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1. INTRODUCTION

Simpson’s inequality states as: Jf: [a,b] — R be a four times continuously differen-
tiable mapping ora, b) and|| f || __ = sup ze(ap) [ (2)] < co. Then:

[ (5] - f o < g oo

3 2

In [1-2], [4-5], [7], [10], [16] and [18], authors refined and generalized Simpson’s type
inequality.

For the definition of invex set, reader is refer to [28].is invex set with respect tg, if
itis invex for allxz € K. The invex sef is n-connected set as well.
Every convex set is invex set with respecij{@, ) = y — « [3], but not conversely.
The functionf on the invex sef is called preinvex [20] with respect to functienif

fl@+tn(y,z) <(1—1t)f(z)+tf(y),Vo,y € K,t €0,1].
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The functionf is called preconcave if and only ¥ f is preinvex.

In [20-21], authors showed that every convex function is preinvex but not conversely (see
for instance [21]).

The functionf on the invex sef is said to be prequasiinvex [11] with respectjtaf

fle+itn(y,z) <max{f (), f(y)}, Yo,y € Kt €0,1].

In [22], author showed that prequasiinvex function is the generalization of quasi-convex
function.
Recently, many mathematicians generalized the classical convexity. One can refer to [20]
and [6], [8], [13-15], [21] and [23]. Hanson [8] significantly generalized the convex func-
tion by introducing invex functions. As a special case of invexity, Ben-Israel and Mond
[6] presented preinvex function. As a generalization of invex function, Pini[15], presented
prequasiinvex functions.

The purpose of this manuscript is to establish some new simpson’s type inequalities for
the class of functions whose third derivatives in absolute values are preinvex and prequasi-
invex.

2. MAIN RESULTS

We begin with the following Lemma.

Lemma 1. Let K C [0,00) be an open invex subset with respecijto K x K — R
with a,b € K anda < a + n(b,a). Supposef : K — R be an absolutely continuous
mapping onk'such thatf’” € L ([a,a + n (b, a)]) . If | f"”'| is preinvex on¥k, then for every
a,b € K withn (b,a) # 0, we have

a+n(b,a)
J

f@)dz — %2 | £ (a >+4f(2a+"”‘l>)+f<a+n<b,a>>}|

< (1 (b)) [ DS (a+ M (b)) dA

[}

wherep(\) = {

Proof. Using definition ofp()), we get,

I= gl‘p(/\)f’” (a+ An(b,a))dr

= L[ (= D1 (a+ Ay (b,a)) dA
[l =17 ()\—%)‘f”(a—&-)\n(b,a))d}\.

Integrating by parts, we get
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Change of variable = (a + An (b, a)) anddz = ( +1n(b,a))dA, gives
I(n(b,a)" =
a b,a a a a
S § (@) de — 25 [ (a) + 4f (25489 4 (0 + (b))
The proofis completed.

Theorem 2. Let the assumption of Lemma 2.1 be satisfied. Then

a+n(b,a)

I @ ba)[f(>+4f(2“+77ba>)+f<a+n<b,a>>]|

< ﬁ;‘;)“ 177 (@)] + 1 (b)]]

Proof. Using Lemma 2.1, we get
a+n(b,a)

[ e = 22 (1 (@) +ap (02 ) 4 f (@t 0 (ba)]

(n(b.a))*
< B

{j!v (= D17 (@ M Gl dd+ ][0 =1 (= 5)[157 (@ A a>>|dA}

1
2

Using preinvexity of /|, we get

a+n(b,a)

[ e = 2G| @)+ af (B502) + f (a +n<b,a>>}‘

=

A2 (5 = A [ =21 (@] + A LF" (B[] dA
A =1 (A= 3) [(L= N [f" (@) + AL (b)) dX

( (b,a))4 0
S 4 6
+

SIS,

By simple calculations of integrals, we get as required. The proof is completed. O

Let the assumption of Theorem 2.2 be satisfied with 1, such thap = ﬁ If | f|*
is preinvex, then we get

a+n(b,a)

[ f)de =G0 [ (@) +af (D) 4+ f (b0 (5,0)]
[FCRLIELL] (377 @I+ 317 O+ (5157 @1 + 217 1))

