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Abstract. In this paper, we introduce a new class of bicomplex polyno-
mials, namely self-inversive bicomplex polynomials, and investigate the
necessary and sufficient condition for any bicomplex polynomial to be
self-inversive. We also study some other properties of this class of bicom-
plex polynomial with restricted coefficients.
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1. INTRODUCTION AND STATEMENT OF RESULTS

Let C, be the bicomplex algebra, i.e.,
Co = {z1 +ize + j(w3 +img) : 21,72, 23,74 € R},

with i2 = —1,j2 = —1 andij = ji.

We remark that one can write bicomplex numbgr+ izy + j(zs + ix4) asz + jzo
wherezy, 2o € C; = {x +iy : z,y € R,i*> = —1}. Thus,C, can be considered as
the complexification of the usual complex numb€rsand a bicomplex number can be
considered as an element®©f. C, is considerably simplified by the introduction of two

. ' 1 1-— .
bicomplex numbers, ande; defined ag; = % ande; = sz For any bicomplex

numberZ = z; + jzo € C,, one can write:
Z = aey + Pea,

wherea = z; — izy and = z; + izy are uniquely defined complex numbers (see [14,
Theorem 6.4, page 19] and [1, page 15]).
For bicomplex numbers, there are three possible conjugation® kEe€; andzy, z5 € C;
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such thatZ = z; + jzs € Cs. Then we define the three conjugations as:
70 = (21 4 jz2) =7 + 7,
Z12 = (21 4 jzo)12 i= 21 — j2o,
Zts = (21 —l—sz)Jr3 =71 — jZ3.
In this paper, we denot&'s with Z, i.e.,
Z =7 — jz,

and if we writeZ = ae; + fSes Wherea, 8 € Cq, thenZ = ae; + [es.

In the complex case the modulus of a complex number is intimately related with the com-
plex conjugation. Similarly, accordingly to each of the three conjugations, three possible
moduli arise:

Z|; = 22" = (|1 = |22f*) + 2Re(212)],
2] = 22" = 2} + 23,
|Z)ij = 22" = (|21]? + |22]?) — 2Im(21%2)ij.
Also the norm ofZ = z; + ;25 define as follows
1Z] = V=] + |22

We can easily show that ¥ = ae; + Be; wherea, 8 € Cq, then

al? + |82
Iz =y 2T

SupposeZ, W € Cs such thatZW = 1, thenZ and W is said to be the inverse of
each other. An element which has an inverse is said to be invertible (non-singular) and
an element which does not have an inverse is said to be non-invertible (singular). For a
bicomplex numbeZ = ae; + fBeq € Co, itis easy to verify tha is invertible if and only
if a, 8 # 0; in this case if we denote the inverseby Z 1, then we have

Z7 V' =a"te; + 7 es.

The following definition will be useful to construct a "discus”@y.

Definition 1. We say thafX C C, is a cartesian set determined B§; and X if
X =X xe Xo:={21+j22€Co: 21+ jzn = aes + fez, (o, f) € X1 x Xp}.
A special cartesian set iflo, which is called a discus is defined as follows:

Definition 2. Leta = a; + jby = ajeq + Brex Whereaq, by, o, 31 € Cq, be a fixed point
in C. We define the discus with centeand radiir; andr, and denote it byD(a; 71, r2)
as followg[14, Definition 9.1, page 45]

D(a;ry1,r2) = {21+ j2z2 € Co: 21 + jzo = aey + fea, |a — aq| < r1, |0 — B1]| < ra}.

The discusD(0;1,1) is called unit discus and when we say that a bicomplex number
Z = aey + fey lies on the unit discus it means thgt| = 1 and |3] = 1, but if
d = aey + Pes, such that|é|| = 1, then, it does not imply thaty| = 1 and|5| = 1.

