Punjab University
Journal of Mathematics (ISSN 1016-2526)
\Vol.47(1)(2015) pp. 21-34

Slicing Associated to a Plurisubharmonic Function

Hedi Khedhiri
Institut pieparatoire auktudes d'ingnieurs de Monastir,
Universi& de Monastir 5019, Tunisia,
E-mail: khedirth@yahoo.fr

Received: 18 March, 2014 / Accepted: 04 February, 2015 / Published online: 12 February,
2015

Abstract. In this paper, we study the slicing of currents, with respectto a
locally bounded plurisubharmonic function. For a positive closed current
and its associated Lelong-Skoda potential, we prove that, with respect to a
smooth and strictly plurisubharmonic function, the slices are well defined
except at points lying in a pluriplolar subset. In particular, the slices of
the current of integration over an analytic set, are well defined explicitly,
except at points lying in a countable family of proper analytic subsets.
Furthermore, we state the analogue of the generalized slicing formula due
to H. Ben Messaoud and H. El Mir.
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1. INTRODUCTION AND MAIN RESULTS

Slicing of currents was studied in [3] and [6], this is an important tool for studying
global geometric problems as well as for questions related to local algebra and intersection
theory. Here, we develop some approach to slicing with respect to a locally bounded
plurisubharmonic function.

We consider irC", the unit poly-diskA™ and an open subs@tsuch thatA™ € Q. Let
1 <k <p<mn,anypointz € A", iswrittenz = (z1...2,) = (¢/,2") andn(z) is
defined byr(z) = 2/, wherez’ := (21...2;) andz” := (241 ...2,). Given a locally
bounded plurisubharmonic functign= ¢(z’) on A™. The positive measure with support
S, such that

(dd°p)* = M,%dzl Adz A A %dzk A dzy 1.1)

is denoted.,, and we say that,, is the trace measure of the currédi®y)*.
Slicing of a current, with respect to the functignis defined as the following

DEFINITION 1. For any pointa € S,, we say the slicex R,7,a >, of a current
R of bidimensionp, p) on €, associated withp(z'), at pointa, exists if, and only if the
21
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following limit

1
lim ——— / RA (dd°p)* A f (1. 2)
B o (Ba(@:2) o eyens )

exists inC for any test formf € Z,,_, ,—)(A"); this limitis denoted< R, 7, a >, (f).

In casep(z') = |2'|? we get the definition of the slice by Federer [3].

Being introduced, the- slicing of currents, is the main goal of this paper.

The first part of the paper deals with some properties of slicing with respect to a locally
bounded plurisubharmonic functian The second part, deals with the study of the exis-
tence of slices of positive closed currefit®f bidimension(p, p) on A™, with respect to a
smooth and strictly plurisubharmonic functign

We will break our study into a sequence of steps. First we reduce the problem to the case
of a current having continuous coefficients. Then we study the slice of a current having
integrable coefficients with respect to the meagugex A, wherey,, is the measure
defined by (1. 1) and,,_;, is the Lebesgue measure Gfi—*.

Under assumption that,, is given by a locally bounded function ah"~*, we show
thatthe slice< R, w, a >, of a currentk having locallyp., ® A, ,-integrable coefficients,
is well defined foru,-almost everya € S, which generalizes the Federer’s theorem [3]
for locally plate currents.

The study of thep-slicing of the Lelong-Skoda potentiél associated with a positive
closed current’, is a typical case. If the potentiél is given canonically by

U(z) = Uy ydzr Ndzy 1. 3)
I,J

then we prove that, every coefficient— U; ;(z) of the decomposition ( 1. 3), is a locally
He @ An_g-integrable function and fo,-almost every € S, the curren{U, 7, a),, is
well defined.
Next, we suppose that is smooth and strictly psh. We establish tkal/, 7, a >, is
well defined for any point ¢ E,, whereE,, is a pluripolar subset ah*. Explicitly, E,,
is given by the set of points € S, such that the current!(U) does not have a locally
finite mass inA"~*, wherej, denotes the map defined &% —* by j,(z") = (a, 2").
A very important example of the-slicing of closed positive currents is the case of
currents of integration over analytic sets. This will be done in the last section of this paper.
The followings are the main results of this paper.