< (n(b.a))* (

Q=
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Theorem 3. By using Lemma 2.1 and Holder’s inequality, we have

a+n(b,a)

{mmﬂwmmwwwwmmww

1/p

S<<b6a< TN (E =) [Fax (1”U”w+Amb®W%0

P (1 (A1 (4 ) ) (Rl @ )

Here

/q

1/q

1/2 p ,
[ 12 (3 =W ax = f, [0 1% (- ) an = 5k

Using preinvexity of /|, we get

a+n(b,a)
] f@ﬂf—“?)V()+M(%“”“)+f(+U®ADH

a

1/p
S ba) (f ‘)\2( )‘Pd)\> ( 1/2 [(1_)\)”/// (a)|q_’_)\‘f/// (b)‘ﬂd)\)
HEE ([l |0 -7 (-

)| d
(i = N L7 (@)1 4+ AL (
= ("(’25”4 (%)% [F(2p+1)r(p+1)}%

1/q
p )1/10

i)’

T(3p+2)

{G 1 @+ g 177 O)1) + (5 1/ (@) + & 177 ®)1)"}

This completes the proof.

Q=

Theorem 4. Let the assumption of Theorem 2.1 be satisfied gvithl, such thap = ﬁ
Then

a+n(b,a)

/ f@ﬂx—“?”U«o+w(%“wm)+fw+nwa»H

< Gtba)' [Haptipe } {(If”’<a>IC’+|f”’<b>| )’ ]
= 6 23PT12L (3p+2)

Proof. By Lemma 2.1 and Holder’s inequality, we have

a+n(b,a)
J

f@ﬂx“?”U<>+M(%“W@)+fm+n@ﬂw|

1
4b/‘p V" (a+ M (b, a)) dA

1

)* (Ofl Ip(A I”dA) <£|f’” (a+ M (b, a))|qd>\>

1
q
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Using preinvexity of /|, we have

[ f @y = "G [ (@) + 4f (22H0D) £ f (0t (b.0)

1/p
< (00" (f X2 (5 =N [Pdr+ [ ’(A— D* (A~ é)rdA)

(Jy [ =217 @) + A If”’ )] d)\)l/q

1
_ (b)) { (2p+DT(p+1) } {(If”’<a>|q+|f”’<b| )’ ]
6 230121 (3p+2)

By simple calculations, we have

1/2 L p
[ 12 (= 0Par= [l |- 17 (- D) ar = Sk

This completes the proof.

Theorem 5. Let the assumption of Theorem 2.4 be satisfied gvithl, such thap = ﬁ
If the function| /'|? is preinvex, then we have

a+n(b,a)

/ f(w)d:r’“%’””[f()+4f(2“+”b“))+f(a+n(b,a))]|

a

(7(ba>>4 1=1/q (|7 @) +|£" ®)]° .
< : (192) ( 192 .

Proof. Using Lemma 2.1 and power mean inequality, we get
a+n(b,a)

[ fade = 2G2 [f (@)+af (3502) + f (o +n<b,a>>}‘

(1 (6,0))" [ p(NS" (a + A (b, a)) dA

0
1-1/q
(n(b)( PG (R (-1 @ b))

o 1-1/q
e (111 (- o)

(S | =17 (= D17 @+ X0 (b, a))|*ar) Ve

Using preinvexity of /|, we have

IN

IN
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I 'fa)do )U()+M(%“”“)+f@+n®ﬂw‘

/2 171/‘]
e W)

( 1/2|>\2 77}\)”(17 NI (a )|‘1+)\‘fm(b)|q]d)\)q

IN

—
=
=

e
=

/_\
—-

1

)4 1-1/q
o (ol (fl/z\ ~1° (A= 4)|ar)
(Lpl (= D[ A= 17 @I+ a1 @17 ax)°
< (n(béa))4 (%2)1—1/(1 <|f(“)|1;r2|f(b)|>
The proof is completed. O

3. SIMPSONTYPE INEQUALITIES FOR PREQUASIINVEX FUNCTION

Theorem 6. Let the assumption of Theorem 2.5 be satisfied gvithl. If | f"/| is prequa-
siinvex, for some fixegd > 1 with ) (b, a) # 0, then we have

a+n ba

I Sy “?”Uuo+w(%““m)+fw+nwww‘

b,a
s“&? [{max | (a)|, 11" (0)|"}]7 .
Proof. Using Lemma 2.1 and power mean inequality, we get

a+n(b,a)
] f@ﬂx—“?)V()+M(%“”a)+f(+n®ﬂDH

1-1/q
0 (el

( UzW (2 = N[ 1F" (a+xn (0, a))|qd)\)
+ (b <f1/2 ‘(/\ -1)*(A-3) ) o
(fll/Q ’()\ 12 (A %)‘ |F" (a+ My (b, a))lqd)\)l/q.

