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Abstract. We use local cohomology to compute dimension and depth of
monomial edge ideals of line and cycle graphs. In both cases we com-
puted projective dimension as an application.
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1. INTRODUCTION AND MAIN RESULTS

Let K denote a field. Leti denote a connected, simple and undirected graph over
the vertices labeled byn] = {1,2,...,n}. The monomial edge ideadl; C S, =
Klz1,...,z,) is an ideal generated by all monomialsr; , ¢ < j, such that{i, j} is
an edge of5. It was introduced by Villarreal in [5]. The algebraic properties of monomial
edge ideals in terms of combinatorial properties of graphs (and vice versa) were studied by
many authors in [3], [4] and [6].

The main goal of this paper is to study some algebraic invariants of monomial edge ideals
by using the technique of local cohomology. Nowadays local cohomology becomes an
29
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essential tool to solve many problems not only in algebraic geometry but also in combina-
torial commutative algebra. The first two authors of the paper used local cohomology in
case of binomial edge ideals (see [8]).

The paper is structured as follows:

In Section 2, we give some preliminary definitions and results that we need in the rest of
the paper. In particular we give a short summary on monomial edge ideal and its primary
decomposition. In Section 3, we compute dimension, depth and projective dimension of
the monomial edge ideal associated to a line graph. In Section 4, we do the same for cycle
graph as we did for the line graph in Section 3.

2. PRELIMINARIES

First of all we will introduce the notation used in what follows. Moreover we summarize
a few auxiliary results that we need. We denotetbp connected undirected graph on
vertices labeled byn] = {1,2,...,n}. For an arbitrary field< let S,, = K[z1,..., 2]
denote the polynomial ring in thevariablesz, . .., z,. To the graphiG one can associate
an ideall¢ C S,, generated by all monomialsz; forall 1 < i < j < n such thafi, j}
is an edge of7. This construction was invented by Villarreal in [5]. To begin with, let us
recall some of their definitions.

DEFINITION 1. LetG be a graph with vertex s¢t]. A subsef\/ C V is said to be a
minimal vertex coverfor G if:

(a) Every edge of~ is incident with one vertex if/.
(b) There is no proper subset &f with the first property.

The setM satisfying the conditiofia) only is called avertex coverof G. Now the next
result tells us the importance of minimal vertex cover.

PROPOSITION2.1. LetS,, = k[z1,2o,...,x,] be a polynomial ring and~ a graph with
vertex sefn]. LetI be anideal inS,, generated b = {x;,,...,z;, }, then the following
conditions are equivalent:

(a) M is a minimal vertex cover aF.
(b) I is a minimal prime of ;.
Proof. For the proof see [7, Proposition 6.1.16]. O

Let M denote a finitely generated grad8g-module. In the paper we shall use also
the local cohomology modules af with respect taS., , denoted by (M), i € Z where
S = @4>15%, 9 denotes the/—th homogeneous component$f. Note that they are
graded ArtinianS,,-modules. We refer to the textbook of Brodmann and Sharp (see [1])
for the basics on it. In particular trddmensionanddepth of M is defined as

dim(M) = max{i : H'(M) # 0} and
depth(M) = min{i : H (M) # 0}.
Every S,,-moduleM has a finite minimal graded free resolution:
Ae:0—Ap— - A4 —-Ay—-M—0

where A; are freeS,, modules fori > 0 andp is called theprojective dimension of

M. For more details of minimal free resolution we refer the book of Eisenbud [2]. The
following theorem relate the depth and the projective dimension of the module. This is
also known agwslander-Buchsbaum formula
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THEOREM2.1. Let M # 0 be finitely generated,,-module then
Projdim M + depth M = depth S,,.
Proof. For the proof see [7, Theorem 2.5.13]. O

The following lemma is also important for us.

LEMMA 2.1 LetS, = k[z1,x2,...,2,] be a polynomial ring and be an ideal inS,,
thendepth(S,,/I) < dim(S,,/p) for all p € Ass(I).

3. THE MONOMIAL EDGE IDEAL OF THE LINE GRAPH

Let G be a line graph witm vertices (of lengtm). LetS,, = K[z1, 22, ..., Tn_1, Tp]
be a polynomial ring/,, = (z1x2, x2x3,. .., Zn_12,) be the monomial edge ideal for line
graph and left] denotes the smallest integer not less than

THEOREM3.1. With the notation above we have,
(@) dim S,,/I,, = [g}.
(b) depth S,,/I,, = [%].

