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Abstract. Using a technique of Kalnins, unitary irreducible rep-
resentation ( UIR) of principle series of SO(2, 1), decomposed ac-
cording to the group T1, are realized in the space of homogeneous
functions on the cone

ξ2
0 − ξ2

1 − ξ2
2 = 0

as the carrier space. It is then shown that the matrix element of an
arbitrary finite rotation of SO(2, 1) are determined by those of two
specific types of finite rotations, each depending on a single para-
meter; matrix elements of these two specific types of finite rotations
are then explicitly computed. Finally, a number of new relations
between special functions appearing in these matrix elements, are
obtained by using the usual standard techniques of deriving such
relations with the help of group representation theory.
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1. Introduction

The problem of determination of UIR matrix elements of finite rotations of com-
pact and non-compact rotation groups, has a pretty long history. it was originated
by Wigner [28] in 1930s, when he obtained his famous d-functions, which are sim-
ply the matrix elements of finite rotations of the ordinary rotation group SO(3).
The next step was taken by Bargmann [1] in 1947, when he obtained the matrix
elements of finite rotations of the Lorentz groups SO(2, 1) and SO(3, 1). Ever since
the sixties, there has been a large number of papers ( see references given in Syed
[23, 24, 25]) , not only concerning these simpler groups, but also the general ones
SO(n), SO(n, 1) and SO(n, 2).
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An important aspect of these studies concerns the selection of basis for the
carrier space of the representation. Generally, the choice is such that its elements
are eigenvectors of not only the Casimir operators of the group itself but also of
the Casimir operators of some maximal subgroups. This situation is expressed by
saying that the representation has been DECOMPOSED according to the particular
subgroup. The matter becomes specially important in the case of non-compact
groups as here we have compact as well as non-compact maximal subgroups. The
problem is obviously simpler for decomposition according to compact subgroups,
so that most of the papers, specially the earlier ones, dealt with this case only. For
decomposition according to non-compact subgroups, some progress was made in
seventies and eighties by Syed [23, 24, 25], Mukunda [17, 18, 19, 20], Boyer [4, 5],
Wolf [29], Kalnins [11], Kuznetsov [13], Basu [3], Lindblad [14], MacFadyen [15]
for SO(2, 1), for decomposition according to its maximal non-compact subgroups
and for the most degenerate representations ( in which all Casimir operators except
one, are zero) of SO(n, 1) and SO(n, 2), for the decomposition

SO (n, 1) ⊃ SO (n− 1, 1) ,

SO (n, 2) ⊃ SO (n, 1) ,

and for the matrix elements of SO(3, 1) for the decomposition

SO (3, 1) ⊃ SO (2, 1) .

In many of the above works, the carrier space is chosen as the set of functions on
hyperboloids, on which, only the most degenerate representations can be realized,
and these also as multiplier or induced representations ( developed by Mackey in
1950s) rather than ordinary i.e. non-induced ones. However, a group Russian au-
thors such as Kalnins [11], Kuznetsev et. el. [13] etc. have realized representations
of SO(2, 1) and SO(3, 1) on spaces of functions on cones which have the following
advantages:

(1) even the non-degenerate representations can be realized on these spaces.
(2) the representations are ordinary ones rather than being induced ones.
(3) representations decomposed according to various maximal subgroups, are

simply obtained by choosing appropriate parameterization of points on
cone.

As the situation for the problem of determination of UIR matrix elements of finite
rotations of SO(2, 1) and SO(3, 1) in ALL subgroups decompositions, appear more
hopeful with these realizations, we have started working with them. The present
paper is the first step in this direction; in it, we consider the simpler group SO(2, 1).
As already mentioned, Bargmann [1] was the first to obtain the d-functions of this
group; he did this when the representation was decomposed according to the com-
pact subgroup SO(2). The same result was obtained by Barut and Fronsdal [2]
also, by using a somewhat different method. Later on, Mukunda [17], [18], [19],
[20]and Macfadyen [15] obtained these functions for the decomposition according
to the subgroup SO(1, 1). Now, in addition to SO(2)and SO(1, 1), SO(2, 1) has
one more maximal subgroup T1 which is generated by M0 − N1, where M0 is the
generator of ( ordinary) rotations while N1 and N2 are generators of pure Lorentz
transformations in the direction of x2 and x1 respectively. Although Vilenkin [27]
and Itzykson [10] have realized some representations of SO(2, 1) decomposed ac-
cording to the subgroup T1, they have not considered the UIR matrix elements of
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finite rotations. In fact, they have only determined the action of the representation
operator Vl (g), g an element of SO(2, 1), of the representation Dl of principle series,
on the function F (λ), where the collection F (λ) constitutes the carrier space with
the property that its elements are eigenfunctions of elements of T1:

Vl (t (α))F (λ) = eiλαF (λ) ,

( see equation(3), p. 369, of [27] and equation (24), p.1114, of [10]) . This action is
given as an integral operator

Vl (g)F (λ) =
∫ ∞

0

Kl
g (λ, µ)F (µ) dµ,

with the kernel Kl
g (λ, µ), and what they determine are explicit expressions for this

kernel for various choices of g ∈ SO (2, 1). Basu and Wolf [3] do obtain the matrix
elements in all subgroup reductions but they use the technique of canonical trans-
form realization of SL (2, R) rather than the Lie transformation group realization
as we do. Lindblad and Nagel [14] also obtain matrix elements of finite rotations,
but they use a method very different from ours; thus, for example, in their com-
putations, eigenvectors of the compact generator plays a fundamental role in the
sense that eigenvectors of all non-compact generators are expressed as linear com-
binations of those of compact generator while we consider the eigenvectors of the
relevant non-compact generator quite independently, without any reference to those
of compact generator. In addition, they find the UIR matrix elements only of the
elements

r0 (θ) , l2 (ζ)

of SO(2, 1), which means that for arbitrary element g of SO(2, 1) which is parame-
terized as

g = r0 (θ) l2 (ζ) r0

(
θ́
)

they will have to insert two complete sets of states which obviously makes the
calculations much more complicated than ours in which, essentially, no insertions
are needed to be made. We, in the present paper, compute the UIR matrix ele-
ments of arbitrary element of SO (2, 1), for representations of Principle Series of
continuous class and of integral type, and obtain explicit expressions for them in
closed form. Actually, these representations are realized on a space of functions on
a 3-dimensional cone, with coordinates on it being chosen in such a way that the
representations are decomposed according to the non-compact maximal subgroup
T1.The action of the representative operators, as usual, consist of a change in the
argument of the functions. The UIR matrix elements of finite rotations of SO (2, 1)
are then cast in the form of an integral, which is easily evaluated in closed form
( in terms of a new modified Bessel function Ls (z)) for two specific elements of
SO (2, 1), each of which depends on a single parameter. As it is shown that the
matrix element of an arbitrary element of SO (2, 1), is trivially obtained from those
of the above 2 specific elements, complete solution of the problem under discus-
sion, is automatically obtained. Proceeding further, we use the standard technique
of group representation theory to obtain a number of new relations between the
special functions appearing in these matrix elements.

Quite a long time ago, the author published a paper [23] in which he derived the
most degenerate representation matrix elements of finite rotations of SO (n− 2, 2);
however, the technique used there, was completely different from the one that we
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use in the present paper. Thus the carrier space there was the space of functions
on a two-sheeted hyperboloid rather than on a cone, while the representation there
was decomposed according to the subgroup SO (n− 2, 1) which corresponds to the
decomposition SO (2, 1) ⊃ SO (1, 1) for the group being considered now, rather
than the decomposition SO (2, 1) ⊃ T1 being considered here. Finally, the repre-
sentation chosen there, was an induced representation obtained as an extension of a
similar representation given for SO (n− 1, 1) by Boyer and Ardalan [5], while here,
we use ordinary ( i.e. non-induced) representation given by Kalnins[11].

