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Abstract. We present a local convergence analysis of a family of third
order methods for approximating a locally unique solution of nonlinear
equations in a Banach space setting. Recently, the semilocal convergence
analysis of this method was studied by Churaria and Neta in [10].
These authors extended earlier results by Kou, Li [17] and othePs 18,
13, 14]. The convergence analysis is based on hypotheses up to the second
Fréechet derivative of the operator involved. This work further extends the
results of [10] and provides computable convergence ball and computable
error bounds under hypotheses only up to the firétket derivative.
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1. INTRODUCTION

In this study, we are concerned with the problems of approximating a locally unique
solutionz* of the nonlinear equation

F(x)=0 (1.2)

where F is a Féchet-differentiable operator defined on a convex subsef a Banach
spaceX with values in a Banach spad& Using mathematical modelling, many problems
in computational sciences and other disciplines can be brought in a form like (1.1) [2, 3,
6, 9, 18, 19, 20, 23]. The solutions of these equations (1.1) can rarely be found in closed
form. Therefore solutions of these equations (1.1) are approximated by iterative methods.
In particular, the practice of Numerical Functional Analysis for finding such solutions is
essentially connected to Newton-like methods [1-22]. The study about convergence of
iterative procedures is normally centered on two types: semilocal and local convergence
analysis. The semilocal convergence analysis is based on the information around an initial
point to give criteria ensuring the convergence of iterative procedures. While the local
analysis is based on the information around a solution to find estimates of the radii of
53
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convergence balls. There exist many studies which deal with the local and the semilocal
convergence analysis of Newton-like methods such as [1-22].

Majorizing sequences have been used extensively in connection to the Kantorovich the-
orem when studying the convergence of these methods [2, 3, 4, 5, 6, 18, 19, 20]. Candela
and Marquina [87], Parida and Gupta [19], Ezquerro and Hamdez [11], Gu@rrez and
Herrandez [13, 14], Argyros [2, 3, 4, 5, 6] used this idea for several high-order methods. In
particular, Kou and Li [17] introduced a third order family of methods for solving equation
(1.1), whenX =Y = R defined by

Yn = T — OF (2,) L F(2y)

02 +60—1 _ 1 _
Tptl = Ty — T]:/(xn) 1]:($n) - 972‘7:1(1‘71) 1]:(yn) (1.2)

foreach n=0,1,2,...

wherezy is an initial point and) € R\{0}. This family uses two evaluations &f and one
evaluation of7’. Third order methods requiring one evaluationfofind two evaluations
of 7’ can be found in [2, 6, 10, 17]. It is well known that the convergence domain of
high order methods is small [1, 2, 6, 13, 16, 20]. This fact limits the applicability of these
methods. In the present study, we are motivated by this fact and the recent work by Chun,
Stanic and Neta [10] where a semilocal convergence analysis of the third order method
(1.2) ina Banach space setting is presented. Their convergence conditions require hypothe-
ses up to the second&ahet derivative. Hence, their results cannot apply when operator
F is not twice Féchet-differentiable o®. In the present study, we require hypotheses
up to the first Fechet derivative of operatoF. Hence, the applicability of method (1.2)
is extended under our approach. Moreover, we provide a local convergence analysis that
includes a computable convergence ball and error bounds which are not given in the earlier
studies [8,?, 10, 11, 13, 14, 15, 17, 23].

The rest of the paper is organized as follows. In Section 2, we present the local conver-
gence analysis for the third order method (1.2). The numerical examples are given in the
concluding Section 3.

2. LocAL CONVERGENCE

LetU(w, p) andU (w, p) stand, respectively, for the open and closed balk tentered
atw € X and radiusp > 0. Let also£(X,Y) stand for the space of bounded linear
operators fromX into Y. We present the local convergence analysis of the third order
method (1.2) under the conditionS)

Ci: F : D ¢ X — Y is Frechet differentiable and there exists € D such that
F(z*) = 0andF’(z*)~! € L(Y,X);
Cy: operatorZ’ satisfies the Lipschitz condition

|7 (@) (F'(x) = F'(y)|| < K|z —y|| foreach z,y € D;
Cs5: operatorF’ satisfies the center-Lipschitz condition
|7 ()" (F (z) — F'(2%))|| < Ko ||z —2*| foreach z € D;