For an open selV of Cy, let f : U C C; — C, be a bicomplex function. There
is a definition for the derivative of a bicomplex function which looks quite similar to its
complex counterpart [6, Definition 1, page 4].
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Definition 3. The derivative of the functiofiat a pointZ, € U is the limit, if it exists,
. [(2) = f(Z)
/ —
f (ZO) T Zh—)néo 7z — ZO ’

for Z in the domain off such thatZ — 7, is an invertible bicomplex number.

We shall say that the functiofiis bicomplex holomorphic@,; —holomorphic) on an open
setU if and only if f is Co—differentiable at each point @f.

For further details on bicomplex analysis, we refer the reader to [1, 7, 8, 9, 10, 14] and
references therein.

Let BP,, denote the class of bicomplex polynomid$z) = Z A, ZF of degreen
with 4, € Cyforall0 < k& < n. We know that a complex polynomlaT with zeros
1
{z1, ..., zn } IS self-inversive if{z, ..., z,} = {7,..., —}. Some properties of complex
Zn

self-inversive polynomials have been stud|ed [12] Here we first define the bicomplex self-
inversive polynomials and then study some of its properties.

Definition 4. Let P € BP,, have at least one invertible rooP(Z) is self-inversive if and
. L 1
onlyifP(Z) =0 |mpl|esP(?) = 0.

Remark 1. All the zeros of a self-inversive bicomplex polynomial are invertible.

Let
=Yz,
k=0

be a bicomplex polynomial of degreg with Z = z; + jzo = ae; + fes and bicomplex
coefficientsA;, = ype1 + dpes, for k = 0,1,....n. ThenZ* = oe; + B*e, and we can
rewrite P(Z) as

n

P(Z) =Y (waF)er + Y 0k ez = d(a)er + ¥(B)es, 1)

k=0 k=0

where¢(«) andy () are complex polynomials of degree at masand we have the fol-
lowing theorem [10, Theorem 8, page 71]:

Theorem 1.1.(Analogue of the Fundamental Theorem of Algebra for bicomplex polyno-
mials)Consider a bicomplex polynomi&\(Z) = Z A Z* . If all the coefficientsd;, with

the exception of the free terdy = ~pe1 + dpes are complex multiple of; (respectively of
es), but Ay hasdy # 0 (respectivelyy, # 0), thenP(Z) has no roots. In all other cases,
P(Z) has at least one root.

In recent years, the theory of bicomplex numbers and bicomplex functions has found
many applications, see for instance [3, 4, 16, 17, 18]. Bicomplex humbers are a commuta-
tive ring with unity which contains the field of complex numbers and the commutative ring
of hyperbolic numbers. Bicomplex (hyperbolic) numbers are unique among the complex
(real) Clifford algebras in that they are commutative but not division algebras.
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In this paper, we investigate the necessary and sufficient condition for a bicomplex poly-
nomial to be self-inversive and other related problems.

Theorem 1.2.Let P € BP,, whereP(Z) = 3 (ya¥)er + 32 (6:8%)en =t d(a)es +
= k=0
Y(B)es. ThenP(Z) is self-inversive if and only ib(a) and () are self-inversive com-

plex polynomial of degree at mast
Remark 2.1f P € BP, is self-inversive and®(Z) = Y. Ay ZF = ¢(a)e; + ¥(B)es,

k=0
since¢ and1 are self-inversive complex polynomials hence we have

Ap_p=A4, for k=0,...n.

For every complex polynomidP(z), one has

|2"P(2)| = |P(2)]

for every complex numbet with |z| = 1 [2, page 1]. In this respect, for bicomplex
polynomials, we prove the following theorem:

Theorem 1.3.Let P(Z) be a bicomplex polynomial of degree then for everyZ on
D(0;1,1), we have

Q| =

127 P(2)] = [ P(2)]. (1. 2)

NIl

In the next two theorems, we study some properties of bicomplex polynomials with
restricted coefficients.