Theorem 3.1Letp € €2NPsh(AF) such thatp is strictly psh and let/; be a sequence
of smooth currents which decreases weakly tahen for any: € A*, lim;_, . (U;, 7, a),
exists in@(’p_Hl’p_Hl)(A”) if, and only ifa ¢ E, and in this case, in the weak sense of
currents, we havém;_, . (U;, 7, a), = j5(U).

Investigating the results of [6], we establish the formula ( 1. 4 ) calledstsécing
formula. The origin of formula ( 1. 4 ) was due to Federer [3]. It can be seen as a
generalization to the Fubini Formula. Whertz’) = |2/|?, we get the slicing formula
of [6] stated in 1995. The-slicing formula may provide a useful tool for studying many
problems related to Monge -Ampere operators, extension of currents, intersection theory,...

Theorem 4.1Lety = ¢(z') € €% N Psh(A™) such thaty is strictly psh and € A,
Then we have
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(1) The slice(U, ,a), is well defined in7(, ., ., ., (A")ifandonlyifa ¢ £,
and in this case the curre{l, 7, a),, is equal toj} (U).
(2) ForanyV € Z(,_j41,p—k+1)(A™) and for anyvy, ..., v € L, N Psh(AY), we

loc
have the following slicing formula with respect ¢o

U Adddy A - Addv, AT = / (U, 7, a),(V)dd°vy A - Addv, (1. 4)

An a€s,

wherev; =vjonm, j=1,...,k.

Formula ( 1. 4) holds not only for the Lelong-Skoda potential but it is also available
for closed positive currents:

Theorem 4.2Let ¢ = ¢(z') € €2 N Psh(A™) such thaty is strictly psh and let
a € A*. Then we have

(1) For anya ¢ E,, the slice(T, , a),, is well defined.
(2) Forany¥ € %, i11,p—k4+1)(A™) and foranys, ..., v, € LiS, N Psh(AF), we
have

/ T Add°vy A -+ A ddov, AT = / (T, 7,a),(V)ddvy A - Add°vy, (1. 5)
n a€S,

wherev; =vjonm, j=1,...,k.

A natural problem arises through the work of this paper, can these results hold with re-
spect to a given locally bounded plurisubharmonic function without smoothness assump-
tion. The study of the general case may be very subtile. We would like to define this, in
a next paper, in some cases when the potebtis associated witl(1, 1)-closed positive
currents.

Let now review some notions and notations. We derigte;) (€2) the space of smooth
compactly supported-differential forms of bidegreet) on 2. The dua@(’s,t)(fz) is
the space of currents of bidimensiosn ¢) or of bidegree(n — s,n — t). A currentR
of bidimension(p,p) on €2, is said to be positive if for altyy, ..., v, in Z(1,0)(2), the
distribution R A iyy A1 A -+ A iy A7 IS @ positive measure.

We denote byPsh () the set of plurisubharmonic functions énand LS. N Psh((2)
the subset of elements ish(§2) which are locally bounded. We use the standard notations
for the operatorgl = 0 + 9, d° = i(0 — 0) anddd® = 2i00. The Kahler form onC" is
denoted by3(t) = dd¢|t|? and can be written a8(t) = 3'(t') + 3”(t") where3’ and3”
are Kahler forms orC* andC"—* respectively.

Lety = ¢(2') € Li2, N Psh(A™), following [1], dd°p and its exterior power&ld )’
are well defined currents ah™. In particular, the positive closed currati®y)* satisfies
the equality

(dd°)* A B F = p,pr. (1. 6)

In caseyp is smooth, the measuye, may be considered as the Lebesgue measure with
density a continuous function denoted alsg(z’). In local coordinates, the equation ( 1.
6 ) gives the following explicit formula of.,,(z"):

2
o) = en det( = Nisarsh (1.7)
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wherecy, is a positive constant. Furthermore, according to [1},Jf= 0, then the support
S, of the measurg,, is not pluripolar iNA*. The functiony is said to be strictly plurisub-
harmonic onA™ if, it is locally integrable onA™ and if, for every pointzy, € A", there
exists a neighbor-hoad of 2, ande > 0, such thaty(z) — c|z|? is plurisubharmonic ow.
Finally, B, (r) andB,,_(r) are the balls centered at the origin and of radiusspectively
in Ck andC"—*,

2. p-SLICING OF A CURRENT WITH COEFFICIENTS INL},.(ttp @ Ap—k)

loc

We begin this study by the case of a curr&ttaving coefficients separately continuous
with respect to variables andz".