Cy: || F'(2*)~1F'(2)|| < Lforeachs € D;
Cj5: there exist® € R — {0} such that

L1 —-06] <1,
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Cs: there exists > 0 andf € R — {0} such that

- 1—L[1—0
rsrgi=m= —————p—
K
K:O+§
and
f@(r)>0
where
_ KN 6~ 1]
folt) —ICO(IC0+ §>t _ (2/cof/c0L =
K KL 0 —1] L2 _
+5+T02)t+1—L o = gl =l

C7: U(z*,r) C D.
It is worth noticing that conditiot’; always implie<s but not necessarily vice versa. We
also have that
Ko <K

holds in general an&’/ K, can be arbitrarily large [2,6]. In practice the computation of
constantC requires the computation &f, as a special case. Conditién is used to find
tighter upper bounds on the norf}§” (x) ' F’(2*)|| than if only conditionCs is used
(provided thatCy < K see (2.5) and (2.6)).

Letzo € D be fixed. Then it follows from conditiof; that

CY, : OperatorF’ satisfies the center-Lipschitz condition

|7 (%)~ (F' (&) — F'(20))|| < Ko ||z — 20| foreach z e D.

Notice again that
Ko <K

andK /K, can be arbitrarily large [2,6].

Later in the proof of Theorem 1 using conditié¥, instead of conditiorC;, leads to
a tighter error estimate for the upper bounds|jgp — =*| and ||z; — 2*|| than if only
conditionC is used (see (2.3) and (2.6) for= 0).

Next we show the main local convergence result for the third order method (1.2) under
the (C) conditions.

Theorem 1. Suppose that thed) conditions hold. Then, sequenge, } generated by the
third order method(1.2) for zy € U(z*,r) — {«*} is well defined, remains i (z*, r)
foreachn = 0,1, 2, 3, ... and converges to*. Moreover the following estimates hold for
eachn =0,1,2,...

1 K
— — |zp —x*|| +L|1 -6 n—x*
lom = 2*1l < g [ 5 Im = "1+ LT =01 e — 27|
Sz =2 <7 (2.1)
and
1 K > |0—1
_ < ™~ , * L *
lonss =" < Ty o=y L3 Jom =W + g Lllon =]
1
+ 5Ll — 2"

< |lwn — 2| <7 (2.2)
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ro Ko, if n=0
]l K, if n>0
Proof. By the hypothesis we have thaj € U(x*,r) — {z*}. Then, usingCs) and Cs)
we get that

where

|7 (a*) " (F (w0) = F' (@) || < Ko |lwo — 2*|| < Kor < 1. (2.3)

It follows from (2.3) and the Banach lemma on invertible operators [2, 6, 16, 18, 20] that
F'(zo)~' € L(Y,X) and

1
N < .
)H -1 —’CO ||.%'0 —SU*H

[|F (o)~ F' (a (2.4)

Then,y, andy; are well defined. Using the first substep in (1.2)foe= 0 and (2.4) we
obtain in turn that

Yo — 2% =g — 2% — OF (20) " F (o)
1
= F ()" [/O (F' (o + 7(a" = 20)) = F'(w0) (a" = wo)dlr
+(0-1) /O (o + (o — w0))(a* — o). 2.5)

Hence, using (2.5)Gs), (Cy), (2.4) and C5) we obtain that

lyo — &*|| < || F (wo) ™' F' ()] [H]—"(Jc*)_l /01 (.7-"(1‘0 +7(2* — 1)) — .7-"(900))

X

)

(x* — zo)dT + |1 — 0| H}"(m*)_l/o F(zo+ 7(2* — 2%))(z* — xo)dr

1 Ko

< 20 |z — 2 L1—9},—*

< T L o~ L=l o — %
1 Ko

< T L L= 0l — ) < flro — ¥ <.

which showsyy € U(z*,r) and (2.1) holds for = 0. Then, using the second substep in
(1.2) forn = 0 we have that

2 —
o=t = a0 — ot = T ) ) — g P o) F )
= F'(20)" [/0 (F' (o + 7(" = 20)) = F'(20) ) (&" — wo)dr

0

+

-1
7 / F'(x* + 1(xo — %)) (w0 — 2*)dT
0

1
+ 9%/0 F'(@* +7(yo — 7)) (yo — :c*)dT]. (2.6)
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Using (2.6), C3), (C4) and the second condition i€§) we get that

