
Punjab University
Journal of Mathematics (ISSN 1016-2526)
Vol.47(2)(2015) pp. 29-33

Dimension and Depth of Monomial Edge Ideals of Line Graphs and Cycles
by using Local Cohomology

Sohail Zafar
Department of Mathematics,

University of Management and Technology Lahore, Pakistan
Email: sohailahmad04@gmail.com

Zohaib Zahid
Department of Mathematics,

University of Management and Technology Lahore, Pakistan
Email: zohaibzahid@hotmail.com

Adnan Aslam
Department of Mathematics,

University of Management and Technology Sialkot Campus, Pakistan
Email: adnanaslam15@yahoo.com

Received: 02 April, 2015 / Accepted: 22 May, 2015 / Published online: 17 September,
2015

Abstract. We use local cohomology to compute dimension and depth of
monomial edge ideals of line and cycle graphs. In both cases we com-
puted projective dimension as an application.
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1. INTRODUCTION AND MAIN RESULTS

Let K denote a field. LetG denote a connected, simple and undirected graph over
the vertices labeled by[n] = {1, 2, . . . , n}. The monomial edge idealIG ⊆ Sn =
K[x1, . . . , xn] is an ideal generated by all monomialsxixj , i < j , such that{i, j} is
an edge ofG. It was introduced by Villarreal in [5]. The algebraic properties of monomial
edge ideals in terms of combinatorial properties of graphs (and vice versa) were studied by
many authors in [3], [4] and [6].
The main goal of this paper is to study some algebraic invariants of monomial edge ideals
by using the technique of local cohomology. Nowadays local cohomology becomes an
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essential tool to solve many problems not only in algebraic geometry but also in combina-
torial commutative algebra. The first two authors of the paper used local cohomology in
case of binomial edge ideals (see [8]).
The paper is structured as follows:
In Section 2, we give some preliminary definitions and results that we need in the rest of
the paper. In particular we give a short summary on monomial edge ideal and its primary
decomposition. In Section 3, we compute dimension, depth and projective dimension of
the monomial edge ideal associated to a line graph. In Section 4, we do the same for cycle
graph as we did for the line graph in Section 3.

2. PRELIMINARIES

First of all we will introduce the notation used in what follows. Moreover we summarize
a few auxiliary results that we need. We denote byG a connected undirected graph onn
vertices labeled by[n] = {1, 2, . . . , n}. For an arbitrary fieldK let Sn = K[x1, . . . , xn]
denote the polynomial ring in then variablesx1, . . . , xn. To the graphG one can associate
an idealIG ⊂ Sn generated by all monomialsxixj for all 1 ≤ i < j ≤ n such that{i, j}
is an edge ofG. This construction was invented by Villarreal in [5]. To begin with, let us
recall some of their definitions.

DEFINITION 1. Let G be a graph with vertex set[n]. A subsetM ⊂ V is said to be a
minimal vertex coverfor G if:

(a) Every edge ofG is incident with one vertex inM .
(b) There is no proper subset ofM with the first property.

The setM satisfying the condition(a) only is called avertex coverof G. Now the next
result tells us the importance of minimal vertex cover.

PROPOSITION2.1. LetSn = k[x1, x2, . . . , xn] be a polynomial ring andG a graph with
vertex set[n]. LetI be an ideal inSn generated byM = {xi1 , . . . , xit}, then the following
conditions are equivalent:

(a) M is a minimal vertex cover ofG.
(b) I is a minimal prime ofIG.

Proof. For the proof see [7, Proposition 6.1.16]. ¤

Let M denote a finitely generated gradedSn-module. In the paper we shall use also
the local cohomology modules ofM with respect toS+, denoted byHi(M), i ∈ Z where
S+ = ⊕d≥1S

d, Sd denotes thed−th homogeneous component ofSn. Note that they are
graded ArtinianSn-modules. We refer to the textbook of Brodmann and Sharp (see [1])
for the basics on it. In particular thedimensionanddepth of M is defined as

dim(M) = max{i : Hi(M) 6= 0} and

depth(M) = min{i : Hi(M) 6= 0}.
EverySn-moduleM has a finite minimal graded free resolution:

A• : 0 → Ap → · · · → A1 → A0 → M → 0

whereAi are freeSn modules fori ≥ 0 and p is called theprojective dimension of
M . For more details of minimal free resolution we refer the book of Eisenbud [2]. The
following theorem relate the depth and the projective dimension of the module. This is
also known asAuslander-Buchsbaum formula.
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THEOREM 2.1. LetM 6= 0 be finitely generatedSn-module then

ProjdimM + depth M = depth Sn.