Although most of the work on UIR matrix elements of SO(2, 1)was done in sixties
and seventies, there is an important reason for reviving the subject after a gap of
more than thirty years. During the last ten years or so, it has been found that
UIR of Lorentz group SO(3, 1) and its compact and non-compact subgroups, play
a crucial role in a certain approach to Quantum Gravity [22], [26], [21]. it was
found by Conrady [6] and Conrady and Hnybida [7] that what were needed in the
theory were UIR of SL(2, C) decomposed according to the non-compact maximal
subgroup SL(2, R) ≈ SU(1, 1), which were themselves decomposed according to the
non-compact subgroup SO(1, 1). Keeping this in mind, Conrady and Hnybida [7]
obtain UIR matrix elements of the generators of SL(2, C) when the representation
is decomposed according to SU(1, 1) ( which is homomorphic to SO(2, 1)) , which is
itself decomposed according to both its non-compact maximal group SO(1, 1) and
its compact maximal subgroup SO(2). The importance of decomposition of UIR of
SO(2, 1) according to its non-compact maximal subgroups thus becomes obvious.
Hence our efforts to obtain UIR matrix elements of finite rotations of SO(2, 1) when
the representation is decomposed according to its non-compact subgroup T1, which
has not been obtained in a simple form up to now, using the Lie transformation
group realization of SO(2, 1). From the point of view of Mathematics also, this
derivation is important as firstly, there is no reason to leave this case aside when
decomposition according to all other maximal subgroups have been satisfactorily
treated, and secondly, it leads to derivation of new properties of special functions
appearing in the matrix elements.

The arrangement of the material in the paper is as follows. In Section 2 below,
we use a technique of Kalnins [11] to set up a realization of the relevant representa-
tion, and then obtain an expression for the matrix element of an arbitrary element
SO(2, 1), in an integral form. We then use, in Section 3, a parameterization of
SL(2, R) similar to the one given by Vilenkin [27], to obtain a parameterization
of SO(2, 1) which shows that in order to find the matrix element of an arbitrary
element of SO(2, 1), we need to find it only for two specific elements, each of which
depends on a single parameter. In Section 4 and Section 5, we actually compute
these two matrix elements, and obtain results in closed form. These results are then
used in Section 6, to obtain some new relations involving a new kind of modified
Bessel function, the Whittaker function and the confluent hypergeometric function.

2. A Realization of the Representation D
−1
2 +iρ of SO(2, 1)

Following Kalnins [11], we denote functions on the 2-dimensional cone

(2. 1) [ξ, ξ] ≡ ξ2
0 − ξ2

1 − ξ2
2 = 0

by |ξ〉, and the action of the operator

U (g) , g ∈ SO (2, 1) , the Lorentz group in 3 dimension,
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on them by

(2. 2) U (g) |ξ〉 = |g−1ξ〉.
We decompose these functions into homogeneous components of degree σ, by

(2. 3) |ξ, σ〉 =
∫ ∞

0

|tξ〉t−σ−1dt,

which satisfy the homogeneity condition Kalnins [11]

(2. 4) |aξ, σ〉 = aσ|ξ, σ〉, a real.

U (g) acting on these homogeneous functions |ξ, σ〉 for

(2. 5) σ =
−1
2

+ iρ, −∞ < ρ < ∞,

gives the UIR D
−1
2 +iρ of principle series of SO(2, 1). For convenience, we denote

|ξ, −1
2

+ iρ〉 by |ξ, ρ〉.
Again following Kalnins [11], we parameterize ξ on the cone by

(2. 6) ξ ≡ ξr = ω
(
r2 + 1, r2 − 1, 2r

)
, 0 < ω < ∞,−∞ < r < ∞.

It is easy to check that the effect of t (s) ∈ T1 on ξr is simply given by

(2. 7) t (s) ξr = ξr−s;

here, of course, we have used the fact that

t (s) = eTs, T = M0 −N1,

so as to get

t (s) =




1 + s2/2 −s2 −s
s2/2 1− s2/2 −s
−s s 1


(2. 8)

The homogeneity condition (2. 4 ) gives

(2. 9) |ξ, ρ〉 = ω(− 1
2+iρ)|r, ρ〉;

expanding |r, ρ〉 by means of a Fourier integral

|r, ρ〉 =
∫ ∞

−∞
dp|p, ρ〉eipr,

we will have

(2. 10) |ξ, ρ〉 =
∫ ∞

−∞
dp|p, ρ〉ω(− 1

2+iρ)eipr.

It is easy to verify that
U (T ) |p, ρ〉 = ip|p, ρ〉

i.e. |p, ρ〉 are the eigenvectors of the generator T , corresponding to the eigenvalue
ip. For (2. 7 ) and (2. 2 ) imply that

U (t (s)) |ξr, ρ〉 = |t−1 (s) ξr, ρ〉 = |ξr+s, ρ〉,
so that (2. 10 ) gives

U (t (s))
∫ ∞

−∞
dp|p, ρ〉ω− 1

2+iρeipr =
∫ ∞

−∞
dp|p, ρ〉ω− 1

2+iρeip(r+s)
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⇒
∫ ∞

−∞
dpU (t (s)) |p, ρ〉ω− 1

2+iρeipr =
∫ ∞

−∞
dpeips|p, ρ〉ω−1

2 +iρeipr

⇒ U
(
eTs

) |p, ρ〉 ≡ U (t (s)) |p, ρ〉 = eips|p, ρ〉(2. 11)

⇒ U (T ) |p, ρ〉 = ip|p, ρ〉
as asserted.

Now we have the following

THEOREM:- If g is an arbitrary element of SO (2, 1) and

U (g) |ξ, ρ〉 = |ξ/, ρ〉
where

ξ = ω
(
r2 + 1, r2 − 1, 2r

)
, ξ́ = ώ

(
ŕ2 + 1, ŕ2 − 1, 2ŕ

)
,(2. 12)

then

〈p, ρ|U (g) |ṕ, ρ〉 =
1
2π

∫ ∞

−∞
dr

(
ώ

ω

)− 1
2+iρ

ei(pŕ−ṕr)(2. 13)

gives the matrix element of g in an integral form.

Proof:- Note first of all that according to equation (2) ,

ξ́ = g−1ξ(2. 14)

so that equations ( 12, 14) determine ώ, ŕ in terms of ω, r. Next as

|ξ́, ρ〉 =
∫ ∞

−∞
dṕ|ṕ, ρ〉 (ώ)−

1
2+iρ

eiṕŕ

according to equation (10) , we get
∫ ∞

−∞
dp U (g) |p, ρ〉ω− 1

2+iρ

= U (g) |ξ, ρ〉 = |ξ́, ρ〉

=
∫ ∞

−∞
dṕ|ṕ, ρ〉ώ− 1

2+iρeiṕŕ;

multiplying this equation by eip′′r, integrating with respect to r, and using

〈p, ρ|p′, ρ〉 = δ (p− p′) ,

we get

2π〈p, ρ|U (g) |p′′, ρ〉 =
∫ ∞

−∞
dr

(
ώ

ω

)− 1
2+iρ

ei(pr′−p′′r)

⇒ 〈p, ρ|U (g) |p′, ρ〉 =
1
2π

∫ ∞

−∞
dr

(
ώ

ω

)− 1
2+iρ

ei(pr′−p′r),

as required.
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3. An Appropriate Parameterization of SO(2, 1)

To obtain a parameterization of SO(2, 1) suitable for our purpose, we prove the
following

THEOREM:- An arbitrary element g ∈ SL (2, R), the group of 2× 2 real matrices
with determinant = 1, is of one of the following two forms:

(i) g = s1δ, (ii) g = s1δτs2,(3. 15)

where

(3. 16) s1 =
[

1 s1

0 1

]
, s2 =

[
1 s2

0 1

]
, δ =

[
et 0
0 e−t

]
, τ =

[
0 1
−1 0

]
.