Theorem 1.4.Let P(Z) = En: A Z* be a bicomplex polynomial of degree(n > 1)

k=0
such thatA4,, is invertible. If P(Z) is a self-inversive bicomplex polynomial, then, there
existsd € C, with ||0]] = 1 such that for every invertible bicomplex numt&we have

Z”P(%) =6P(2). (1.3)

Also if there exists a bicomplex numldes §,e; + d2e2 on the unit discus such that.g)
is true, then,P(Z) is a self-inversive bicomplex polynomial.

In what follows, if P(Z) = 3. A, Z*, thenP(Z) denotesd_ A, Z*.
k=0 k=0

Theorem 1.5.If P(Z) = Zn: Ay Z* is a bicomplex polynomial such that, is invertible,
then the following are ecfu:i(\)/alent:
(i) P is self-inversive.
(i) A,P(2) = AOZ"F(%) for each bicomplex invertible numbgt
(i) ApAr = AnAn_r; k=0,1,..,n.

Finally, we prove the following theorem:
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Theorem 1.6.If P(Z) = A, ZF is a self-inversive bicomplex polynomial such tHat
k=0
is invertible, then,

() A, [nP(Z)—ZP'(Z)] = AOZ”*ﬁ(%) for eachZ € C,.
.. nP(Z)

— 1] =1 foreachZonD(0;1,1).

2. LEMMAS

To prove these theorems, we require the following lemmas.

Lemma 2.1.Let X; and X, be open sets i€;. If f., : X; — C;andfe, : Xo — C;4
are holomorphic functions df, on X; and X, respectively, then the functigh: X; x.
Xy — C, defined as

f(z1 +3722) = fe, (21 —iz2)er + fe, (21 +iz2)ea, Va1 + jz2 € X1 X Xo,
is Co—holomorphic on the open séf; x. X, and
e+ jz) = fl (21 —iz)er + fl, (21 +iza)ea, Va1 +j22 € X1 X Xo.

This lemma for derivative of a polynomial is proved by Charak et al. [5, Theorem 2.6,
page 60] (see also [6, Theorem 2, page 6] and [15, page 136]).

Remark 3.Let P(Z) = f: ArZ* = ¢(a)er + ¥(B)es be a bicomplex polynomial. In
k=0
the above lemma, if we také; = Xy = C,, thenP(Z) is C,—holomorphic onC, and
P(Z) = P'(z1 4 jz2) = ¢ (21 —iz2)er + ¥’ (21 + iz2)ea =: ¢/ ()er + ¢’ (B)es.

The following properties of self-inversive complex polynomial have been noted by O’hara
etal.[12, Lemma 1, page 1].
Lemma2.2.If P(z) = 3. axz*, a,, # 0is a complex polynomial, then, the following are

) k=0
equivalent:

(i) P is self-inversive.
" —. 1
(i) @, P(z) = aoz”P(;) for each complex number

(i) agag = apan_x; k=0,1,....n.
The next lemma proved by O’hara et al. [12, Lemma 2, page 1].

Lemma 2.3.If P(z) = 3 axz*, a, # 0 is a self-inversive complex polynomial and
k=0
an # 0, then,
. — 1
() an[nP(z) — zP'(2)] = aoz"_lP’(;) for eachz € C;.

0 220

— 1] = 1foreachz on|z| = 1.

Regarding the number of zeros of a bicomplex polynomial, we have the following
result[10, Corollary 9, page 71]:
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Lemma 2.4.Assume that a bicomplex polynom#a{Z) of degreen > 1 has at least one
root. Then,

(1) If at least one of the coefficients,, for k = 0, ..., n, is invertible, thenP(Z) has
at mostn? distinct roots.

(2) If all coefficients are complex multiples ef (respectivelys) then P(Z) has in-
finitely many roots.

Note that zeros of bicomplex polynomials were originally investigated in [13]. In this
respect, we prove the following lemma:

Lemma 2.5.1f P € BP, is a self-inversive polynomial, theR(Z) has at most.? zeros.