Proof. For the proof see [7, Theorem 2.5.13]. ¤

The following lemma is also important for us.

LEMMA 2.1. Let Sn = k[x1, x2, . . . , xn] be a polynomial ring andI be an ideal inSn

thendepth(Sn/I) ≤ dim(Sn/p) for all p ∈ Ass(I).

3. THE MONOMIAL EDGE IDEAL OF THE LINE GRAPH

Let G be a line graph withn vertices (of lengthn). Let Sn = K[x1, x2, . . . , xn−1, xn]
be a polynomial ring,In = (x1x2, x2x3, . . . , xn−1xn) be the monomial edge ideal for line
graph and letdte denotes the smallest integer not less thant.

THEOREM 3.1. With the notation above we have,

(a) dim Sn/In = dn
2 e.

(b) depth Sn/In = dn
3 e.

Proof. (a): We use induction onn. Forn = 2 and3 it is trivial. Let the statement is true
for all l ≤ n. Note thatIn+1 = (In−1, xn) ∩ (In, xn+1), so we get the exact sequence

0 → Sn+1/In+1 → Sn−1/In−1[xn+1]⊕ Sn/In → Sn−1/In−1 → 0. (3. 1)

Consider the casen = 2k. Apply local cohomology to the exact sequence 3. 1 and we
get a long exact sequence of local cohomology modules

· · · → Hk(S2k+1/I2k+1) → Hk(S2k−1/I2k−1[x2k+1])⊕Hk(S2k/I2k) →
Hk(S2k−1/I2k−1) → Hk+1(S2k+1/I2k+1) → Hk+1(S2k−1/I2k−1[x2k+1]) → 0.

By induction hypothesis we havedim S2k/I2k = k anddim S2k−1/I2k−1 = k implies
dim S2k−1/I2k−1[x2k+1] = k + 1, which further implies thatHk+1(S2k+1/I2k+1) 6= 0.
Hencedim S2k+1/I2k+1 = k + 1.
Similar arguments will work for the case whenn = 2k + 1.
(b): Again we will use induction onn. Forn = 2, 3 and4 it is trivial. Let the statement is
true for alll ≤ n. Consider the exact sequence

0 → Sn+1/In : xnxn+1(−2)
xnxn+1→ Sn+1/In → Sn+1/In+1 → 0.

Now In : xnxn+1 = (In−2, xn−1) therefore the above exact sequence becomes,

0 → (Sn−2/In−2)[xn, xn+1](−2)
xnxn+1→ (Sn/In)[xn+1] → Sn+1/In+1 → 0. (3. 2)

Let n = 3k, by induction we havedepth S3k/I3k = k anddepth S3k−2/I3k−2 = k.
Thereforedepth(S3k/I3k)[x3k+1] = k+1 anddepth(S3k−2/I3k−2)[x3k, x3k+1] = k+2.
Applying local cohomology to the exact sequence 3. 2 , we get

0 → Hk+1(S3k/I3k)[x3k+1] → Hk+1(S3k+1/I3k+1) →
Hk+2(S3k−2/I3k−2[x3k, x3k+1](−2) → . . .

Hencedepth S3k+1/I3k+1 = k + 1.
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Now let n = 3k + 1, by induction hypothesis,depthS3k/I3k = k, which implies
depth S3k/I3k[x3k+2] = k + 1. Applying local cohomology to the exact sequence 3. 1
for the casen = 3k + 1, we get

0 → Hk(S3k/I3k) → Hk+1(S3k+2/I3k+2) →
Hk+1(S3k/I3k[x3k+2])⊕Hk+1(S3k+1/I3k+1) → . . .

Which showsHk+1(S3k+2/I3k+2) 6= 0. Thereforedepth S3k+2/I3k+2 = k + 1.
At the end considern = 3k + 2. By induction hypothesis,depth S3k/I3k = k im-
pliesdepth S3k/I3k[x3k+2, x3k+3] = k + 2. Also depth S3k+2/I3k+2 = k + 1 implies
depth S3k+2/I3k+2[x3k+3] = k + 2. Now by using local cohomology on the exact se-
quence 3. 2 , we get

0 → Hk+1(S3k+3/I3k+3) → Hk+2(S3k/I3k[x3k+2, x3k+3](−2)) →
Hk+2(S3k+2/I3k+2[x3k+3]) → Hk+2(S3k+3/I3k+3) → . . .

