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Abstract. In this paper, we define a new subclass of univalent functions
with negative coefficients. Further, we obtain the coefficient estimates,
distortion bounds and extreme points by fixing the second coefficient.
Also, the class we extend the study by fixing finitely many coefficients.
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1. INTRODUCTION

Let S be the class of analytic, univalent and normaliz¢df = 0 = f'(0) — 1)
functions inU := {2z : z € C and |z| < 1} of the form :

f(z)=z+ Zanz".

n>2

Let

T .= f:f(z):sz\aMz”, zelU 1.1)
n>2
be the subclass & (see [13]).
For0 < u<1,0< n<1andf € 7 the Rafid operator [4] is defined by

RUID) = ey e R ena
0

-y (1= " 'T(n+n)

an|z".
I'(n+1) ]

n>2

11



12 N. Magesh and V. Prameela

Definition 1. A function f defined in (1. 1) is said to be W] if
2F\(2)
Fx(z)

-9 -] 5[5 1

0<v<1,0<k<1, -1<B<A<1,0<8<1, ze ),

-1

< K,

where

"

zF)/\(Z) _Z (RZ][(Z))/ +Az° (RZf(z)) 0< A< 1.

Fx(z) (1= NRLF(2) + Az (RLf(2))

The classV)] was considered by Vijaya et al. [14] and ffre V! they endowed the
following necessary and sufficient conditions.

Theorem 2. [14] Let f be givenin (1. 1). Theri € W) iff

> Rulan| = (1= v)(B — A)sp, (L. 2)

n=2
where

(1 =" 'T(n+n)

R = (LA =0 = 1)1 = £B) + k(B = A)(n = v)| 70—

. (1.3)

We deriveR, andR3 from ( 1. 3) as given below:
Ro = (1+ N[ = &B) +£B(B - A)2 - v)|(1 = p)(n+1)
and
Ry = (1+2))[2(1 = £B) + £B(B — A)(3 = v)](1 = p)*(n + 1)(n + 2).

Further, we consider the values &f,, R, andR3 are aforementioned right through
one or otherwise specified.

Corollary 3. Let f be givenin (1. 1) ang’ € W)I. Then

(1= v)(B - A)p
R ’

Taking into consideration of Theorem 2, ffras givenin (1. 1) angt € W/ then

n=2.

lan| <

d(1 —v)(B — A)kp
R2

We observe that it is a task to fixing the second coefficient in Taylor series and discussing
the distortion theorems, growth theorems and similar other properteis (see [1, 2, 3, 5, 6, 7,
8,9, 10, 11, 12]) and the references therein. Attracted by aforecited works a new subclass
Wl(d) of W) is considered as given below:

L0<d<1.

laz| =

Wi(d) := {f eEWl: f(z2)=2— A = v)(B = )b > _ > |an2”} - (1.4

R
2 n=3
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2. CHARACTERIZATION PROPERTIES
Theorem 4. Let f be givenin (1. 4). Theri € W)(d) iff
> Ry lan| £ (1—d)(1—v)(B— Ak
n>3

d(1—v)(B—A)kf3
R2

Proof. Taking|as| = in (1. 2) we have the required one. O

Corollary 5. Let f be givenin (1. 4) and imV)!(d). Then

1-— 1-— B-A

(1—-d)d —v)( )mﬁ7 — 2. 5)
Rn

Theorem 6. The class/V}!(d) is closed under convex linear combination.

Proof. Let f asin (1. 4)and

PRSI (EVV.EY R

lan| <

> |balz", and0 S d <1
n23
be inW)!(d). Itis enough to show that

U(z) =6f(2) + (1 -0)g(2), 0=0=1
is also inW}!(d). In view of the fact that
d(l—v)(B - A)mﬁzz B

U(z) ==z R

Z(é\an\ + (1 =0)[bn])z", 0=d < 1.

n=3
We notice that
> Ru(Blan| + (1= 8)|ba]) £ (1= d)(1 —v)(B — A)xp.
n>3

Itis evident from Theorem 4 that € W)/(d). O

Theorem 7. Let

d(1—-v)(B—-A)k .
R e D DUELF R
n=3

be the functions iMV!(d). Then?® is defined by

k
P(z) = Z/\jfj(z),

k
is also inW)!(d), where 3 \; = 1.
j=1

Proof. From the hypothesis of theorem we get

K
O(z)=2— d(liy)ngZiA)HﬁzQ—Z ( /\j|an7j|> z".

n=3 \J=

In view of fact thatf; € W/(d) j = 1,..., k, Theorem 4 gives
D R lans| £ (1 —d)(1—v)(B— A)rB, for j=1,....k.

n>3
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which implies

k k
> R (Z Aj|an,j) = Z \j (Z Rn|an,j) < (1—d)(1 - v)(B— A)rp.

n=3 n>3
Itis evident from Theorem 4 that € W)!(d). O
Theorem 8. Let
fQ(Z):Z—d(l_V)(B_A)HﬁZQ (2 6)
Ra
and
fn(z) =y — d(l — V)(B — A)HﬁzQ _ (1 — d)(l — V)(B — A)Hﬂzn’ n 2 3. (2 7)
RQ Rﬂ
Thenf € W)I(d) iff
f(z):ZJnfn(z), o, 2 0 and zgnzl. (2. 8)
n=2 n22

Proof. If we statef as of the form ( 2. 8 ), then we get

B d(1 —v)(B — A)kp 2 ” 1-d)1—-v)(B-A)kE ,
flz) = =z = z n; " R, z
= z- ZA,LZ",
n=2
where
Ao — d(1 —v)(B — A)kp
2 = Ry
and
4 o= =—n(B-Aws
n R,n ) = .
Thus
Rndn = d(1=v)(B=A)kB+ > on(l—d)(1-v)(B- Ak

n=2 n>3

(1 =v)d+ (1 —-02)(1 = d)](B - A)xp

(1—-v)(B— A)kpS.