2.1. ¢-Slicing of a current with continuous coefficients. It is well known that the Lelong
skoda potentiall' associated with a closed positive currdnt satisfies the equality of
currentsdd“U = T + R whereR is a smooth form. Hence, to study theslicing of 7" it is
sufficient to study thep-slicing of the associated Lelong-Skoda potentialSo we begin
this paragraph by the following proposition which will be useful in the proof of Theorem
4.2.

PROPOSITION2.1. LetR € 7, (A"), ¢ = ¢(z') € L5, N Psh(A™) anda € S, such

that (R, 7, a),, is well defined. Then
(1) (R, m,a), is supported by, N Supp RN 7w~ {a}.
(2) d(R,m,a), anddd®(R, 7, a), are well defined, moreover we ha¥gR, 7, a), =
(dR,m,a), anddd®(R, 7, a), = (dd°R, T, a),.

Proof. We verify at once that these statements come from the definitioR of, a),, and
the weak continuity of the operatadsanddd®. |

We shall now prove that for alb = p(2') € Ljs, N Psh(A™), the slice(R, 7, a),, of
a continuous current, is well defined for alle S,. Note that the study of the—slicing
of continuous currents will be useful in the study of theslicing of the Lelong-Skoda
potential. The case of the potential will be studied in section 3 where a regularization
procedure will be used.

PROPOSITION2.2. Lety = ¢(2') € L], N Psh(A™) andR € 7, ,(A") such that the

loc

coefficients are continuous separately with respeet te”’. Then we have the following

(1) for anya € S, the slice(R,n,a), is well defined. Further, for any test form
U € Dp—tp—k)(A"), we have

(R, a),(¥) :/ JeRAGIU.
Z//eAn—k

(2) ForanyV¥ € Z(,_j p—r)(A™) and for anyvy, ..., vx € L, NPsh(A*), we have

loc

RAddGy A -+ A ddvp AU = / (R, 7,a),(W)ddvy A --- A dd vy,
AT a€sS,

whered; =vjom, j=1,...,k.
Proof. We may assume the curreRttakes the fornR = fo,_,dz; A dz; where,f is a
function continuous separately with respectto:”. Leto, = i*°275, i2 = —1 (s € N*)
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and let¥ = vo,_rdz; A dzx be a test form such thatn K N {1,...,k} # 0 and
JNLN{L,...,k} #0; whichmeans that, J, K,L C {k+1,...,n}. Put

1
b= e (Ba(@ )

an easy computation of the second member of ( 2. 8) yields

1 ;
F - - d / / " / " d>\n— ) " 2 9
= T /{ ) /A FE Y 2 (") (2. 9)

Letg(2') = [epn—r f(Z/,2")0(2, 2")dN—(2"), then (2. 9) can written as

1 / ’
s =0 = gy L O s 10)

/ R A (dd°p)* AT, (2. 8)
By (a,8)x An—k

Since for each fixed” € A"~ the functionz’ — f(z’,2")¥ (%, 2") is continuous on
A*, then the functiory is continuous om\* and hence it is uniformly continuous ax*,
so for anyz > 0, there exist9, > 0 such that for any) < § < dy, we have by (2. 10),
IT's — g(a)|] < . Hence we get

<R, T, a>¢(\I/) = lim(gﬁo F5

= ¢g(a)
fzueAn—k f(aa Zl/)w(a'v Z//)d)‘n—k

this means that
Fora )= [ Qw i) 2. 11)
2"eCn—k
The equality (2. 11) is equivalent (@&, 7, a),, (V) = m.(R A ¥) and this achieves the
proof of the first statement. To prove the second statement, we observe that

/ RAAAG, A -+ Addvi, AT = (dd°vy A -+ Addvy,, T (RAT)).  (2.12)

The equality (2. 12) holds true singge(R A V) is the functiorn — (R, 7, a),(¥) which
is continuous and compactly supportedsip d

REMARK 1. If the slice(R, w,a), is well defined then it depends only 6, more
precisely ifp1, g2 € LiS, N Psh(A™) such thatS,, = S, and if (R, 7, a),,, (i = 1,2),
is well defined then we hav&, 7, a),, = (R, ,a),, in the weak sense of continuous

currents.