[ < : [ lzo — ¥ + o~ ‘LII I+ 55 - [ “Il
_ o _ _
S ey S| 0 gz T ot

1 - 6—1] L 1
L L
= 1—/C0Hx0—x*||[ leo =& I+t == + = (T e — 2

(52 oo — a4 L1 = 01))] llzo — )

< |lwo — ¥ < 7,

which shows thay; € U(z*,r) and that (2.2) holds for = 0. Suppose that (2.1), (2.2),
Yk, Sk+1 € U(z*,r) hold for allk < n — 1. Then,y,, andz, 4, are well defined. As in
(2.3), we also have that

|7 (a*) " (F (2n) — F(2)]| < Ko llan — 2*|| < Kor < 1.
Hence,F'(z,) "t € L(Y,X) and

9 < :
—1-Ko|lzn — x*H

|7 () F' (2 (2.7)

Using the fist step in (1.2) we get as in (2.5) that

Yp — 2 = F' ()" [/0 (Fl(xp 4+ 7(2" — 3p)) — F'(2)) (2" — z)d7

+ (0 — 1)/0 F'(p + 7(2* —z))(x* — 2p)dT

and
1 K ) .
ln =21 < ey L3 Jon = " L= 01 flen =)
1 (K
S [Fr+LIt=0l] llow — 2" < lan — 2"l <1,

which shows thay,, € U(z*,r) and that (2.1) holds. Moreover, from the second step in
(1.2) as in (2.6) we get that

Tt —x* = F'(x,) 7" [/0 (F'(xn +7(2* —x)) — F'(x0)) (2" — 2p)dT

—1

o L L R
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and
1 K 16— 1]
n _ 2| < n — K L " — *
lenss =o'l < Ty 3 on — '+ g Ll = 7|
1 «
+ gL llyn — a1
< L {Eﬂx I Lt Y L( L
1=K ||xn — ¥ " 62 02\1 — Ko ||zn — z*||

E * *
(F e ="+ L1 =0])) ] 0 — "]
< Nwn — ¥ < 7,
which shows that,,; € U(z*,r) and that (2.2) holds. The induction is completed. Then,
it follows from ||z, +1 — 2*|| < ||z, — «*|| that lim z,, = z*. O

Remark2.
(1) In view of (C3) and the estimate

|7 @) F @)l = |17 @ f%) Fa) +1]
<1+ Hf’ NF (@) = F@)|| <1+ Koo —a*| (2.8)
condition C4) can be dropped and—in (Cs) and in C¢) — can be replaced by
L(r) =1+ Kor. (2.9)

(2) In practice we shall choogk(see numerical examples) so that the two conditions
in (Cg) hold that is the radius exists. There exist such cases. Let us list one:
Suppose that

60— 1]
92
Then, polynomialfy has a unigue positive roep. If (C5) holds andry < r( (or
fo(ro) > 0) then, we can choose= r¢. In view of (C4), we have that > 1.
It follows from (C5) andL > 1 (see also the numerical examples) that we
should only choosé € (0, 2) for our conditions to work although the convergence
of the third order method (1.2) may be possibleffiar R\ [0, 2]

(3) Itisworth noticing that the earlier results [8,10, 11, 13, 14, 17, 23] use hypothe-
ses on the second&tret derivative (or higher) for the semilocal convergence of the
third order method (1.2). In this study we use only hypotheses on the fashér
derivative. In the local case the earlier works do not provide a computable conver-
gence ball or computable error bounds based on Lipschitz or other constants.

(4) The results obtained here can be used for operdfmatisfying autonomous dif-
ferential equations [2, 6, 16, 18] of the form

F'(x) = P(F(x))

whereP is a continuous operator. Then, sing&z*) = P(F(z*)) = P(0), we
can apply the results without actually knowinty For example, lef(z) = e*—1.
Then, we can choos@®(z) = x + 1.

(5) The local results obtained here can be used for projection methods such as the
Arnoldi’'s method, the generalized minimum residual method (GMRES), the gen-
eralized conjugate method (GCR) for combined Newton/finite projection methods

—1>0.