From Theorem 2 and Theorem 4, we observe thatW,!(d). Conversely, let us consider
fofthe form (1. 4)inW/!(d). Applying (2. 5), we have

(1-d)(1-v)(B—- Ak

IA I

|an| = 7. n 3.
Taking
R
= n >
" = A== v)B - Ay b 23
and

agzl—ZUn,

n>3
we reach (2. 8). O
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Lemma 9. Let
f3(2) = 2 — d(1 —v)(B - A)/‘iﬂzg B 1-d)(1—-v)(B- A)nﬂzg .

2.9
= s (2.9)

oot 27 - =B O =IO

(0Sr<land0=d=s1,)
equivalent whem = 0.

B= A8 4 10

atre®) £ vy TZUTZAE, 2 (L= OC =B =

(either0 £ d < dpand0 < r Srgordyg S d < 1))
equivalent whem? = . Thedy andr, are given below:
1
20— )(B — A)rp
{1—-v)(B—A)KB—4R2 —Rs
+[((1 = v)(B = A)kB — 4Ry — R3)* + 16R2(1 — v)(B — A)kp]/?}

2. 11)

do =

and
—4(1 — d)Ry + [16(1 — d)®R3 + 4d*>(1 — d)(1 — v)(B — A)kBR3]"/?
2d(1 — d)(1 —v)(B — A)xp3 '

o =

Proof. In view of fact that
| fs(re™)|?

50 2(1 —v)(B — A)kBr3 sind (2. 12)
i+4(1—d)cos19 _dd—d)(A —v)(B—A)KB ,
Ro Ry RaRs ")
we observe

a|f3(7"€m)\2
oY

L (d[(1—=d)(1 —v)(B— A)kpr? — R
Yo = 1
370 < 4r(1 — d)R, ’
In factd; is suitable only when-1 < cos 93 < 1. Thus, third one will appear if and only
if ro <r < 1and0 £ d < dy. Therefore matching up to the maximum and minimum

=0, % =0,andd =7
and

| f3(re??=)|, m = 1,2, 3 on the correct periods, we get preferred results. O
Lemma 10. Let f,,(z) be givenin (2. 7 ) witm = 4. Then
[fu(re™)| S 1fa(=r)]- (2. 13)

Proof. In view of fact that we take decreasing foﬁr%, which implies

 d0-WB-Aws , (- - (B A,
fulz) =2 R z R 2",

Thus
|f’n(7'em|

d(l1 —v)(B — A)nﬂTQ n (1-d)(1-v)B- A)/Qﬂr4
RQ R4

[IA

T+
= —fal=7)
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which proves (2. 13). O
Next, we state Theorem 11 without proof.
Theorem 11. Let f be givenin (1. 4 ) and imV)!(d). Then
d(1—v)(B—A)rB , (1-d)1-v)(B—A)B ,
Ra Rs
equal for f5(z) atz = r, and

[f(re™)| < max{max [ f3(re')], = fa(=r)},

wheremgxx |f3(re??)| is as in Lemma 9.

|f(re?)| = 7 — 0<r<1

Lemma 12. Let f3(z) be givenin (2. 9). Then,
2d(1 —v)(B — A)mﬂr 30 -4 -v)(B - A)fiﬁr2

!/ iz > 1 _
|f3(r€ )‘ = RQ R?,

equivalent when = 0.

) 2d(1—-v)(B— A 1-— 1-v)(B-A
|f§(re“9)| g 1+ d( V)( )KﬁT _ 3( d)( V)( )KﬁTQ
RQ RS
(either0 £ d < dyand0 S r <rjord; Sd<1)
equivalent wherd = 7. Thed; andr; are given below:
1

+[(3(1 = v)(B — A)kf — 3Ry — R3)? + 36(1 — v)(B — A)kfR,]Y?}

and
1

TS A=) (BAest LR
+[9(1 — d)*R2 4+ 124%(1 — d)R3(1 — v)(B — A)sfG]/?}.
Theorem 13. Let f be givenin (1. 4 ) and inV)!(d). Then
2d(1 —v)(B — A)nﬂr 31 -4 —v)(B - A)nﬁrz
Ro R3
equivalently forfi(z) atz = r, and
[f/(re”)| < max{max | f5(re')], = f1 (=)},

Wheremgx | f4(re™)| is obtained from Lemma 12.

|/ (re”)| = 1~

Next, we define a new subclass by fixing finitely many coefficients:
k

dn(1—v)(B—-A)kB ,
37 BB = A,

n=2

Wi (dy, k) = {f EWI(d) : f(z) =2 —

k
- Z |a71/|zna O§ Zdn:d§ 1}

n>k+1 n=2

For the above said class, next we state extreme points without proof. Since the proof is
line similar to method used for the clagg](d).
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Theorem 14. For W/!(d, k) the extreme points are
k

fk(z)Zz—zdn(l_yéf_mﬁﬁz”
and )
d(1—v B—-A)kp , 1-d)(1-v)(B—-AkS ,
n=2 n>k+1
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