Which shows thatdepth S3k+3/I3k+3 > k + 1.
For the other inequality, letA = {1, 3, 4, 6, 7, 9, 10, . . . , 3k, 3k + 1, 3k + 3} be a subset of
vertex set[3k + 3]. It is easy to see thatA is a vertex cover because it covers all the edges.
Now If we remove either1 or 3t for somet = 1, 2, . . . , k + 1 from A then the resulting
set is not a vertex cover because either{1, 2} or {3t − 1, 3t} will not covered. Similarly
by removing3t + 1 for t = 1, 2, . . . , k from A the edge{3t + 1, 3t + 2} is not covered.
Which shows thatA is a minimal vertex cover. Further if we add one vertex sayβ in A
and considerB = A ∪ {β} thenB \ {β − 1, β + 1} is a minimal vertex cover contained
in B. Which shows thatB is not a minimal vertex cover. Hence,A is a minimal vertex
cover of maximal cardinality. Note that the number of elements inA are2k + 2. Thus
depth S3k+3/I3k+3 ≤ k + 1 by Lemma 2.1. Which completes the proof. ¤

It should be noted that one can give an alternative proof of Theorem 3.1 by using Depth
Lemma ( see [7, Lemma 1.3.9] together with the last argument of our proof.

COROLLARY 3.1. With the notation above we have,

ProjdimSn/In = n− dn
3
e

Proof. It is easily seen from Theorems 3.1 (b) and 2.1. ¤

4. THE MONOMIAL EDGE IDEAL OF THE CYCLE GRAPH

Let Sn = K[x1, x2, ..., xn] be a polynomial ring and letJn = (In, xnx1) be the mono-
mial edge ideal of a cycle graph onn vertices whereIn is monomial edge ideal of a line
graph. Letbtc denotes the largest integer not greater thant.

THEOREM 4.1. With the notation above we have,

(a) dim Sn/Jn = bn
2 c

(b)

depth Sn/Jn =
{

k, if n = 3k or 3k − 1 ;
k − 1, if n = 3k − 2 .
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Proof. (a): It is obvious that

Jn = (In−1, xn) ∩ (I ′n−1, x1), (4. 3)

whereIn−1 = (x1x2, . . . , xn−2xn−1) andI ′n−1 = (x2x3, . . . , xn−1xn). Both In−1 and
I ′n−1 are monomial edge ideals of line graphs with same lengthsn− 1. Therefore we have
a short exact sequence

0 → Sn/Jn → Sn/(In−1, xn)⊕ Sn/(I ′n−1, x1) → Sn/(I ′′n−2, x1, xn) → 0. (4. 4)

whereI ′′n−2 = (x2x3, . . . , xn−2xn−1) is monomial edge ideal of line graph of lengthn−2.
Note thatdim Sn/Jn = max{dim Sn/(In−1, xn), dim Sn/(I ′n−1, x1)} = dim Sn−1/In−1.
By Theorem 3.1 (a), we have the required dimension.
(b): SinceJn = (In, xnx1), therefore we have a short exact sequence

0 → Sn/In : xnx1(−2)
xnx1→ Sn/In → Sn/Jn → 0.

Which is equivalent to the following exact sequence

0 → S̃n−4/Ĩn−4[x1, xn](−2)
x1xn→ Sn/In → Sn/Jn → 0. (4. 5)

whereS̃n−4 is polynomial ring over the variablesx3, . . . , xn−2 and Ĩn−4 is a edge ideal
of line on vertex set{3, . . . , n − 2}. First consider the casen = 3k − 2, by Theorem
3.1 (b), we havedepth S3k−2/I3k−2 = k anddepth S̃3k−6/Ĩ3k−6[x1, x3k−2](−2) = k.
If we apply local cohomology to the exact sequence 4. 5 for the casen = 3k − 2, we
getdepth S3k−2/J3k−2 ≥ k − 1. On the other hand by viewing Equation 4. 3 and by
Theorem 3.1 (b) forn = 3k− 2, bothS3k−3/(I3k−3, x3k−2) andS3k−3/(I ′3k−3, x1) have
depthk − 1. Thereforedepth S3k−2/J3k−2 ≤ k − 1.

Now we consider the casen = 3k−1, by Theorem 3.1 (b) impliesdepth S3k−1/I3k−1 =
k anddepth S̃3k−5/Ĩ3k−5[x1, x3k−1](−2) = k + 1. Using local cohomology to the exact
sequence 4. 5 for the casen = 3k − 1, we getHk(S3k−1/J3k−1) 6= 0. Which implies
depth S3k−1/J3k−1 = k. Similar arguments will work for the casen = 3k. ¤
COROLLARY 4.1. With the notation above we have,

ProjdimSn/Jn =
{

n− k, if n = 3k or 3k − 1 ;
n− k + 1, if n = 3k − 2 .

Proof. It is easily seen from Theorems 4.1 (b) and 2.1. ¤
Acknowledgments: The authors are grateful to the reviewers for sugges-
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