Proof:- Note first of all that this is simply a slight modification of the parame-
terization given by Vilenkin [27], and we verify it in exactly the same way as he
did. So let us first suppose that

g =
[

α β
0 1

α

]
;

then

g =
[

1 αβ
0 1

] [
α 0
0 1

α

]
,

which is of the form s1δ. Next let

g =
[

α β
γ δ

]
, γ 6= 0;

then

s−1
1 gs−1

2 =
[

α− s1γ −αs2 + β + γs1s2 − δs1

γ −γs2 + δ

]
,

so that choosing s1 = α
γ , s2 = δ

γ and using αδ − βγ = 1, we get

s−1
1 gs−1

2 =
[

0 − 1
γ

γ 0

]
=

[ − 1
γ 0

0 −γ

] [
0 1
−1 0

]
= δτ,

so that

g = s1δτs2

as required. This proves the Theorem.

To proceed further, we note that if SU (1, 1) is the pseudo-unitary group in 2
dimension i.e. the group of 2× 2 complex matrices of the form

[
α β
β× α×

]

with unit determinant, then as indicated by Knapp [12],
[

1 i
i 1

]−1

SL (2, R)
[

1 i
i 1

]
= SU (1, 1)



80 Ansaruddin Syed

gives an isomorphism of SL(2, R) onto SU(1, 1); as
[

1 1
1 −1

]
SL (2, R)

[
1 1
1 −1

]−1

= SL (2, R)

is obviously an isomorphism of SL(2, R) onto itself, it follows that
[

1 i
i 1

]−1 [
1 1
1 −1

]
SL (2, R)

[
1 1
1 −1

]−1 [
1 i
i 1

]
= SU (1, 1)

is also an isomorphism of SL(2, R) onto SU(1, 1). It is easy to check that under this
isomorphism

[
e

ζ
2 0
0 e−

ζ
2

]
↔

[
ch ζ

2 sh ζ
2

sh ζ
2 ch ζ

2

]
,

τ ≡
[

0 1
−1 0

]
↔ i

[ −1 0
0 1

]
,

[
1 s
0 1

]
↔

[
1− 1

2 is 1
2 is

− 1
2 is 1 + 1

2 is

]
.

Finally, we apply to the above elements of SU(1, 1), the two-to-one onto homomor-
phism

SU (1, 1) → SO (2, 1)

given by Bargmann [1]; we find that

±
[

ch ζ
2 sh ζ

2

sh ζ
2 ch ζ

2

]
↔




ch ζ
2 sh ζ

2 0
sh ζ

2 ch ζ
2 0

0 0 1


 ,

±i

[ −1 0
0 1

]
↔




1 0 0
0 −1 0
0 0 −1


 ,

±
[

1− 1
2 is 1

2 is
− 1

2 is 1 + 1
2 is

]
↔




1 + 1
2s2 − 1

2s2 −s
1
2s2 1− 1

2s2 −s
−s s 1


 .

Combining this homomorphism to the earlier isomorphism, we see that there exists
a two-to-one onto homomorphism

SL (2, R) → SO (2, 1)

which gives the following associations:

±
[

e
ζ
2 0
0 e−

ζ
2

]
↔




ch ζ
2 sh ζ

2 0
sh ζ

2 ch ζ
2 0

0 0 1


 ≡ l2 (ζ) ,(3. 17)

±
[

0 1
−1 0

]
↔




1 0 0
0 −1 0
0 0 −1


 ≡ τ0, say,(3. 18)
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±
[

1 s
0 1

]
↔




1 + 1
2s2 − 1

2s2 −s
1
2s2 1− 1

2s2 −s
−s s 1


 ≡ t (s) .(3. 19)

Applying this homomorphism to equation (15) [which says that an arbitrary element
g of SL(2, R) can be expressed either as g = s1δ or as g = s1δτs2], we see that an
arbitrary element g of SO(2, 1) can be parameterized either as

g = t (s1) l2 (ζ) or as g = t (s1) l2 (ζ) τ0t (s2) ;(3. 20)

this is the required parameterization that we need.
Now using (11) and its immediate consequence

〈p, ρ|U (t (−s)) | = e−ips〈p, ρ|,
we see that for any element A of SO(2, 1),

〈p, ρ|U (t (s) At (s′)) |p′, ρ〉
= 〈p, ρ|U (t (s′))U (A) U (t (s)) |p′, ρ〉
= ei(ps′+p′s)〈p, ρ|U (A) |p′, ρ〉

which implies that the matrix elements of t(s)At(s′) are determined by those of A.
Hence it follows that in order to obtain the matrix element of an arbitrary rotation
of SO(2, 1), it is sufficient to obtain them for l2 (ζ) and l2 (ζ) τ0; this we now do.

4. Matrix Elements of l2 (ζ)

We obtain the matrix elements of l2 (ζ) in the present section and that of l2 (ζ) τ0

in the next section.
Now when g = l2 (ζ), we have

ξ′ = g−1ξ

= l−1
2 (ζ) ξ

=




ch ζ
2 −sh ζ

2 0
−sh ζ

2 ch ζ
2 0

0 0 1







ω
(
r2 + 1

)
ω

(
r2 − 1

)
2ωr




=




ω
(
r2 + 1

)
chζ − ω

(
r2 − 1

)
shζ

−ω
(
r2 + 1

)
shζ + ω

(
r2 − 1

)
chζ

2ωr




=




ωeζ
(
r2e−2ζ + 1

)
ωeζ

(
r2e−2ζ − 1

)
2ωeζ .re−ζ




after a bit of simplification. As this must be equal to



ω′
(
(r′)2 + 1

)

ω′
(
(r′)2 − 1

)

2ω′r′



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we get

ω′ = ωeζ , r′ = re−ζ ;(4. 21)

equation (13) therefore gives the required matrix element as

〈p, ρ|U (l2 (ζ)) |p′, ρ〉

=
1
2π

∫ ∞

−∞
dr

(
eζ

)− 1
2+iρ

exp
(
i
(
pe−ζr − p′r

))

=
(
eζ

)− 1
2+iρ

δ
(
pe−ζ − p′

)

⇒ 〈p, ρ|U (l2 (ζ)) |p′, ρ〉 =
(
eζ

) 1
2+iρ

δ
(
p− p′eζ

)
.(4. 22)

Note the extreme simplicity of this expression; however, this is to be expected as it
is easy to verify that

U (l2 (ζ)) |p′, ρ〉 =
(
eζ

) 1
2+iρ |p′eζ , ρ〉.

5. Matrix Elements of l2 (ζ) τ0

We start with the following

DEFINITION:- In analogy with the well known modified Bessel function Ks which
is given by

Ks (z) =
π

2
1

sin (πs)
[I−s (z)− Is (z)],

we define another modified Bessel function Ls by

Ls (z) =
π

2
1

sin (πs)
[J−s (z)− Js (z)].