$2

2.2. p-Slicing of a current with coefficients in L}, .(u, @ A\—i). Let p = @(2') €

LS. N Psh(A™) and assume that € S,. For technical reasons, we need to use a reg-
ularization method that can be related to the definition ( 1. 2 ) of the slice associated
with ¢, so we define the following convolution procedure: for any 0 we denote by
]lBk(e) (t) if
Ho(By(e))

[ € L} .(7(Q), 1), then the convolution of the functioel — f(z’) by the measure
o ,: Uy IS given by

a1.(.) the function inL}

loc

(7(Q), u,) defined by the quotient; . (t) =

1

(f * Oé1,s,ugo)(zl) = m

/ £ — ) dpo(t). 2. 13)
B (e)
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One can ask if the family f * o1 .p,), given by formula ( 2. 13 ), is continuous and
converges tgf pointwise as= — 0. We Know by the Lebesgue’s theorem that for any
locally \j-integrable function ol and for\,-almost every: € C*, we have

1
w2k€2k

/ f(ZNd\(2)) — f(a) as e —0
By (a,e)

wherews;, is the volume of the unitary ball i©*. It is not evident to justify this result for
the family (f * cu o). In addition, the functior’ — f % ay .pu,(2") do not need to
be continuous, indeed when the measugetakes the formv + 6, whereo is a positive
measure having support without holes agds the Dirac measure at point 0, then we get
froqepy = fxoq .0+ f. Inorder to surmount these difficulties, it will be convenient
in this section, to assume thatsatisfies the following assumption:

there exists a locally bounded functienon =(2) and a constant, > 0

such that
(dd°p)F = mp'* 2. 14)
for A\, — almost every:’ € 7(Q2), m(2') > co. '

loc

positive current with coefficients ib},.(A™, 1, ® A—k). Then

1

lim ———— / RA (ddcgp)k AW
e=0 ty(By(a,€)) B (a,e)x An—Fk

PROPOSITION2.3. Lety € LfS, N Psh(A*) satisfying (2. 14 ) and? € 2, ,(A™) be a

exists for all¥(z) € Z,_,,k)(A") if, and only if,
1
hmi/ RA ddcgpk/\\ll
20 110 (Br(@,2)) J 5, (a0 x An—s (ddp)
exists for all¥ (2”) € ZD,—k p—i) (A" 7).

Proof. We have only to prove the converse statement. Take >, ; U jdzr Adz; €
Dp—kp-k)(A") and pull[¥[|(z) = >_; ; [Py s]. By the restintegral formula, there exists
Uy € 2(A™) positive such that
1 =30 < |2 — al To(2).

Let¥; € 2(A"~*) be a smooth function with compact support such thgt:) < ¥, (2")
forall z € A™. Put
- 1

,uw(Bk (a,0))

by the assumption thatld®p)* = m(z') 3%, we have

I / RA(dd°0)* A [T — ()],
By (a,5) X An—Fk

mﬂBk(a S)XAn—k 1 K .
) ﬁ/ /\Bllp \Ij 7]; \I/
R 11— @)

RA (dd°p)* A |2 — alWo(2)8""

Is] < [IRA

Mtp(Bk(av(s)) By (a,8)x An—k

J / k 1"\ lp—k
S — R A (dd°@)F AWy (237
to(Br(a,0)) J gy (a,8)x an—* ( ) (=)

the last quantity goes to 0 whén— 0, and this proves the statement. O
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In [6], it was proved that, for a currerit having locally\, ® A, _,-integrable coefficient,
the slice(R, 7, a) is well defined for\;-almost everyn € A*. We want to improve this
result by proving that, for any curre® with 1., ® A, —_-integrable coefficients, the slice
(R,m,a), is well defined except fot in a iu,-negligible subset oA*. More precisely we
have:

THEOREM2.1 Lety = ¢(2') € Lj5. N Psh(A™) satisfying (2. 14) andt € 7, ,(A")
be a current with coefficients ih}, (A", 1, ® A\n—x). Then foru,-almost every: € S,

the slice(R, 7, a),, is well defined and is equal t (R).