Proof. (a): We use induction om. Forn = 2 and3 it is trivial. Let the statement is true
forall ! < n. Note thatl,,+; = (I,—1,z,) N (I, z,+1), SO We get the exact sequence

O i Sn-i—l/In-‘rl - STL—l/I’rL—l[ITL+1] S Sn/In - Sn—l/[n—l — O (3 1)

Consider the case = 2k. Apply local cohomology to the exact sequence 3. 1 and we
get a long exact sequence of local cohomology modules

oo — H*(Sopy1/Tars1) — H*(Sop—1/Top—1[w211]) © H*(Sor/Iar) —
H"(Sop—1/Iok—1) — H*" (Sopi1/Toks1) — H* 1 (Sop_1/Iop—1[x25+1]) — 0.

By induction hypothesis we havim Soy /Io;, = k anddim Sog_1/Iox—1 = k implies
dim Sgkfl/fgkfl[l'zlprl] = k + 1, which further |mpI|eS thaHk+1(SQk+1/IQk+1) # 0.
Hencedim S2k+1/-[2k+1 =k+1.

Similar arguments will work for the case when= 2k + 1.

(b): Again we will use induction om. Forn = 2, 3 and4 it is trivial. Let the statement is
true for alll < n. Consider the exact sequence

TnTn41

0— Sn-i—l/ln : l‘nxn-i-l(_Q) - n+1/In - Sn-l—l/ln—i-l — 0.

Now I, : p2nt1 = (In—2,2,—1) therefore the above exact sequence becomes,

TnTn41

0— (Sn—2/1n—2)[$n7JU7L+1](_2) - (Sn/[n)[-rn—&-ﬂ - S7l+1/In+1 — 0. (3 2)

Let n = 3k, by induction we havelepth S /I3, = k anddepth Ss;_o/Is;x_o = k.
Thereforaﬂopth(Sgk/ng)[x3k+1] =k+1 anddcpth(s;;k_g/fgk_z)[xgk,,$3k+1] = k+2.
Applying local cohomology to the exact sequence 3. 2, we get

0 — H*(Ssp/Is) [w3r41] — H" ™ (Sss1/I3pt1) —
Hk+2(s3k—2/13k—2[$3k’x3k’+1}(72) IR

Hencedepth S3k+1/13k+1 =k+1.
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Now letn = 3k + 1, by induction hypothesisiepth Ssx /I3, = k, which implies
depth Ssi /I3 [zsk+2] = k + 1. Applying local cohomology to the exact sequence 3. 1
for the caser = 3k + 1, we get

0 — H"(Ss/Isk) — H* 1 (Sspp2/Isks2) —
H¥ (s / Isk[wspq2]) ® HY ' (Sspgr /Iskt1) — - -

Which showsH*+1(S3.. 2/ I3,42) # 0. Thereforedepth Sz o/ I3 12 = k + 1.

At the end consider. = 3k + 2. By induction hypothesisdepth Ss;/Is;, = k im-
pliesdepth Sgk/fgk [Jigk_;,_z, .T3k+3] =k + 2. Also depth S3k+2/13k+2 =k+1 Implles
depth Ssk42/Isk+2[xsk+3] = k + 2. Now by using local cohomology on the exact se-
guence 3. 2, we get

0— Hk+1(53k+3/f3k+3) — Hk+2(S3k-/ISk[x3k+27x3k+3](_2)) -
H*2(Sap 4/ Ik sa[vanss]) — H 2 (Sspqs/Isprs) — ...

Which shows thasﬂepth Sgk+3/_[3k+3 >k+1.