We next prove the following

THEOREM:- The matrix elements of l2 (ζ) τ0 are given by
(5. 23)

〈p, ρ|U (l2 (ζ) τ0) |p′, ρ〉 =

{
0 if Sign p = −Sign p′,
2
π ch (πρ) e

ζ
2 (pp′)iρ

L2iρ

(
2
√

pp′eζ
)

if Sign p = Sign p′.

Proof:- When

g = l2 (ζ) τ0

=




chζ shζ 0
shζ chζ 0
0 0 1







1 0 0
0 −1 0
0 0 −1




=




chζ −shζ 0
shζ −chζ 0
0 0 −1


 ,
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g−1 =




chζ −shζ 0
shζ −chζ 0
0 0 −1




so that

ξ′ = g−1ξ

=




chζ −shζ 0
shζ −chζ 0
0 0 −1







ω
(
r2 + 1

)
ω

(
r2 − 1

)
2ωr







ωeζ
(
r2e−2ζ + 1

)
−ωeζ

(
r2e−2ζ − 1

)
−2ωr




which gives

ω′ = ωr2e−ζ , r′ = −eζ/r.(5. 24)

Equation (13) therefore gives

〈p, ρ|U (l2 (ζ) τ0) |p′, ρ〉

=
1
2π

∫ ∞

−∞
dr

(
r2e−ζ

)− 1
2+iρ

exp
(
i
(−peζ/r − p′r

))

=
1
2π

(
e−ζ

)− 1
2+iρ

∫ ∞

−∞
dr

(
r2

)− 1
2+iρ

exp
(−i

(
peζ/r + p′r

))
.

It is proved in the Appendix A that the above integral vanishes unless p and p′

have the same sign; we therefore assume, from now onwards, that they have the
same sign. Then proceeding further, we get

〈p, ρ|U (l2 (ζ) τ0) |p′, ρ〉 =
1
2π

(
e−ζ

)− 1
2+iρ

[∫ ∞

0

dr
(
r2

)− 1
2+iρ

e(−i(peζ/r+p′r))

(5. 25)

+
∫ 0

−∞
dr

(
r2

)− 1
2+iρ

e(−i(peζ/r+p′r))
]

=
1
2π

(
e−ζ

)− 1
2+iρ · 2

∫ ∞

0

dr
(
r2

)− 1
2+iρ

cos p′
(

r +
peζ

p′r

)

=
1
π

(
e−ζ

)− 1
2+iρ

∫ ∞

0

drr−1+2iρ cos p′
(

r +
peζ

p′
1
r

)
.(5. 26)

Now, according to the Formula 35, p.321 of Erdelyi et el [8], we have
∫ ∞

0

dxxs−1 cos[a
(
x + b2/x

)
] = (−π) bs[Js (2ab) sin

(
1
2
πs

)
+ Ys (2ab) cos

(
1
2
πs

)
]

(−1 < Res < 1) , (a > 0) , (b > 0) ,

= 2bs cos
(

1
2
πs

)
· π

2 sin (πs)
[J−s (2ab)− Js (2ab)],

using the expression for Ys in terms of Js and J−s. Hence putting ( for p > 0, p′ > 0)

x = r, s = 2iρ, a = p′, b2 = peζ/p′,
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we will get
∫ ∞

0

drr−1+2iρ cos[p′
(

r +
peζ

p′
1
r

)
]

= 2
(

peζ

p′

)iρ

ch (πρ)L2iρ

(
2
√

pp′e
ζ
2

)
.

Equation (25) therefore gives

〈p, ρ|U (l2 (ζ) τ0) |p′, ρ〉

=
2
π

(
e−ζ

)− 1
2+iρ

(
peζ

p′

)iρ

ch (πρ)L2iρ

(
2
√

pp′e
ζ
2

)

=
2
π

ch (πρ) e
ζ
2 (p/p′)iρ

L2iρ

(
2
√

pp′e
ζ
2

)
, p > 0, p′ > 0.

By replacing p, p′ by −p,−p′, we see that we get the same result when p < 0, p′ < 0;
this completes the proof of the Theorem.

Thus, we have obtained the value of this matrix element also in closed form, as
asserted in the Introduction. A trivial consequence of equation (23) is

(5. 27) 〈p, ρ|U (τ0) |p′, ρ〉 =
2
π

ch (πρ) (p/p′)iρ
L2iρ

(
2
√

pp′
)

.

6. Properties of the L-function

It is a well known fact ( Vilenkin [27]) that expressions for UIR matrix elements
of various Lie groups, in terms of special functions, lead to a number of properties
of these functions obtained by using group theoretical arguments, some of which
may be new ones although some others may be already known ones. We therefore
obtain some properties of the L-functions introduced above, by using the fact that
the UIR of matrix elements of SO(2, 1) discussed in this paper, have been expressed
in terms of these functions. For the purpose, we need the following simple relations
between certain elements of SO(2, 1), which are easily verified by going over to the
corresponding elements of SL(2, R).

(6. 28 a) τ0l2 (ζ) τ0 = l2 (−ζ) ,

l2 (ζ) t (s) = t
(
seζ

)
l2 (ζ) ,(6. 28 b)

τ0t (s) τ0 = t̂ (−s) ,(6. 28 c)

t̂ (−s) = t (−s) l2

(
ln

1
|s|

)
τ0t

(
−1

s

)
, s 6= 0.(6. 28 d)

where t̂ (s) is the element of SO(2, 1) corresponding to the element

Ŝ (s) =
[

1 0
s 1

]

of SL(2, R). Let us now obtain the properties of L-functions one by one.
I: Using the relation

l2 (ζ) τ0l2 (ζ ′) τ0 = l2 (ζ − ζ ′)



UIR Matrix Elements of Finite Rotations of SO(2, 1) Decomposed According to the Subgroup T1 85

which follows immediately from equation (27a) , we get
(
eζ−ζ′

) 1
2+iρ

δ
(
p− p′eζ−ζ′

)

=
∫ ∞

0

dp̂〈p, ρ|U (l2 (ζ ′) τ0) |p̂, ρ〉〈p̂, ρ|U (l2 (ζ) τ0) |p′, ρ〉, when p > 0, p′ > 0,

= 4e(ζ+ζ′)/2 (p/p′)iρ
ch2 (πρ)

∫ ∞

0

dp̂L2iρ

(
2
√

pp̂e
ζ′
2

)
L2iρ

(
2
√

p̂p′e
ζ
2

)

⇒
∫ ∞

0

dp̂L2iρ

(
2
√

pp̂e
ζ′
2

)
L2iρ

(
2
√

p̂p′e
ζ
2

)

=
1
4

(
p′eζ

peζ′

)iρ

sech2 (πρ) δ
(
peζ′ − p′eζ

)
.