Proof. AssumeR = f3" 7 wheref € Lj (A", p, ® A,—j). Take a test function
P(2") € 2(A"F) and put

1
b= B 9)

For 11, —almost everys € S, we have
o= mmw el [ ()
te (Br(a:9)) |z —a|<8} ’ z"e An—Fk

B / 9(=)dpg (')

|/ —al <5}
= W,(Bi(a,a)) /{ 5 (9(2") = g(a)) m(2")d\i (2') + g(a)
z'—al<

whereyg is the function defined by
o= [ (). (2. 15)
Z//eAn—k

Sincef € L}, .(A™ u, ® A\,—y) and sincey is given by ( 2. 15 ), then by the Fubini

loc

theorem we may affirm thate L} .(u,, 7(€2)). By hypothesis orp, we haveu, = m\;
where the functionn is positive and locally bounded. As a consequence, the function
2 (g(2') — g(a))m(2') liesin L} (g, 7(Q)). PutD(8) = T's — g(a), we have

loc

DO) < —Lo / 19(2") — g(a)lm(2')dAe(2")
{|z'—al<d}

= cOi% lg(62" 4+ a) — g(a)|m (62" + a)d i (2).
{lz'[<1}
Since the function’ — |g(§2’ + a) — g(a)|m(dz' + a) is finite A\, — almost everywhere
on B(0,1) and for almost every € A*, it tends to the zero function, d@s— 0, then
we can conclude, by the dominated convergence theoremlithat,, D(6) = 0. This
shows that, foy:,—almost everys € A¥, the slice(R, m, a),, is well defined and is equal
to j*(R). O

REMARK 2. In casep(z’) = |2/|> we find the theorem of Feder{8] for the locally
plate currents.

/ R A (dd@)k ApB"P=F,
B (a,6)x An—k

3. ¢-SLICING OF THE LELONG-SKODA POTENTIAL

In this section we study the existence of the sliter, a), of the Lelong-Skoda poten-
tial associated with a closed positive curréhtdefined by

U(z) = / _ M@N = a)T(@) A e =) (3. 16)
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wheren is a function inZ(2) such thatt < n < 1, = 1 on a neighborhood cA™, and

N(t) = W% is the Newton Kernel ifC". We start this study, by the following Lemma

LEmMmMA 3.1 Let T be a positive closed current of bidimensignp) on Q and U be
the potential ofT" such thatdd°U = T on a neighborhood oA™. Letv ePshA™) N
L2 (0A™), then we have

n

/ T A (dd“v)* A BP7% < 00 and / —U A (ddv)* A PP < 0.

Proof. Letw C Q be a neighborhood ak™. Without loss of generalities we may assume
thatv = ||2z]|> onw \ A™. Letg be a function inZ(w) such that) < g < 1 andg = 1 on
A", By Stokes theorem we have

/ T A (dd“v)* ApPF = / T Ad°v A (dd°v)F=t A pP+
n An,
/2 TABP < 0.

n

For the second integral we have
I= / U A (dd°v)* A dde(g]|z||?)P~F* = / +/ . (3.17)
Since, by Stokes th;orem, we have o
I= [ GlAPT A (da0)* n da(gll=| "

we observe that the first term of the second hand right of (3. 17 ) is bounded. Furthermore
sinceg andv are smooth oo ~. A™ thenI is bounded. Hence

/ U A (ddev)* p gr—r+t — / U A (dd°v) A (ddog|)=| 2P+ > —oo.

n

(]

ForTuJ c{k+1,...,n} letU = Z\IIZ\J\:n—p—l Ur,sdzr A dZ; be the canon-
ical decomposition of the potenti&l. Following Lemma 3.1, ifv = ¢ then we have
Sakspn—n —U A (dde@)* A 3"P=F+1 < oo, Hence we get

/ S —Uni(2)dpg(2) @ dhn k(") < oo. (3. 18)
Ak x An—k 7

From ( 3. 18 ) we deduce that— ), —U;;(2) is a locally integrable function with
respect to the measurg, ® A, —j. According to [2], for alll, J we have

Ul <ed ~Un
I

wherec > 0 is a fixed constant. Hence each— U;;(z) is ap, ® A,_g-integrable
function and we have

/ dp () / Ups (2, ") dh (") < o0, (3. 19)
Ak Anfk

(3. 19) implies that fop.,-almost every: € A* the functionz” — Uy s (a, 2”) is locally
An_-integrable omA™~*. Then for any point. € A*, we set

Ja(U) = > Ur.s(a, 2")dz; A dzy;
[I|=|J|=n—p—1, IUJC{k+1,...,n}
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and we denote by, the set of points: € S, such thatj(U) does not have locally, a
finite mass iMA"~*. Itis clear thata € E,, means that at least one coefficiént  (a, z”")
of the currentj*(U) is not locally \,,_,.-integrable onA™~*. In addition, we can easily
see that
E,={a€ Sy 2" — > Ur(a,2") & L, (A" Ay).
I

REMARK 3. In the particular casep(z) = |2/|?, it is well known, by[6], that

E,=E={ac AF; 2" Z Uri(a,2") & Lo (A" N, _p)}.
|[I|=n—p—1

It was proved by6] that £ is a pluripolar subset of\*.

