,...n
(iv) f € AC™[a,b], D2f € L(a,b), D¢ f € L(a,b), 3 — a ¢ N, D~F f(a) = 0 for
k=1,...,nandD2 *f(a) =0fork=1,...,m.
(v) f € AC™a,b], D2f € L(a,b), D2f € L(a,b),3—a=1€N,D*f(a) =0

fork=1,...,L
(vi) f € AC™a,b], DIf € L(a,b), DSf € L(a,b) and f(a) = f'(a) = -+ =
f("_2)(a) = 0.

(vii) f € AC™[a,b], D?f € L(a,b), DSf € L(a,b), 3 ¢ Nand DS~ f is bounded in
a neighborhood of = a.

COROLLARY 3.1 Letu be a weight function offu, b) and let assumptions in Lemr3al
be satisfied. Define on (a, b) by
b
D’gfg /U ﬁ a—1
v(y) : dr < o0.
() Do‘fz

Y

If & is convex on the interval C R, andy : I — R is any function, such that(z) €
0% (x) for all x € Int I, then the following inequality holds:

b

b b
D21 g e (PEA@)Y oo L[ _ule)
a/ o (Dé’f2<y>>dy / 9 (Bi0) Zr(ﬁ—oo/ D fo()

wx_ B—a—1183 Dy f1(y) DO‘fl )
X/( Y) Dafz(y)H‘I’ (D i, y)> Dafy x)>’

a

Dafl ) ’ Difi(y) Dy fi(x)
- dydz. (3.13
’ Dg f2(x) ‘Dﬁfz( ) Dgfa(z) Y ( )
Proof. Applying Theorem 1.3 witl2; = Qs = (a,b), du1(x) = dz, dua(y) = dy,
(w—y)f=t )
k(z,y) = T » ¢ SYsw
0, <y <b,

and replacing; by D? f; then, by Lemma 3.1g; = D f;, (i = 1,2) and we get ( 3. 13).
[ |



26 S. Igbal, K. Krulic Himmelreich and J. Raric

REMARK 6. Since right-hand side of inequality ( 3. 13 ) is non-negative, we obtain the
following inequality:

b b
Dafil@) [ DiAW)
/u(x)CI) (Dng(x)> dzx < / (y)® (Dng(y)> dy (3. 14)

a

that is given in [8].

Now we recall the Canavati-type fractional derivative-fractional derivative off).
We consider

C¥([0,1]) = {f € C([0,1]) : [ f™ € C([0,1])},
v>0,n=[v],[]istheintegral part,and =v —n,0 < v < 1.
For f € C¥(]0,1]), the Canavati- fractional derivative off is defined by

D'f=DI_pf™,
whereD = d/dx. For further details and proof see [3, Theorem 2.1].

LEMMA 3.2 Letry > v > 0, n = [v], m = [y]. Let f € C¥(]0,1]), be such that
f@0)=0,i=m,m+1,..,n—1.Then

(i) f €C(0,1)),
(i1) (D)) = sy

for everyz € [0,1].

(z =)= 7= (DY f)(t)dt,

Ot—sy

COROLLARY 3.2. Letu be a weight function ofu, b) and let assumptions in Lemra2
be satisfied. Define on (a, b) by

b
D" f3(x) / w(@)(z —y) !
I'(v—7) D7 fo(x)

Yy
If @ is convex on the interval C R, andy : I — R is any function, such thap(z) €
0®(z) for all z € Int I, then the following inequality holds:

v(y) == dzr < oo.

b

[riom (B8 ar- o () ac o [

a a

D
< i rose|fe (G0 - (ﬁiﬁ )

a

<D7f1 )‘ ‘D"f1 y) DVfi(z) ’dyda:.
D7 fo(z DY fo(y) D7 fa(x)
Proof. Proof is similar to the proof of Corollary 3.1. ]

Now we recall Caputo fractional derivative, for details see [1, p. 449].

Letv > 0,n = [v], f € AC™[a,b]. The Caputo fractional derivative is given by

PV SR S L0
D*af(t) - F(TL o V) / (fﬂ o y)l,,n+1 dy7

a
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for all z € [a,b]. The above function exists almost everywheredfar [a, b].

We continue with the following lemma that is given in [4].

LEMMA 3.3 Letr >~y >0,n=[v]+1,m=[y]+1andf € AC"[a,b]. Suppose that
one of the following conditions hold:

(a) v,y € Noandfi(a) =0fori =m,...n—1

(b) v € No,v ¢ Noand fi(a) =0fori =m,...n—2

() v¢€Ng,yeNgandfi(a) =0fori=m—1,...n—1
(d) v € Ng,y € Ngandfi(a) =0fori=m—1,...,n— 2.

Then
1
N (e
@) =t [ 0”7 DL Wiy

a

foralla <z <b.

COROLLARY 3.3, Letu be a weight function ofu, b) and let assumptions in Lemri3
be satisfied. Define on (a,b) by

b
Df, fa(x) / u()(z —y) !

dr < 0o.
F(V_,Y) D*(L 2( )
Y

v(y) ==

If @ is convex on the interval C R, andy : I — R is any function, such thap(z) €
0®(z) for all z € Int I, then the following inequality holds:

[room (Bt [ (bl L [

*(57) - < b))

x /(17 — )" DY, fa(y) ‘

a

Dlofi(z ))‘ ‘D:afl(y) Dlafi(x) ’
— . — dy dz.
‘@( DLfa(2) )| | D2 faly) ~ Dlafale)
Proof. Similar to the proof of Corollary 3.1. ]
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