Hence, putting

2
√

peζ′ = a, 2
√

p′eζ = b, p̂ = x,

( so that as a > 0 and b > 0) we get
∫ ∞

0

dxL2iρ

(
a
√

x
)
L2iρ

(
b
√

x
)

=
1
4

sech2 (πρ)
(a

b

)2iρ

δ
(
a2 − b2

)
,

which, using δ (a + b) = 0, gives
∫ ∞

0

dxL2iρ

(
a
√

x
)
L2iρ

(
b
√

x
)

=
1
8

(a

b

)2iρ

sech2 (πρ) δ (a− b).(6. 29)

II: For s 6= 0, we have

〈p, ρ|U (l2 (ζ)τ0t (s) l2 (ζ ′) τ0) |p′, ρ 〉

=
∫ ∞

−∞
dp̂ 〈p, ρ|U (l2 (ζ ′) τ0)U (t (s)) |p̂, ρ〉 〈p̂.ρ|U (l2 (ζ) τ0) |p′, ρ〉

=
∫ ∞

−∞
dp̂eisp̂ 〈p, ρ|U (l2 (ζ ′) τ0) |p̂, ρ〉 〈p̂, ρ|U (l2 (ζ) τ0) |p′, ρ〉

=
∫ ∞

−∞
dp̂eisp̂ · 2e

ζ′
2

(
p

p̂

)iρ

chπρL2iρ

(
2
√

pp′e
ζ′
2

)
·

2e
ζ
2

(
p̂

p′

)iρ

chπρL2iρ
(
2
√

p̂p′e
ζ
2

)
if p, p′ > 0,

= 4e
(ζ+ζ′)

2

(
p

p′

)iρ

ch2πρ

∫ ∞

0

dp̂eisp̂L2iρ

(
2
√

pp̂e
ζ′
2

)
L2iρ

(
2
√

p̂p′e
ζ
2

)
.

On the other hand, for s 6= 0, we also have

l2 (ζ) τ0t (s) l2 (ζ ′) τ0 = l2 (ζ) τ0t (s) τ0l2 (−ζ ′) = l2 (ζ) t̂ (−s) l2 (−ζ ′)

= l2 (ζ) t

(
−1

s

)
l2

(
ln

1
|s|

)
τ0t

(
−1

s

)
l2 (−ζ ′)

= t

(
−eζ

s

)
l2

(
ζ + ζ ′ + ln

(
1
|s|

))
τ0t

(
−e−ζ′

s

)
,
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so that

〈p, ρ|U (l2 (ζ) τ0t (s) l2 (ζ ′) τ0) |p′, ρ〉

=

〈
p, ρ|U

(
t

(
−e−ζ′

s

))
U

(
l2

(
ζ + ζ ′ + ln

(
1
|s|

))
τ0

)
U

(
t

(
−e−ζ′

s

))
|p′, ρ

〉

= e
−i
�

peζ′+P ′eζ
�

/s · 2e(ζ+ζ′+ln( 1
|s| ))/2 · chπρ (p/p′)iρ

L2iρ

(
2
√

p′pe(ζ+ζ′+ln( 1
|s| ))/2

)
.

It follows that

4e(ζ+ζ′)/2 (p/p′)iρ
ch2πρ

∫ ∞

0

dp̂eisp̂L2iρ

(
2
√

pp̂e
ζ′
2

)
L2iρ

(
2
√

p̂p′e
ζ
2

)

= 2e
−i
�

peζ′+p′eζ
�

/s
e(ζ+ζ′+ln( 1

|s| ))/2chπρ (p/p′)iρ
L2iρ

(
2
√

p′pe(ζ+ζ′+ln( 1
|s| ))/2

)

⇒
∫ ∞

0

dp̂eisp̂L2iρ

(
2
√

pp̂e
ζ′
2

)
L2iρ

(
2
√

p̂p′e
ζ
2

)

=
sechπρ

2
√
|s| e

−i
�

peζ′+p′eζ
�

/s
L2iρ

(
2√
|s|

√
pp′e(ζ+ζ′)/2

)

⇒
∫ ∞

0

dxeisxL2iρ

(
a
√

x
)
L2iρ

(
b
√

x
)

=
sechπρ√

|s| e−i(a2+b2)/(4s)L2iρ

(
ab

2
√
|s|

)
, s 6= 0,

(6. 30)

where, as before

a = 2
√

pe
ζ′
2 , b = 2

√
p′e

ζ
2 .

To get additional relations involving L-functions, we consider the mixed basis matrix
elements of SO(2, 1) obtained by Kalnins [11]. He calls the coordinate systems
corresponding to the three subgroup reductions

SO (2, 1) ⊃ SO (2) , SO (2, 1) ⊃ SO (1, 1) , SO (2, 1) ⊃ T1,

as Spherical system S,
Hyperbolic System H,
Horospherical System HO,
respectively, and takes

|ρ;M〉, |ρ;±; τ〉, |ρ; S〉,
as basis vectors in these systems ( our basis vectors |p, ρ〉 are clearly to be identified
with |ρ; S〉 of Kalnins) . He then says in his equation (2.5) that if

h1 (a) = eN1a
(≡ our eN2a

)
,

then

〈ρ; M |h1 (a) |ρ; S〉 =
(−1)M

S−
1
2

Γ
(

1
2 − iρ−M

) (2S)
1
2−iρ

W−M,iρ

(
2e−aS

)
, S > 0,

where Wµν (Z) is the Whittaker function as defined in Magnus et al [16]. However,
we show in the Appendix B that there is an error in the expression on the RHS,
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and that the correct formula is

〈ρ;M |h1 (a) |ρ; S〉 =
(−1)M

S−1

Γ
(

1
2 − iρ−M

) (S/2)
1
2−iρ

W−M,iρ

(
2e−aS

)
,

which, in our notation, becomes

(6. 31) 〈M ; ρ|U (l2 (ζ)) |p, S〉 =
(−1)M+1

p−1

Γ
(

1
2 − iρ−M

) (p/2)
1
2−iρ

W−M,iρ

(
2peζ

)
;

note that Kalnins e−a becomes eζ in our notation as Kalnins take

U (g) |ξ〉 = |ξg〉,
while we take

U (g) |ξ〉 = |g−1ξ〉.
This formula has the following trivial consequences, used quite frequently, latter:

〈p, ρ|U (l2 (ζ)) |M, ρ〉 =
(−1)M+1

p−1

Γ
(

1
2 + iρ−M

)
(p

2

) 1
2+iρ

W−M,iρ

(
2pe−ζ

)
,(6. 32 a)

〈M,ρ|p, ρ〉 =
(−1)M+1

p−1

Γ
(

1
2 − iρ−M

)
(p

2

) 1
2−iρ

W−M,iρ (2p) ;(6. 32 b)

〈p, ρ|M, ρ〉 =
(−1)M+1

p−1

Γ
(

1
2 − iρ−M

)
(p

2

) 1
2+iρ

W−M,iρ (2p) ;(6. 32 c)

〈M,ρ|U (l2 (ζ) τ0) |p, ρ〉 =
(−p)−1

Γ
(

1
2 − iρ−M

)
(p

2

) 1
2−iρ

W−M,iρ

(
2peζ

)
,(6. 32 d)

〈p, ρ|U (l2 (ζ) τ0) |M, ρ〉 =
−p−1

Γ
(

1
2 + iρ−M

)
(p

2

) 1
2+iρ

W−M,iρ

(
2peζ

)
;(6. 32 e)

note that here, we have used the property of Whittaker functions

W−M,−iρ (z) = W−M,iρ (z)

and the fact that

〈M, ρ|U (τ0) ≡ 〈M,ρ|U (r0 (π)) = eiMπ〈M,ρ|.
III: We have
(
eζ

) 1
2+iρ

δ
(
p− p′eζ

)
= 〈p, ρ|U (l2 (ζ)) |p′, ρ〉

=
∑

M

〈p, ρ|M,ρ〉 〈M, ρ|U (l2 (ζ)) |p′, ρ〉

=
∑

M

(−1)M+1
p−1

Γ
(

1
2 + iρ−M

) (−1)M+1
p′−1

Γ
(

1
2 − iρ−M

)
(p

2

) 1
2+iρ

(
p′

2

) 1
2−iρ

W−M,iρ (2p)W−M,iρ

(
2p′eζ

)

⇒
∑

M

(
4pp′eζ

)− 1
2

Γ
(

1
2 −M + iρ

)
Γ

(
1
2 −M − iρ

)
(

p

p′eζ

)iρ

W−M,iρ (2p)W−M,iρ

(
2p′eζ

)

= δ
(
p− p′eζ

)
.

