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Abstract. The aim of this paper is to determine the monogenity of imaginary,
and real biquadratic field&™ over the field@ of rational numbers and the relative
monogenity ofK" over its quadratic subfield. To characterize such phenomena it
is necessary to determine an integral basis of the fieldnd to evaluate the rel-
ative norm of the differend(¢) with respect tok/k of an integer¢ in K. Here

0(¢) is defined by T e (.3 (€ — ¢P), where¢ — ¢ denotes the partial different

of an integek in K, andG and. denote the Galois group @/Q and the identity
embedding of(, respectively. For the succinct proof of non-monogenity, we con-
sider a single linear Diophantine equation consisted of the partial differents with
unit coefficients.
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1. INTRODUCTION

In the 1960’s Hasse proposed to characterize an algebraic numbekfialdose ringZx of
integers has a power integral basis or not. b a prime number ang},. be a primitivep“th root
77
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of unity, which is a root of an irreducible cyclotomic polynomi@. (z) = (27" — 1)/(2?" —1)
overQ with ¢, = —1, {3 = (=1 +v=3)/2, {, = V-1 and(,. = exp(2ni/p),p = 2,e 2 1,
Then for the Eisenstein fieltl; = Q(¢;) = Q(v/-3), the GauR fieldky, = Q(F) and a
cyclotomic fieldk,. = Q((,,), it is known thatZ,, = Z[1,(3], Zp, = Z[1,v/—1] and Z,.

= Z[1,¢,-, P D with ¢ = (,- as aZ—free module of rank°~!(p — 1) [15]. Each of

the fields is called monogenic. For an algebraic number filover the rational€?, Zx denotes
the ring of integers inK. Let Q C F' C K be an algebraic number field tower. It is said that a field
K is relatively monogenic in the relative field extensifiif F' of degreen or equivalently,Zx has

a power integral basis of rank over Z if for a suitable integen € Zy, Zx coincides with the
Zp-moduleZr|a] = Zp -1+ Zp -a+---+ Zp-a™ ! of rankn over Zr. In the case of” = Q, we

say thatKK is monogenic o i has a power integral basis [4]. Then to determine the monogenity of
Zx = Zr|a] with a suitable integew or Zx # Zg[3] for any integers in F is called Dedekind-
Hasse’s problem. Letr anddr(«) denote the field discriminant and the discriminant of a number
«in F and the Indednd r(«) of a number is defined by. 'dF(F )l It is known that Dedekind’s
example of a cubic fiel& = Q(0) is non-monogenic, wheresatisfies a cubic irreducible equation;
23— 22 —2z—8 = 0 with the discriminantlx (8) = {(0—67)(6—07 )(67 —6° )}2 = 22.(—503)

of 6 and a non-trivial conjugate map on K [3]. In fact, {1,0,n} with n = (8 — 1)/2 is an
integral basis of< and it holds that(1 6 %) = (*(100) (01 0) *(01 2)) -* (16 n) = An, where

n =t (10 n) and! B denotes the transposed of a maﬂxand henc@x (0) = (detA)?dx . Here the
field discriminantix is defined bydet(‘n ‘n? 5" )2 andIndk (6) = |detA| = 2. Then it follows
that the ringZ|[1, 0, 02] is a proper subring of .. Moreover for any integef = x + y0 + zn, we
know thatlndx (£) = 0 (mod 2), namelyZx has no power integral basis. In this paper we consider
the problem on a family of imaginary, and real biquadratic figlds= Q(v DM,/ DN ), where
DM N is a square free integer with< |D|,1 < N, M as an analogue of a work by Y. Motoda [9].

Theorem 1.1. Let K be a biquadratic fieldQ (v DM,V DN), where DM N is square free with
DM = DN = 3,MN = 1(mod4) and1 < |D|,1 < N,1 < M. ThenK has an integral

basisZ[1, VDM, HYMN VDMEVDNT with the field discriminantlx = 2*D*M?N? and Zx
has a relative power integral basig,[1, v DM] over Z;, with a quadratic subfield = Q(w) and
w = HMN Byt if4D £+ M + N # 0 holds, thenZx has no power integral basis.