For the other inequality, led = {1, 3,4,6,7,9,10,...,3k,3k + 1,3k + 3} be a subset of
vertex sef3k + 3]. Itis easy to see that is a vertex cover because it covers all the edges.
Now If we remove eitheil or 3¢ for somet = 1,2,... k + 1 from A then the resulting
set is not a vertex cover because eithier2} or {3t — 1, 3¢} will not covered. Similarly
by removing3t + 1 fort = 1,2,...,k from A the edge{3t + 1,3t + 2} is not covered.
Which shows thatd is a minimal vertex cover. Further if we add one vertex gan A
and consideB = AU {#} thenB \ {8 — 1, 5 + 1} is a minimal vertex cover contained
in B. Which shows thaB is not a minimal vertex cover. Hencd, is a minimal vertex
cover of maximal cardinality. Note that the number of elementd iare 2k + 2. Thus
depth Ssr43/I5k+3 < k + 1 by Lemma 2.1. Which completes the proof. O

It should be noted that one can give an alternative proof of Theorem 3.1 by using Depth
Lemma ( see [7, Lemma 1.3.9] together with the last argument of our proof.

COROLLARY 3.1 With the notation above we have,

Projdim S, /I, = n — [g]
Proof. Itis easily seen from Theorems 3.1 (b) and 2.1. O

4. THE MONOMIAL EDGE IDEAL OF THE CYCLE GRAPH

Let S, = K[x1, 23, ..., z,] be a polynomial ring and let,, = (I,,, ,,21) be the mono-
mial edge ideal of a cycle graph envertices wherd,, is monomial edge ideal of a line
graph. Let|t| denotes the largest integer not greater than

THEOREM4.1. With the notation above we have,
(@) dim Sn/Jn = | 5]
(b)

k, if n=3kor3k—1;

depthSn/Jn:{ k—1, if n=3k—2.



Dimension and Depth of Monomial Edge Ideals of Line Graphs and Cycles 33

Proof. (a): It is obvious that
Jn = (I'IL—laxTL) N (I;L_hxl)) (4 3)

wherel,,_; = (1}1332, . ,.Z‘n_gl‘n_l) and[,’kl = (J,‘gl’g, . 7$n_1$n). Both I,,_; and
I',_, are monomial edge ideals of line graphs with same lengthd. Therefore we have
a short exact sequence

0—S,/Jn — Sn/(In-1,2n) ® Sp/(I,_1,21) — Sp/(I) _o,x1,2,) — 0. (4. 4)

wherel!’_, = (zax3,...,2n—22,—1) iS Monomial edge ideal of line graph of length-2.
Note thatdim Sn/Jn = max{dim S,/ (In,—1, %), dim S, /(I},_1,21)} = dim Sp,—1/I5,—1.
By Theorem 3.1 (a), we have the required dimension.

(b): SinceJ,, = (I, znx1), therefore we have a short exact sequence

TnT1

0— Sp/I : xpx1(—2)" = Sp/I, — Sp/Jn — 0.
Which is equivalent to the following exact sequence

0 — Sn_s/In_slw1, 20)(—=2) 5" Sy /Iy — Sp/Jn — 0. (4.5)
whereS,,_, is polynomial ring over the variables;, ..., z, o and/, ,isa edge ideal
of line on vertex se{3,...,n — 2}. First consider the case = 3k — 2, by Theorem
3.1 (b), we havelepth S3;_o/I3x_2 = k anddepth ggk_ﬁ/fgk_dl‘l,l‘gk_g](—Q) = k.

If we apply local cohomology to the exact sequence 4. 5 for the gase3k — 2, we
getdepth Ssi_o/J3x—2 > k — 1. On the other hand by viewing Equation 4. 3 and by
Theorem 3.1 (b) fon = 3k — 2, both Ssi_3/(I3—3, £3k—2) andSs,_s/ (14,5, x1) have
depthk — 1. Thereforedepth Ssg_o/J3x—2 < k — 1.

Now we consider the case= 3k—1, by Theorem 3.1 (b) impliedepth Ss;_1/I5,—1 =
k anddepth Sgk,g,/fgk,g,[xl, x3k—1](—2) = k + 1. Using local cohomology to the exact
sequence 4. 5 for the case= 3k — 1, we getH*(S3,_1/J3x_1) # 0. Which implies
depth Ss;—1/J5,—1 = k. Similar arguments will work for the case= 3k. ]

COROLLARY 4.1. With the notation above we have,
n—k, if n=3kor3k—1;
n—k+1, if n=3k—-2.

Proof. Itis easily seen from Theorems 4.1 (b) and 2.1. ]

Projdim Sn/Jn = {
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