Setting now

2p = a, 2p′eζ = b ⇒ 4pp′eζ = ab,
p

p′eζ
=

a

b
,
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we get

∑

M

(ab)−
1
2

(
a
b

)iρ

Γ
(

1
2 −M + iρ

)
Γ

(
1
2 −M − iρ

)W−M,iρ (a)W−M,iρ (b) = 2δ (a− b).(6. 33)

IV: We have

2chπρe
ζ
2 (p/p′)iρ

L2iρ

(
2
√

pp′e
ζ
2

)
= 〈p, ρ|U (l2 (ζ) τ0) |p′, ρ〉

=
∑

M

eiMπ 〈p, ρ|M, ρ〉 〈M,ρ|U (l2 (ζ)) |p′, ρ〉 as τ0 = r0 (π),

=
∑

M

(−1)M (−1)M+1
p−1

Γ
(

1
2 −M + iρ

) (−1)M+1
p′−1

Γ
(

1
2 −M − iρ

) ×

(p

2

) 1
2+iρ

(
p′

2

) 1
2−iρ

W−M,iρ (2p)W−M,iρ

(
2p′eζ

)

⇒
∑

M

(−1)M (
4pp′eζ

)− 1
2

Γ
(

1
2 −M + iρ

)
Γ

(
1
2 −M − iρ

)W−M,iρ (2p) W−M,iρ

(
2p′eζ

)

= 2chπρL2iρ

(
2
√

pp′e
ζ
2

)

⇒
∑

M

(−1)M (ab)−
1
2

Γ
(

1
2 −M + iρ

)
Γ

(
1
2 −M − iρ

)W−M,iρ (a)W−M,iρ (b)

= 2chπρL2iρ

(
2
√

ab
)

.(6. 34)

where

a = 2p, b = 2p′eζ .

V: We have

−p−1

Γ
(

1
2 −M + iρ

)
(p

2

) 1
2−iρ

W−M,iρ

(
2peζ

)
= 〈M, ρ|U (l2 (ζ) τ0) |p, ρ〉

=
∫ ∞

0

dp̂ 〈M, ρ|p̂, ρ〉 〈p̂, ρ|U (l2 (ζ) τ0) |p, ρ〉, when p > 0,

=
∫ ∞

0

dp̂
(−1)M+1

p̂−1

Γ
(

1
2 −M − iρ

)
(

p̂

2

) 1
2−iρ

W−M,iρ (2p̂) · 2chπρe
ζ
2

(
p̂

p

)iρ

L2iρ

(
2
√

p̂pe
ζ
2

)

⇒
∫ ∞

0

dp̂p̂−
1
2 W−M,iρ (2p̂)L2iρ

(
2
√

p̂pe
ζ
2

)

=
(

1
2

)
(−1)M+1 sechπρ

(
peζ

)− 1
2 W−M,iρ

(
2peζ

)

⇒
∫ ∞

0

dxW−M,iρ

(
x2

)
L2iρ (xa) =

1
2a

(−1)M+1 sechπρW−M,iρ

(
a2

)
(6. 35)

where

x =
√

2p̂, a =
√

2peζ .
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Equations (32) to (34) are three new relations involving the L-functions and Whit-
taker functions. Finally, we obtain a couple of relations involving L-functions,
Whittaker functions and confluent hypergeometric functions by using equations
(2.26) on page 656 and equation (2.27) on page 657 of Kalnins [11]. Actually, there
are some errors in these equations and the corrected equations, in our notation, are

〈p, ρ|U (l2 (ζ)) |τ, +, ρ〉 =
1
2π

[
(
− 1

2ip

)− 1
2+iρ

Γ
(

1
2
− iρ + iτ

)
W−iτ−iρ

(−2ipe−ζ
)

+
(

1
2ip

)− 1
2+iρ

Γ
(

1
2
− iρ− iτ

)
Wiτ−iρ

(
2ipe−ζ

)
].(6. 36 a)

〈p, ρ|U (l2 (ζ)) |τ,−, ρ〉 =
1
2π

(
eζ

4

)− 1
2+iρ

e−ipe−ζ

B

(
1
2
− iρ− iτ,

1
2
− iρ + iτ

)
F11

(
1
2
− iρ− iτ, 1− 2iρ; 2ipe−ζ

)
.(6. 36 b)

〈p, ρ|U (l2 (ζ) τ0) |τ, +, ρ〉 =
1
2π

(
e−ζ

4

)− 1
2+iρ

eipeζ

B

(
1
2
− iρ− iτ,

1
2
− iρ + iτ

)
F11

(
1
2
− iρ− iτ, 1− 2iρ;−2ipeζ

)
.(6. 36 c)

〈p, ρ|U (l2 (ζ) τ0) |τ,−, ρ〉 =
1
2π

[(
1

2ip

)− 1
2+iρ

Γ
(

1
2
− iρ + iτ

)
W−iτ−iρ

(
2ipeζ

)

+
(
− 1

2ip

)− 1
2+iρ

Γ
(

1
2
− iρ− tτ

)
Wiτ−iρ

(−2ipeζ
)
]

.(6. 36 d)

Note that

(1) Equation (35 a) is the error removed form of Kalnins [11] equation (2.27)
on page 657.

(2) Equation (35 b) is Kalnins [11] equation (2.26) on page 656, with the middle
part deleted.

(3) Equation (35 c) is the error removed form of Kalnins [11] equation (2.26),
page 656, with its first part deleted.

(4) Equation (35 d) has not been mentioned by Kalnins.

We give the proof of equation (35 a) in Appendix C; the rest of equations (35 b,
35c, 35d) are proved in a similar manner. We now proceed with the derivation of
the couple of relations mentioned earlier.
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VI: Using (34c), we get

1
2π

(
e−ζ

4

)− 1
2+iρ

B

(
1
2
− iρ− iτ,

1
2
− iρ + iτ

)
eipeζ

F11

(
1

2iρ
− iτ, 1− 2iρ;−2ipeζ

)

= 〈p, ρ|U (l2 (ζ)) |τ,−, ρ〉

=
∫ ∞

0

dp̂〈p, ρ|U (l2 (ζ) τ0) |p̂, ρ〉〈p̂, ρ|τ, +, ρ〉 for p > 0,

=
∫ ∞

0

dp̂ 2e
ζ
2

(
p

p̂

)iρ

chπρ L2iρ

(
2
√

pp̂e
ζ
2

)
·

1
2π
{(−ip̂/2)−

1
2+iρ Γ

(
1
2
− iρ + iτ

)
W−iτ−iρ (−2ip̂)

+ (ip̂/2)−
1
2+iρ Γ

(
1
2
− iρ− iτ

)
Wiτ−iρ (2ip̂)}

using ( 6. 36 a) with ζ = 0,

⇒
∫ ∞

0

dp̂ p̂−
1
2 L2iρ

(
2
√

pp̂e
ζ
2

)
{(−2i)−

1
2+iρ Γ

(
1
2
− iρ + iτ

)
W−iτ−iρ (−2ip̂)

+ (2i)−
1
2+iρ Γ

(
1
2
− iρ− iτ

)
Wiτ−iρ (2ip̂)}

=
1
2

sechπρ
(
peζ

)−iρ
eipeζ ·

B

(
1
2
− iρ− iτ,

1
2
− iρ + iτ

)
F11

(
1
2
− iρ− iτ, 1− 2iρ;−2ipeζ

)
.