Corollary 1.2. There exist infinitely many non-monogenic biquadratic fields.

Corollary 1.3. Using the same notation as in Theorem 1.1, there exist monogenic biquadratic fields
forD=+1, M — N = +4.

Our theorem gives a negative solution to the problem 6 in [11]. An explicit integral basis of any
biguadratic fieldK is shown in K. S. Williams using evaluation modulo powers of 2 without the
process of a relative extensidi/k/Q for a quadratic subfield of K [16]. On the family of
imaginary biquadratic field& with D < 0 a complete classification of monogenity has been given
by G. Nyul using the evaluation of the full norm of the differant(¢) for any element € K

[12]. On the contrary, based on the works of M.-N. Gras, F. €aiibis shown that there exist
infinitely many real monogenic biquadratic fields not depending on Dirichlet’s theorem on arithmetic
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progression [9, 4]. We prove our theorem by the consideration of the relative norm with respect to
K /k of partial differentst — ¢ of the differento(¢) of an intege, and a single linear Diophantine
equation consisted of three relative norms of the partial differents with unit coefficientsat4gre

is defined bpreg\{L}(g — ¢P) with Galois groupG of K/Q and the identity embeddingof K

for a family of certain biquadratic fields. Related works are found in [1, 2, 5, 6, 8, 10, 13, 14].

2. INTEGRAL BASES

Let K be a biquadratic field)(v DM, DN) with a square free MN, 1 < |D|,1 < N,
1< MandDM = DN = 3 (mod4), MN = 1(mod4). Let k be a quadratic subﬁel@(\/ M).
Then it holds thatk’ = k[1,w] = Q[1,V DM, w,~,] with w = VML V2MN andvy, = vDMw =
\/DM+M\/DN_

2
Letk = Q(vVDM),ky = Q(VMN) andks = Q(vVDN) be the quadratic subfields df.
Let G = Gal(K/Q) be the Galois group o over Q generated by embeddingsand 7. Let
H; =< o0 >, H,, =<7 >andHy, =< ot > be the Galois subgroups corresponding to subfields
k, k1 andk, of K, respectively. Then it holds that

o:vDM — DM, VMN — —/MN, +DN — —/DN,
7:vDM — —/DM, +MN —+/MN, +DN — —/DN,
UT:\/WH—\/DM, \/MN»—>—\/MN7 \/WH\/W
First we show that an integral basis B, is explicitely determined. For an integérc Zy there
exist coefficients:, b, ¢,d € Q such that = a + bv DM + cw + d,. If ¢ = d = 0 holds, then
&€ =a+b/DM € Zg Nk,and hencei,b € Z holds byZx Nk = Z, = Z[1,v/DM]. Put
& =¢6—a—bVDMwith a,b € Z. Thené; = cw + dvy, € Zk holds. If we choosé = 0, then
c€Z.Puté, =& — cwwith c € Z. By £, = d¥YPMEMVDN _ gM— 1\/W+d¢7+ﬁ
& — dM=1/DN = d‘ﬁ“ﬁ which is denoted by, should belong toZ asd¥-L ¢ Z.
Puty = ‘/W;”/T. Thus byT'y /i (&3) = dy 4+ dy? = dvDM € Zy,d € Zis deduced. Here,
Tk 1(-) means the relative trace with respectigk. Put Z;, = Z[1,v/ DM, w,~]. Therefore if
¢ € Zg, itholds that{ € Z}, namelyZ, € Z5,.
Conversely forany = s+tv DM +uw+vy € Zj with s, t,u,v € Z, we havelk /;,(§) = £+¢°
=2s +2tV/DM +u+vVDM € Z), andNg ., (€) = £€7 € Zy,, namely,dNg /5 (€) = 2¢ - 267
= (25 +u+ (2t +0)VDM)? —(uv/MN +vvVDN)? = (u? +v>DM + 2uv/DM) —(u> M N +
2uwNVDM + v*DN) = 0(mod 4Zy,). Here, N 4 (-) means the relative norm with respect to
K /k. Infact, because af?(1— MN)+v2D( M+ N) =0(mod4) and2uv(1—N) = 0(mod4),
we obtainé € K N Z = Zk. Here Z denotes the ring of mtegral closure o@r ThusZ}, € Zx
holds. Then for a biquadratic fielf, Zx coincides withZ[1,v DM, 1*‘7, ﬁ;ﬁ]. O