Proof. Suppose thaP’(Z) has infinitely many roots, thet = 0 (respectivelyy = 0)
and¢(«) is a complex polynomial of degree n (similarky(3) is a complex polynomial
of degreen). If ¢(a;) = 0, thenP(aje;1) = ¢(a1)e; = 0, butae; is singular and this
contradicts thaP(Z) is self-inversive (similarly, i) = 0, we get a contradiction). Since
P(Z) is self-inversive, it has at least one root, so by LemmaR(4) has at most? roots.

3. PROOFS OF THETHEOREMS

Proof of Theorem 1.2.First, we suppose thd?(Z) be self-inversive. Then by Theorem
1.1, ¢(«) ande(B) are complex polynomials with at least one root. bet 5, € C; and
d)(al) = 'LZJ(ﬂl) =0, then we hanD(Ozlel + 5162) =0.

SinceP(Z) is self-inversive

1 1 1
)= Pyt —e) =0,
aje; + Bie; ai b1
1

1

hence;z)(ail) = ’(/J(E) =0.

This implies thatp andv are self-inversive complex polynomials.

Conversly, if¢ andvy are self-inversive complex polynomials, th&Z) has at least one
invertible root. LetZ; = aie; + fBres # 0 such thatP(Z;) = 0, then,p(aq) = ¥ (61) =
0, therefore

1 1
¢(a:1) = ¢(E) =0
or
P(o%el + 51162) =0.

This implies thatP(%) = 0 and completes the proof of Theorem 1.2.
1

Proof of Theorem 1.3.Let P(Z) = ¢(a)er + ¢ (5)e2 Whereg(a) andy(3) are complex

polynomials of degree at most For every invertible bicomplex numbér = ae; + fFes,

we have

Z'P(5) = (@er + Bea)(0(Z)er +U(5)ea)
= @"0(Z))er + ("5



Self-Inversive Bicomplex Polynomials 61

If Z lies on the unit discus, then, we havg = |3| = 1 and

Ia"¢(%)l=|¢(a)l s B ( >|—|w< )l
hence
n l 2 TI,TQ
i @GP + 15|
Z
\/|¢ |2+|z/) B)1?
=[|P(Z

Proof of Theorem 1.4.Let P(Z) = zn: ArZF = ¢(a)er + ¥(B)eq. First, we suppose
k=0

that P(Z) is a self-inversive bicomplex polynomial of degree By Theorem 1.2¢(«)
andy () are self-inversive complex polynomials and sintg is invertible, henceb(«)
and ¢ (8) are polynomials of degree. Therefore, there exist;,d, € C;, such that
‘(51| = |(52| =1and

am(>

@

)=di¢(a) ,  BM(=) = 60(B), (3. 4)

=

for everya, 5 € C; — {0}.
Let Z = ajey + Bies be an invertible bicomplex number, then, 5; # 0 and
1 1
Z"P(=) = (afe1 + ﬂ?@)P(*@l + )
5162

~ (afier + ﬁ?ezxqs(aél)el 4 w<ﬂ:>ez>

1

NI =

- oaw(aél)q 4 m(;)ez

1

= d1¢(a1)er + 62¢(B1)ea (by (3. 4))
= (0161 + d2e2)P(ager + Prez)
=0P(Z), (3.5)

2 2
whered = d1e1 + dqe2 and||5H = ||(5161 + (5262” =1/ M =1.

Now suppose that there exisis= die; + d2e2 0on the unit discus such that for every
invertible bicomplexZ = ae; + B1e2, we have

Z"P(L) = 5P(2). (3. 6)

NI~

By (3.5), we have

1 n 1 mn 1
?) =0 ¢(a:1)61 + B7 1/J(E

)627
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and also

5P(Z) = (5161 + 5262)(¢(a1)61 + ¢(51)62) = 51¢(Oé1)€1 + 527/1(51)62-
Hence, by applying36), we get

ﬂméaz&wm>,ﬁw¢b:ﬁwwm

Sinced lies on the unit discuslp;| = |62] = 1 and it follows thaté(«) and(3) are
self-inversive complex polynomial. Therefore by Theorem P27) is a self-inversive
bicomplex polynomial and this completes the proof of Theorem 1.4.