Using the prequasiinvexity dff””|?, we have

a+n(b,a) ba) [f()+4f(w)+f(a+n(b,a))}

\ /\

O%\

[ f@)de
1/2 1-1/q
< <n<béa>>4 <0f/ A2 (L~ A)\dA)
( 1/2 ’/\2 %_/\)’ [{max|f/”( )|q ‘f”/ )‘q}] d)\)E

+(n(b o) <f1/2 ‘( 1) (>‘ - ’) d>‘) o

(a3 =17 (= )| max £ @[ 1 017} an)
@

< (77(;)77&) [{max f/// a |q |f/// | H
The proof is completed.

Q=
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Corollary 7. By puttingg = 1 in Theorem 3.1, we get

a+n(b,a)
ffmm—%mU@+MGWﬁﬂ+ﬂmwwwH
< VG {max| £ ()], £ (O)]} -

Theorem 8. Let the assumption of Theorem 3.1 be satisfied gvith1. If | /| is prequa-
siinvex for some fixeg > 1 with n (b, a) # 0, then we have

a+n(b,a)

fme—%WUU+MGWWﬂ+ﬂmewH

a

1

1
< (.a)* (1)% |:F(2p+1)F(p+1):|5 |:max{|f”'(a)q,|f’”(b)q}:| g
— 24 2 2

T'(3p+2)

Proof. By Lemma 2.1 and Holder’s inequality, we get

a+n(b,a)

| @ —m?)UWVPU(MMw®>+f(+U®MDH

1/p

< (b)) <f A2 (3 —\)|"ax (f”zlf”’ (a+ M (b, a))lqdk)l/q

+ Lt (fl/Q' )F (A - %)‘pd )1/1’ (fl/z |7 (a+ X (b, a))|qd/\>

By using the fact

/q

1/2 p
[ 12 (= Par= [l |- 10 (- D) ar = Sk

and prequasiinvexity off’”’|?, we get

a+n(b,a)

{fMM—@ﬁU@+uGWTﬂ+ﬂmemw
1/p

. (n(ba) ( |)\2 ( )\)|pd)\ ( 01/2max{|f”' (a)\q,|f’” (b)|q}d)\)1/q

4 1/p
4 (0(b.a))" (n(b a)) (f1/2 ‘ ( ) ) (fll/z max{|fm a |q , ‘f”/ (b)‘q}d/\>
L ’ {mdxﬂ f”’(a)| |l }} a

et

2

_ (m(ba)? (17 [ 2p+1)F(p+1 }
24

1/q

2 T'(3p+2)

The proof is completed.
([l

Theorem 9. Let the assumption of Theorem 3.3 be satisfied gvith1. If | /| is prequa-
siinvex for some fixeg > 1 with n (b, a) # 0, then we have

a+n(b,a)

fme—%MUU+MGWWﬂ+ﬂmemH

a

1 q " q %
< (b.a))’ {r<2p+1>r<p+1>r [max{lf’”wl 15 @) }}
= 6 23pF 121 (3p+2) 2
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Proof. Using Lemma 2.1, Holder's inequality and prequasiinvexityfdf|, we get
a+n(b,a)

| f@)de = 25 £ (a) + 4f (2550) 4 £ (a4 (b,a))]

a

<o)’ ([Ipora) % (Jmax {17 @I 17 0)1"}ar) %

<
1/p
moa)* (21 e 1 2/ 1P
< GO (T2 G =P fy [0 0% (- ) ar
1/q

(Jo max {7 (@I, 1 ()| }dN)

1 1
_ (n(ba)* {rupﬂ)r(zoﬂ)}5 {max{lf’”ml”ﬂ f’”(b)q}} ’
- 6 23pF12T (3p+2) 2 :

The proof is completed. O
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