Now we suppose thap is smooth of clas&™ and strictly psh, the measuye, is
then considered as the Lebesgue measure with density given by the continuous function
z' — p,(2") defined in local coordinates by formula (1. 7).

For any smooth regularization kerngl;); depending only otz|?, we let

Uj(z) =U x x;(2) := /ﬂ n(x).(N * x;)(z —x)T () A ﬂ”_l(z —x) (3. 20)
whereU is defined asin ( 3. 16).

PROPOSITION3.L Lety = ¢(2') € €2NPsh(A™) such thatp is strictly psh, let € A¥,
andU; = U * ;. Ifa & E,, then we havéim;_,, j*(U;) = j:(U) weakly.

Proof. By Proposition 2.2 and Lemma 3.1, since the coefficients of the potdntiate
continuous, then the slicd/;, 7, a) is well defined except for points lying in a -
negligible subset of\*, furthermore(U;,m,a), = j:(U;). Asa ¢ E,, then every
coefficient:” +— Uy ;(a, ") of the currengj? (U) is a locally integrable function oaA™*.
Consider a strongly positive test forne @(n,p%,l,n,mk,l)(cn—k) and definel; =
Jon—r Ja(U;)(2") A g(2"). Itis sufficient to prove that

i 1= [ UG A,

J—+oo Ccn—k

Using ( 3. 20 ), we have
ONE = [ @V ) (@)~ )T @) A 8 ((0,) ),
zeCn
then we get
L[ om0V )@= = o)) A5 (a2~ ) A gl").
(,2")

Sincen(z)T(z) A B Y((a, 2") — z) A g(2") is a positive measure compactly supported
in C" x C"*, and since
tim (N x;)((a,2") —2) = N((a, 2") — )
J—T00
pointwise, then by Egorof’s theorem, for any> 0, there exists a set ¢ C* x C**
such that
[(2)T(x) A B ((a,2") — 2) Ag(z")](A) <&
and
lim (N« x;)((a,2") — ) = N((a,2") — x)

j—+o0
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uniformly onCA. Hence, for: > 0 and forj € N big enough, there is a constait> 0
such that

;- / JSUNG <C s IN*x((@2") - ) — N((a,2") - 2)| <e.
cn—k (z,2)ebA
O

THEOREM 3.1 Letyp = p(2') € €2 N Psh(A™) such thatyp is strictly psh and let
Uj = U xx;. Thenforalla € A*, lim;_.. oo (Uj, m,a), eXists inZ(, ;. . (A")
if, and only ifa ¢ E,, and in this case we havén, ., . (U;, 7, a), = ji(U) weakly.

Proof. Leta € S,. By Proposition 2.2, we havd/;, 7, a), = j:(U,). For any positive
test function in 2(A"~*), we put

; — 1 . c \k /11p—k+1
I(€,j) T #w(Bk(a7€)) Lk(a E)X(C”_k UJ A (dd (p) AN hﬂ p

1 dp (Z/ / ul(z/,z” h(Z”)d/\n_k(ZN)
1y (B (a,e)) By (a,e) ® ) Cn—k J )

1 ! ’
11 (Br(a,2)) Ba(ac) w;(2")dpg(2')
where the functionv; is defined om\* by

wj(2') = /(Cn_k w; (2, 2" V(2" )d N1 (2") (3. 21)

and the function; is defined omA™ by

ui(z) = Y Umr#x;(2) (3. 22)
[I|=n—p—1
We know by [5] that(u;); given by ( 3. 22 ) is a sequence of negative subharmonic
functions which decreases to the subharmonic funciidiefined byu(z) = >, Urs(2).
Sinceh is positive, then the sequente;); given by ( 3. 21 ) decreases pointwise to the
functionw defined by

w(?') = /(C"ik w(2', 2" Yh(Z"d 1k (2"). (3. 23)

Since, by Lemma 3.4.1, for,—almost every: € A*, the functiomw defined by ( 3. 23)
satisfies

/ W, < [ i [ S U A
z'€By(a,e) z'€By(a,e) 2/"eCn—Fk \I|=|J|
< ©

which implies thatw is j,-integrable onBy(a,<). Recall that, since» is smooth and
stricly psh, then the measugg, is the Lebesgue measure @ with density the contin-
uous functiorz’ — 1,(2") given, in local coordinates, by formula (1. 7). Then, igr
almost every: € A*, the functionw,, is A,-integrable onBy(a, ¢).