Proof of Theorem 1.5.Let P(Z) = f: ApZ% = P(ae; + Bez) = ¢(a)er + ¥(B)es.

k=0
SinceA,, is invertible,¢(«) and« () are complex polynomials of degree
First, we suppose tha®(Z7) is a self-inversive bicomplex polynomial. By Theorem 1.2,
¢(a)) andy(3) are also self-inversive complex polynomials, so, by Lemma 2.2, we have

1
B), 3.7

1 — _
Tad(a) =00"d() and  5,(8) = dof" v
whereA, = vgey + dpes for 0 < k < n. Therefore

AyP(Z) = (Fner + dnea)(d(a)er +1(B)ez)
= (Tad(@))er + (0nt(B))e2

= (0a"B(2))er + (GoB"B(2))es (by (3.7))

a 3
= (v0e1 + doe2)(aey + 562)"@(3)61 +E(%)€2)

Qe

— 1

Next we supposel,, P(Z) = AOZ"?(%) for every bicomplex invertible numbef.
It follows that

(Ter + Buea)(0la)er + ¥(B)e) = (0er +doea)(a”ex + Be2) B Jer +T()ea)
or
Tbla) =0a"3()  and  5u(5) = BT
Now using Lemma 2.2, we have
YoTk = FaVn—k and  8obx = 6,0n_k ; k=0,1,...,n, (3. 8)

therefore by using equality3(8), we have
Ao Ay, = (yoe1 + doe2) (Trer + Oxe)
= (YoVr)e1 + (60dk)e2
= (T rn—r)er + (Ondn_i)e2
= (Fne1 + 0ne2) (n—re1 + n_rea)
= A, An k.
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Finally to complete the proof of Theorem 1.5, we supposediat, = A, A, _; (k=
0,1,...,n). It follows that

(o1 + boe2) (Trer + Oxe2) = (Tner + 0nea) (Yn—ke1 + 0p_re2),

’YOW = 77n’Yn7k and 60& = E(Sn,]w 5 k= 07 17 ceey 1.
Hence¢(a) andw(5) are self-inversive polynomials and by Theorem 1727) is self-
inversive.

Proof of Theorem 1.6.Let P(Z) = Y. A, ZF = P(ae; + Bez) = d(a)er + ¥(B)es

k=0
be a self-inversive bicomplex polynomial of degree Since A,, is invertible, ¢(«) and
1 (8) are complex polynomials of degree Also by Theorem 1.24(«) andy(3) are self-
inversive complex polynomials, therefore, by Lemma 2.3, we have forBaghve; + e,

Trlne(a) — ad' ()] = yoa"—la(é) for eacha € Ci, 3.9)
and
Sn[np(B) — BY'(B)] = 505"‘1W(%) for each 3 € Cq, (3. 10)
also
| né(a) _ 1| =1 foreacha with |a| =1 (3.11)
ag/(a) ’ '
and
g:f/((%)) —1|=1 foreachg with |5] =1. (3.12)
Hence

Ap[nP(Z) = ZP'(Z)] = (ymer + dnea)[n(d(a)er +1(B)e2)
— (ae1 + Be2) (¢ (a)er + ¢ (B)e2)]
= Tu[ng(a) — ad’(a)ler + dn[ni(B) — BY'(3)]es
)

= ’}/()Oénila(é)el + 50ﬂn71W(% (D) (by (39) and 610))
= (oer + Boea) s + fea)" (@' (S )en + v (G)e)

= Aoznflpl(ém + %62)

_ n—1 p/ 1

=AZ™P (a€1 + Bes

= AOZ”*P'(l).

VA
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Also, for eachZ = ae; + Bes on D(0; 1, 1), we have

ZP'(Z) (aer + Be2) (¢ (a)er + ¢/ (B)ez)
_no(e) (g
a0
ng(a) o n(B) o
_ag@ ~ M e
2
=1. (by (3.11) and §.12))
This completes the proof of Theorem 1.6. O
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