Putting

p̂ = x, and peζ = a,

we get

∫ ∞

0

dx x−
1
2 L2iρ

(
2
√

ax
) {(−2i)−

1
2+iρ Γ

(
1
2
− iρ + iτ

)
W−iτ−iρ (−2ix)

+ (2i)−
1
2+iρ Γ

(
1
2
− iρ− iτ

)
Wiτ−iρ (2ix)}

=
1
2

sechπρ a−iρeia B

(
1
2
− iρ− iτ,

1
2
− iρ + iτ

)
F11

(
1
2
− iρ− iτ, 1− 2iρ;−2ia

)
.

(6. 37)
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VII: Using (6. 36 a) , we get

1
2π
{(−1/2ip )−

1
2+iρ Γ

(
1
2
− iρ + iτ

)
W−iτ−iρ

(−2ipe−ζ
)

+ (ip/2)−
1
2+iρ Γ

(
1
2
− iρ− iτ

)
Wiτ−iρ

(
2ipe−ζ

)}
= 〈p, ρ|U (l2 (ζ)) |τ, +, ρ〉

=
∫ ∞

0

dp̂ 〈p, ρ|U (l2 (−ζ) τ0) |p̂, ρ〉 〈p̂, ρ|U (τ0) |τ, +, ρ〉 for p > 0,

=
∫ ∞

0

dp̂2e−ζ/2

(
p

p̂

)iρ

chπρ L2iρ

(
2
√

pp̂e−ζ/2
)

.
1
2π

(1/4)−
1

2iρ

· B

(
1
2
− iρ− iτ,

1
2
− iρ + iτ

)
eip̂F11

(
1
2
− iρ− iτ, 1− 2iρ;−2ip̂

)
(6. 38)

using (6. 36 c) with ζ = 0,

⇒
∫ ∞

0

dp̂eip̂p̂−iρL2iρ

(
2
√

pp̂e−ζ/2
)

F11

(
1
2
− iρ− iτ, 1− 2iρ;−2ip̂

)

=
1
2

e
ζ
2 sechπρ p−

1
2

B
(

1
2 − iρ1τ,

1
2 − iρ + iτ

) (−2i)−
1
2+iρ Γ

(
1
2
− iρ + iτ

)
W−iτ−iρ

(−2ipe−ζ
)

+ (2i)−
1
2+iρ Γ (1/− iρ− iτ) Wiτ−iρ

(
2ipe−ζ

)
,

so that putting

p̂ = x, pe−ζ = a,

we get
∫ ∞

0

dx x−iρeixL2iρ

(
2
√

ax
)
F11

(
1
2
− iρ− iτ, 1− 2iρ; 2ix

)

=
sechπρ

2
√

aB
(

1
2 − iρ− iτ, 1

2 − iρ + iτ
){(−2i)−

1
2+iρ Γ

(
1
2
− iρ + iτ

)

· W−iτ−iρ (−2ia) + (2i)−
1
2+iρ Γ

(
1
2
− iρ− iτ

)
Wiτ−iρ (2ia)}.

(6. 39)

(6. 37 ), & (6. 39 ) are the two relations between the L-functions, Whittaker func-
tions and the confluent hypergeometric functions, mentioned earlier. However,
using the “orthogonality” of the L-functions given by Equation (6. 29 ), each one
of these relations can be shown to be derivable from the other one. Thus, for exam-
ple, if we multiply (32) by L2iρ

(
2
√

ab
)

and integrate with respect to a, we are lead
to equation Equation (33) ; conversely, equation (32) can also be obtained from
equation (33) in a similar manner.

7. Conclusion

By using a particular parameterization of points on a 3-dimensional cone, as sug-
gested by Kalnins[11], we are able to obtain the UIR matrix elements of arbitrary
finite rotations of SO(2, 1) in a representation of principle series and of integral
type, which is decomposed according to the non-compact subgroup T1. We note
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the extreme simplicity of our computations as compared to those for decomposition
according to the subgroup SO(1, 1) which were carried out (only for two one para-
meter subgroups of SO(2, 1)) by Mukunda[19] much earlier. The matrix elements
have been expressed in closed form in terms of a new type of Bessel function Lν (z)
which may be considered as a comparison function of the well known modified
Bessel function Kν (z). We have also obtained many new relations between these
new Bessel functions Lν (z), Whittaker functions and the confluent hypergeometric
functions, by using the standard techniques of group representation theory. In the
end, we would like to mention that some errors in some of the equations of Kalnins
[11] have been pointed out and the corresponding error-free equations have been
given.

Appendix A

Let I be the integral

I =
∫ ∞

−∞
dx

(
x2

)− 1
2+iρ

e−i(p′x+ p
x );

we show in this Appendix that it vanishes if p and p’ has opposite signs, as stated
in the text. If C is the contour as shown in the following diagram (Figure 1)

x

y

R-R 0-

Figure 1. The Contour C

consisting of the real axis from ε to R (where ε is a very small and R is a very large
positive real number) , the upper semicircle Γ : |z| = R, the real axis from −R to
−ε and the upper semicircle γ : |z| = ε, then

(
z2

)− 1
2+iρ

e−i(ṕz+ p
z )

is regular throughout C, and so we get∫

C

dz
(
z2

)− 1
2+iρ

e−i(ṕz+ p
z ) = 0

⇒
(∫

Γ

dz +
∫ −ε

−R

dz +
∫

γ

dz +
∫ R

ε

dz

)((
z2

)− 1
2+iρ

e−i(ṕz+ p
z )

)
= 0.(A-1)

We now show that as ε → 0 and R →∞, the integrals over γ and Γ vanish whenever
p > 0 and ṕ < 0. For, on Γ, we have

z = Reiθ ⇒ dz

z
= idθ,
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z = R (cos θ + i sin θ) ,
1
z

=
1
R

(cos θ − i sin θ) ,

so that ∫

Γ

dz
(
z2

)− 1
2+iρ

e−i(p′z+ p
z )

=
∫ π

0

idθ.Reiθ
(
R2e2iθ

)− 1
2+iρ

e−i{p′R(cos θ+i sin θ)+ p
R (cos θ−i sin θ)}

= i

∫ π

0

dθe2iρ(LnR+iθ)−ip′R(cos θ+i sin θ)−i p
R (cos θ−i sin θ)

= i

∫ π

0

dθei(2ρLnR−(p′R+ p
R ) cos θ)e−2ρθ+(p′R− p

R ) sin θ

→ 0 as R →∞ whenever p′ < 0, as sin θ > 0.

Similarly, on γ, which is described clockwise, we will have

z = εeiθ

so that ∫

γ

dz
(
z2

)− 1
2+iρ

e−i(p′z+ p
z )

= −i

∫ π

0

dθei(2ρLnε−(p′ε+ p
ε ) cos θ) · e−2ρθ+(p′ε+ p

ε ) sin θ

→ 0 as ε → 0, whenever p > 0.

Hence, taking the limit as ε → 0 and R →∞, equation (A-1) will give

I =
∫ ∞

−∞
dx

(
x2

)− 1
2+iρ

e−i(p′x+ p
x ) = 0

Whenever p > 0 and p′ < 0. That I = 0 whenever p < 0 and p′ > 0, can be proved
ion exactly the same manner by choosing the contour C ′ which is the mirror image
of C in the real axis. Hence, it follows that

I = 0

whenever p and p′ have opposite signs, as asserted at the beginning.