In addition for smalk > 0, we have

2k

I(e,j) ~ wg,fw(a)/Bk(aE)Wj(zl)ﬂso(zl)d)\k(zl)

— 1 . ! ! !
= m B 01) w](a—ket )uw(a—kst )d)\k(t )
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If a ¢ E, then for allj € N we have
lim. o 1(57 ])

Hence, by the Lebesgue’s dominated convergence theorem and Proposition & 1£if,
thenlim;_, o (U;, 7, a), exists in 9(/p7k+1,p7k+1)(An) and is equal tgj}(U). Con-
versely, if for any positive test functiop € 2(A"~%), the limit, asj — oo, of
(Uj,m,a),(gB"P~*+1) exists, and is given by

im (U7, a), (98" ) = /A ) ngErT (3. 24)
hence, we have
lim G Agl)gr R = [ ) aglngm
j—4o0 e An—k z/"eAn—k

By taking an increasing sequen@g) of smooth functions compactly supportedArt—*
such thatim,_, g5 = llan-x, the equality ( 3. 24 ) implies thaf (U) has a locally finite
mass om\"~* and this means that¢ E.,. O

REMARK 4. SinceE, = S, N E whereE = E.._ ./ is the exceptional subset
introduced in[6] and since it was proved if6] that E is a pluripolar subset o\*, then it
is clear thatE,, is also a pluripolar subset ah*.

4. GENERALIZED (-SLICING FORMULA

Now, we give the proof of the formula ( 4. 25 ) which is an amelioration of the slicing
formula of H. Ben Messaoud and H. El Mir [6], the origin of the slicing formula is due to
Federer [3]. Using results of [6], we prove that formula ( 4. 25 ) holds with respect to any
smooth and strictly plurisubharmonic function. Here is a question that remains open: does
formula ( 4. 25) hold for a given locally bounded plurisubharmonic functiol\6@

THEOREMA4.1. Letp = p(2') € €*NPsh(A™) such thatp is strictly psh and let € AF.
Then the following statements hold

(1) (U,m a), existsiNZ, ;. .y
we have(U, m,a), = ju(U).

(2) Forany ¥ € D(,_j11,p—k+1)(A™) and for anyuvy, ..., v, € LS, Psh(AF), we

(A™) if and only ifa ¢ E, and in this case

have
/ UANdd“vy A -+ ANddo, AN = / (U,m,a)p(V)ddvy A --- A ddvy, (4. 25)
n a€S,
whereg; =vjom, j=1,... k.

Proof. Let us prove the first assertion. Suppose that the élice, a),, is well defined in
A™), which is, by [6], equivalent to the existence of the following weak
(A™):

lim (Uj, 7, a)p = jo (U),

J—POO
hence we have ¢ E, (by Theorem 3.1). Conversely, lete S, such thaiu ¢ E,. It
is sufficient to prove thatU, 7, a),, is well defined in7(,_, ., ., (A"). Takeh €
2(A"~F) atest function, then for smadl> 0, we have

Q(Iz?ﬁkﬂ,pfkﬂ)(
limit in @(pfkﬂ’pfkﬂ)
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to(Br(a,e) = / po(2)dNg(2")
By (ae)
~  woppy(a)e?,

Put
1

lelae.h) = B

/ U A (ddctp)k /\h(zll)ﬁ//n—k’
By (a,e)xCn—k

using [6], we get

I@(G»Ea h) ~e_0 W /Bk(a - UN ﬂ/k; A ﬂw(z/)h(zl/)ﬁ//n—k
#<U,7T,a> (th(a’)hﬂlmik)

By (a)
(U, m,a) (h3"F)
= (Uma), (hp"" ).
This implies thate ¢ E,. To prove the second statement, we observe that, following
Proposition 5.1, the formula (4. 25 ) holds with. The general case may be deduced by

lettinge — 0. ]