3. RELATIVE MONOGENITY OF A BIQUADRATIC FIELD OVER A QUADRATIC SUBFIELD

Assume thatZx = Z;, [1,n] over Zy, for Z,,, = Z[1,w] andn = a + b/ DM with a,b € Q.
ThusZg = Z[1, 25MN][1, a + bV DM
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= Z[1, MY o + by/DM, a(FMN Y4 p(YPMEVDN Y pe g free module of rank 4 ove).
Then we show tha¥ i has a relative integral basis ovgg, . Letdk (a, 3,7, 0) be the discriminant
det (‘! B, ~,t §)? with a column vectope = (i, u@, ™, 7).
Then bydgk («, 8,7, a8 + bd) = dk (e, 3,7, bd), it follows that

dx(1,w,a+bVDM, aw + b¥PMEVDN)

= dg(1,w,bv'DM, p¥LAEVDN)

= b2+2d (1, w, VDM, YPI£V/DN)

= btdy, (1,w)(22DV/MN)?

=b*MN - -2*D>MN

=b*.2D2M2N?2.
Thus forn = a + bV DM with a = 0,b = 1, Zx has a relative power integral bagis, n} over
Zkl- O

4. MONOGENITY OF A BIQUADRATIC FIELD

Let K be an imaginary, or real biquadratic fief@(v DM,/ DN) with positive square free
relatively prime integer$D| 2 1, N > 1,M > landDM = DN = 3,MN = 1(mod4). Let
k= Q(vDM) andke, = Q(vDN) be quadratic subfields df andk, = Q(v M N) be a real
one. LetG(K/Q) be the Galois grougr of K overQ generated by embeddingsandr. Let the
subfieldsk, k1 andk, of K have corresponding Galois subgrouips = < o >, Hy, =< 7 > and
Hy, =< o7t > in G, respectively. LetX denote the character group corresponding:{d/Q)
generated by and\, which denote primitive characters of order 2 definedlby) = —1, x(7) =1
and\(c) = (1) = —1. By virtue of Hasse’s conductor-discriminant formula, the field discriminant
dx of K coincides with

Hf,/,:fxo ~fX~f)\ofX)\:1~22|DM|~22|DN|oMN:24-D2~M2oN2,

heX
where f,, denote the conductor corresponding to a charagtef X with the principal character
X" [7, 15]. Assume that the field& has a power integral basis for some suitable integes
a+bV/DM + AHYMN | q/DMAVDN i ¢ syuch that

Zx = Z[€) = Z]1,¢,€%,¢€%).

For an algebraic number field tow€ C F C L with the Galois groug? = G(L/Q), the field
differentd, is defined as an ideal

(8—B"VB € Zr,VYp € G(L/Q))
of L, and the relative field different;,» as an ideal
(v ="5Vy € Zr,Yp € G(L/F))
of L/F. By the assumptio xx = Z[¢], it holds that
(dx(§)) = (Nk (0 (€))) = Nk (0k)) = (dx),
where (o) means the principal ideal generated by a numbén K and Np(«), Np(a) are the

norms of« and of a with respect toF'/Q, respectively. Hence for the biquadratic field the
differentd ¢ (¢) of an element € Zx is given by(& — £9)(€ — £€7) (€ — €97). Thus it holds that
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Nk (0(€)) = Ni((€ = €7)(€ = €7)(§ = €77)) = Nie(Nei((€ = €7)(€ = €T)(€ = £9T)))
= Ni(((€ = €7)(€ = €M)(E =€) ((§ —€7) (€ —€T)(€ —€77))7)