Appendix B

In this Appendix, we show that there is an error in equation (2.5) , p.655, of
Kalnins[11] paper by obtaining its error-free form. The integral on the RHS of
equation (2.4) , p.655, of this reference

1
2π

∫ ∞

∞
dr

(
ω̄s

ωE

)− 1
2+iρ

eiMφe−iSr

with
ω̄s

ωE
= ea

(
r2 + e−2a

)
, eiφ =

r + ie−a

r − ie−a
,
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becomes

1
2π

∫ ∞

−∞
dr (ea)−

1
2+iρ (

r2 + e−2a
)− 1

2+iρ
(

r + ie−a

r − ie−a

)M

e−iSr

=
1
2π

(ea)−
1
2+iρ

∫ ∞

−∞
dr

(
e−a + ir

)− 1
2+iρ (

e−a − ir
)− 1

2+iρ
(

i (e−a − ir)
−i (e−a + ir)

)M

e−iSr

=
1
2π

(−1)M (ea)−
1
2+iρ

∫ ∞

−∞
dr

(
e−a + ir

)− 1
2+iρ−M (

e−a − ir
)− 1

2+iρ+M
e−iSr.

Now in Erdelyi et el [9], Formula (12) on p.119, says
∫ ∞

−∞
dx (α+ ix )−2µ (β − ix)−2ν

e−ixy

= −2π (α + β)−ν−µ [Γ (2ν)]−1yν+µ+1Wν−µ, 1
2−ν−µ ((α + β) y) , y > 0.

Hence, taking

x = r, y = S, α = β = e−a,−2µ = −1
2

+ iρ−M,−2ν = −1
2

+ iρ + M,

so that

ν + µ− 1 = −1
2
− iρ,

1
2
− ν − µ = iρ,

we will get

1
2π

(−1)M (ea)−
1
2+iρ

∫ ∞

−∞
dr

(
e−a + ir

)− 1
2+iρ−M (

e−a − ir
)− 1

2+iρ+M
e−iSr

=
1
2π

(−1)M (ea)−
1
2+iρ · (−2π) (2e−a)−

1
2+iρ

Γ
(

1
2 − iρ−M

) · e0S−
1
2−iρW−M,iρ

(
2e−aS

)
, S > 0,

=
(−1)M (2)−

1
2+iρ

Γ
(

1
2 − iρ−M

) S−1S
1
2−iρW−M,iρ

(
2e−aS

)

=
(−1)M+1 · S−1

Γ
(

1
2 − iρ−M

)
(

S

2

) 1
2−iρ

W−M,iρ

(
2e−aS

)
.

This is the error-free expression for the RHS of equation (2.5) of Kalnins[11].

Appendix C

In this Appendix, we prove the equation (6. 36 a) of the text, which gives the
value of the matrix element

〈p, ρ|U (l2 (ζ)) |τ, +, ρ〉 .
As |τ, +, ρ〉 is a vector of Kalnins H-system, we parameterize ξ according to Kalnin’s
[11] Equation (1.10) as

ξ = ω (chθ, 1, shθ) .
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Then

ξ́ = l−1
2 (ζ) ξ = ω




chζchθ − shζ
−shζchθ + chζ

shθ


 = ώ




(
ŕ2 + 1

)
(
ŕ2 − 1

)
2r




as ξ́ has to be parameterized according to Kalnins HO-system. This gives

ώ

ω
= eζsh2θ/2, ŕ = e−ζ coth θ/2,

so that Kalnins[11] equation(2.25) (in our notation) gives

〈p, ρ|U (l2 (ζ)) |τ, +, ρ〉 =
1
2π

∫ ∞

−∞
dθ

(
eζsh2θ/2

)− 1
2+iρ

eipe−ζ

coth θ/2 e−irθ

=

(
eζ

)− 1
2+iρ

2π
(I1 + I2)

where

I1 =
∫ ∞

0

dθ
(
sh2θ/2

)− 1
2+iρ

eipe−ζ

coth θ/2
(
eθ

)−ir
,

I2 =
∫ 0

−∞
dθ

(
sh2θ/2

)− 1
2+iρ

eipe−ζ

coth θ/2
(
eθ

)−ir
.

To evaluate I1, we put

coth θ/2 = s ⇒ dθ = −2sh2θ/2ds, sh2θ/2 =
1

(s− 1) (s + 1)
, eθ =

s + 1
s− 1

,

as θ → 0+, s →∞, as θ →∞, s → 1,

so that

I1 = 2
∫ ∞

1

ds
(
sh2θ/2

) 1
2+iρ

eipe−ζs (
eθ

)−ir

= 2
∫ ∞

1

ds (s− 1)−
1
2−iρ (s + 1)−

1
2−iρ

eipe−ζs
(s− 1)ir (s + 1)−ir

= 2
∫ ∞

1

ds (s− 1)−
1
2−iρ+iτ (s + 1)−

1
2−iρ−iτ

eipe−ζs

= 2
∫ ∞

0

2dt (2t)−
1
2−iρ+iτ (2 (t + 1))−

1
2−iρ−iτ

eipe−ζ(2t+1)
, (s− 1 = 2t)

= 21−2iρeipe−ζ

∫ ∞

0

dtt−
1
2−iρ+iτ (t + 1)−

1
2−iρ−iτ

e2ipe−ζt
.

Now, according to the formula (18) on p.274 of Erdelye et el [9]

Γ
(

1
2
− κ + µ

)
Wκ,µ (x) = e−

1
2 xxµ+ 1

2

∫ ∞

0

dte−txt−
1
2−κ+µ (t + 1)−

1
2+κ+µ

⇒
∫ ∞

0

dte−txt−
1
2−κ+µ (t + 1)−

1
2+κ+µ = e

1
2x x−µ− 1

2 Γ
(

1
2
− κ + µ

)
Wκ,µ (x) ,
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so that taking

x = −2ipe−ζ , κ = −iτ, µ = −iρ,

we get

I1 =
(

1
4

)− 1
2+iρ

eipe−ζ

e−ipe−ζ (−2ipe−ζ
)− 1

2+iρ
Γ

(
1
2
− iρ + iτ

)
W−iτ,−iρ

(−2ipe−ζ
)

=
(
− 1

2ip
e−ζ

)− 1
2+iρ

Γ
(

1
2
− iρ + iτ

)
W−iτ,−iρ

(−2ipe−ζ
)
.

Next

I2 =
∫ 0

−∞
dθ

(
sh2θ

)− 1
2+iρ

eipe−ζ

coth θ/2e−iτθ

=
∫ ∞

0

dθ
(
sh2θ

)− 1
2+iρ

e−ipe−ζ

coth θ/2eiτθ

= I1, with p and τ replaced by −p and −τ respectively,

=
(

1
2
ipe−ζ

)− 1
2+iρ

Γ
(

1
2
− iρ− iτ

)
Wiτ,−iρ

(
2ipe−ζ

)
,

so that we finally get

〈p, ρ|U (l2 (ζ)) τ, +, ρ〉

=
1
2π
{
(
−1

2
ip

)− 1
2+iρ

Γ
(

1
2
− iρ + iτ

)
W−iτ,−iρ

(−2ipe−ζ
)

+
(

1
2
ip

)− 1
2+iρ

Γ
(

1
2
− iρ− iτ

)
Wiτ,−iρ

(
2ipe−ζ

)}

as stated in equation (6. 36 a) of the text.
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