We get the following result which can be deduced from Theorem 4.1

THEOREM 4.2. Letp = p(2') € ¢? N Psh(A™) such thaty is strictly psh and let
T; =T = x,. Then we have
(1) Foranya € Ak < E,, the slice(U, 7, a),, is well defined and is equal g (U).
(2) Foranya € A* \ E,, the slice(T, r, a),, is well defined. Furthermore, in the
weak sense of currents we hdue; . (T, 7, a), = (T, 7, a),.
(3) Forany¥ € Z,_jp—i)(A") and for allvy, ..., v, € LiS, N Psh(A*), we have
the following slicing formula for positive closed currents

/ T AddeG, A --- A ddevi, AT = / (T, 7,a)(V)dd°vy A -+ Addv, (4. 26)
n aGSw

wherev; =wvjom, j=1,... k.

Proof. The first statement is a result of Theorem 4.1. The second statement is a con-
sequence of the first statement and Proposition 2.2 since we have, in the weak sense of
currents,dd°U = T + R, whereR is a smooth form. The third statement holds since
formula (4. 26 ) is a consequence of formula ( 4. 25). O

5. ¢-SLICING OF A THE CURRENT OF INTEGRATION OVER AN ANALYTIC SET

In this section we want to exprime explicitly the sli¢gX], 7, a),, wherep(2’) is a
smooth and strictly plurisubharmonic function & and[X] is the current of integration
over an analytic subséf of A™.

In order to do this, we need the following well known proposition (for more details
about the proof we can see [6]):

ProOPOSITIONS.1 Let X be an analytic subset @k andm be its complex dimension.
Then the following statements hold:
e if m < k thenw(X) is contained in a countable union of analytic subset&6f
of dimension m.
o If m > kthenthe sel = {a € AF / dimc(X N7 (X)) > m —k+ 1} is
contained in a countable union of analytic subsetdéfof dimensior< k — 1.
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PROPOSITIONS.2. Let X be an analytic subset ak™ of complex dimensiop > k and
let o(z’) be a smooth and strictly plurisubharmonic functionAfi. Then, there exists a
subsetZ contained in a countable union of analytic subsetééfof dimensions< k — 1
such that for alla € A*, X N 7~!(a) is an analytic set of dimensign— k (otherwise is
empty) and[X], 7, a), = [X N7~ (a)].

Proof. Let X,.., be the set of regular points df. We may assume thaét ¢ X,.,. Put
Zy = {a € A* / dimc(X Nn7~1(X)) > p — k}; by Proposition 5.17; is contained
in a countable union of analytic subsets®f of dimensions< k — 1. As the dimension
m of the setX;,, of singular points, satisfies, < p — 1, then, by Proposition 5.1, there
exists a setZ, contained in a countable union of analytic subsetg\6fof dimensions
< k — 1, such that for al € A* \ Z5, X, N 77 1(a) is an analytic subset ak* of

dimensionm — k (otherwise is empty). Put = Z; U Z, and denoter := 7|y, . Let
U € Dip—rp—i)(A") of the form f(z) 37~ *, takea € A* \ Z and set
1 / &
o= ——— [X] A (ddCp)* A . (5. 27)
: M%(Bk(av £)) By (a,e)xCr—k

Sincey is smooth, then by the definition of the current of integration o¥ethe equality
(5. 27) can be written as

1
I, = 7/ 7 [(dd°p)* A T). (5. 28)
: tio(Bi(a,€)) Xreg~(F=1(Z))N(By (a,e) xCr—F)
For smalle > 0, we can find local coordinatés;, . .., zx, w1, ..., w,_k) Such that

Xyeg ~ (F7HZ)) N (Bi(a,e) x C"F) = By(a,e) x CP7% x {0}cn-».

Sincep, (By(a,e)) ~ ware** p,(a) ase — 0, then by an application of Fubini's the-
orem and by the change of variabié «— Z/;“, whene is small enoughe — 0), the
equality (5. 28 ) can be transformed to the following

1
FE = m AI)_k Ak(071) ,qu(a +€t)f(a +€t7U/)d)\k(t)d)\pfk(U/) (5 29)

By lettinge — 0in (5. 29 ), we get

lim. 0T, = / fla,w)dp—g(w)
Crk

= Ja(¥)
XregNm—1(a)
(X N7 a)],ja (V)

the last equality holds since the s€};,,, N 7~ 1(a) has dimensior< p — k, this achieves
the proof of the Proposition. O
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