= ((€=€7) € =M€ —¢7T) (€7 = &7 = £7T)(¢7 = ¢T))

(€ =€7)(E = €T)(€ —¢€77)) ((§7 = (7 = €7T)(67 = £€7))7
=((€=€7)E—¢€N)T(E=&MNE - N7 = ¢7T)E—€7T)7)?

and hence

di(€) = (N jr, (€ = E7)Nge (€ — €T )Ny, (€ = €77))2.
Here we haveé — £7)(§ —€9)T € Fegrs = kNkr = Q, (£ —ET)(E—€7)7 € Fegrs =
kNki=Q
and({ —¢9T) (€ —¢9T) € Feors = kNk2 = Q.
Now, for the candidat€ of power integral basis i ;- with

E=a+bV/DM + s ‘/MN+d‘/DM;r \/DN,

we calculate the relative differents from the biquadratic fi€ld= Q(v DM ,+ DN) to a suitable
guadratic subfield as follows;

Vg /k(€) =€ —¢9 = eV MN + dVDN = VN(evM + dvD),
Vg /ki (§) =€ = &7 = (2b+d)VDM +dVDN,
Vi, (§) =6 — €97 = (2b+ d)VDM + ¢V MN.

Then the relative nornV/,, of the relative differend k., (¢) is given by

[Niesi(§ =€) = 1€ = €7)(§ = €7)7| = N|(¢*M — d*D)) (4.1)
with anyc andd. Next, we have
[Nicsi(§ =€) =16 = €M)(€ = €7)7| = | = (2b+ d)*(DM) + d*DN| = 0 (mod4D) (4.2)

with anyb andd. Finally, it holds that

[ Nic/ia (€ = €7T) = (€= €7T)(§ = €77)7

= |((2b + d)V'DM + ¢vVMN)((2b + d)v'DM + ¢ MN)?| = |(2b + d)?>(DM) — ¢*M N|
= M|(2b+ d)?D — ¢*N| (4.3)

with anyb, ¢ andd. By the assuptiox = Z[¢], from equations (4.1), (4.2) and (4.3), each norm
of the partial factog — €9, € — €7 and¢ — €97 should be equal t&V, 4D and M modulo a unit,
respectively. In fact we obtain the identity relation;

0=(E-E0)E-NT —(E-€NE-E)T+(E-¢7T)E-¢7T)7
and hence
0= N (M — d?D) — 4D=Cr AD+dN 4 pr((9h 4 d)2D — 2N). (4.4)

From (4.4) since each of the coefficients\df4 D, M is a unitinZ we obtain the linear Diophantine
equation;
0=N+t4D+ M,

which contradicts to the assumption. Thus we have
di(§)| > (N - 22D - M)? = 2*D*M>N? = d.

Thereforelnd  (¢) > 1 holds fornd (§) = /1519, which shows tha%Z does not have any
power integral basis and hen&gis non-monogenic. |
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Proof of Corollary 1.2. Put N = 8Dyt + Mj with a valuablet (1 < t) for D = Dy > 0,
M = M, > 0and
(8Dy, My) = 1. Then there exist infinitely many prime numbéysby Dirichlet's theorem. O

Proof of Corollary 1.3. Let D = +1, N — M = 4D,andb =c¢ = 0,d = 1. Then by (4.1), (4.2)
and (4.3), we obtain that the product is equalid - 4(+1) - N)? = 2*D2M?N2. O

Remark 4.1. By the next work it will be investigated on monogenity for a complete
classification of the real bigadratic fieldd /DM ,+/ DN) such that

() D=M =N =1 or 3(mod4)

(i) DM = DN =2 (mod4) andM N = 3 (mod4)

and

(i) DM = DN =2 (mod4) andM N = 1 (mod4).
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