\179|+L
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(6)

and in connection to the mesh independence principle can be used to develop the
cheapest and most efficient mesh refineent strategies [2, 6, 16, 18].
In view of (C5) and the first inequality inQ¢) the radius- is such that

1
— %
Ko+ 5

The parameter 4, was shown by us to be the convergence radius of Newton’s
method [2, 6]

Tpy1 = & — F'(x,) ' F(x,) foreach n=0,1,2,... (2.11)

under the conditiongg; )—(Cs). It follows from (2.10) that the convergence radius
r of the third order method (1.2) cannot be larger than the convergence radius
of the second order Newton’s method (2.11). As already noted in [2,44 & at
least as large as the convergence ball given by Rheinboldt [22]

2
TR = ——.
®T3K
In particular, forkCy < K we have that
TR <TA
and
2 1 1
T—R:iKO/K—F — — as @—>0.
rA 3 3

That is our convergence bally is at most three times larger than Rheinboldt’s.
The same value farg was also given by Traub [23].

3. NUMERICAL EXAMPLES

ForX =Y = R™, the method (1.2) yields

]:/(xn)pn = Qf(Xn), Yn = Xn — Pn

02 + 6 — 1) F(xy,) + F(yn
]:/(Xn)qn: ( )95 ) (y )a Xn+1 = Xp — Qn-

We present three numerical examples in this section.

Example 3. LetX =Y = R3, D = U(0, 1) andz* = (0,0,0). We define functiort on

D as

-1
Flx,y,2) = (emfl,%yZer,z). 3.1)
Then, the Fechet derivative afF is given by
e* 0 0
Flz,y,2)=10 (e—1y+1 0
0 0 1

Notice that we have:

F(x*) =0, F'(z*)=F'(2*)"" =diag{1,1,1}
L=e, Ko=e—1, Koj=K=e.
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To ascertain the convergence-order of the metfh@), we use the concept of computa-
tional order of convergenceCOQ) [6, 11]

In Xnt2 — Xni1l|
[%n+1 — Xu|
p = sup f
In [Xn+1 — Xn|
%0 — Xp—1]|

We solve the nonlinear systé¢@l1)by the third order metho(lL.2)for xo = (0.1,0.1,0.1).
Notive thatrg € U(z*, 7). Results of our computation are reported in the Table 1.

or nec N>0.

n | llxn = xnaally 17l

0 - — = 0.181254010020148
11 0.172349059098655 0.001036567529705
21 0.001129080546855 0.000000001633261
3 | 0.000000001633894 0.000000000000000

TABLE 1. Solving (3.1) by the third order method (1.2) fog = (0.1,0.1,0.1)".

In the Table 1, we notice that~ 2.87415. For # = 1.2 the condition (5) yields
L|1—6|=0.3329311881 < 1

and the conditions) yields
ro ~ 0.1482876006 and fi(t) >0 Vt e (0,0.3329311881).

Thus our conditions5) and (Cs) hold. Thus our results are applicable for analysing
convergence of the meth¢tl.2).

Example 4. LetX =Y = C[0, 1], the space of continuous functions defined®n] be
equipped with the max norm aidl = U(0, 1). Define functionF onD by

1
F(h)(x) = h(z) =5 / x 0 h(0)* do. (3.2)
0
Then, the Fechet derivative of is given by
1
F'(hlu])(z) = u(x) — 15 / 0 h(0)*u(f)dd for all u € D.
0

Some algebraic manipulations yield

L=L(r)=1+75r, Ko=75 and Kg=K = 15.
For 6 = 1, we obtainrg = 0.06666... andr; = 0.035726559. Thus we must choose
r € (0,7r).
Example 5. LetX =Y = R™! for natural integern > 2. X andY are equipped with
the max-norm|x|| = | Jnax ||;||. The corresponding matrix norm is

j=m—1

Al = e Z |asj]
Jj=1
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01 02 03 04 05 06 07 08 03

FIGURE 1. Solution of the boundary value problem (3.3).

for A = (aij)i<ij<m-1. On the intervall0,1], we consider the following two point
boundary value problem
v 4+ 0% =0

{ v(0) =v(1) =0.
[?, see]2,6. To discretize the above equation, we divide the intejal] into m equal
parts with length of each parth = 1/m and coordinate of each pointz; = 4 h with
1=0,1,2,...,m. A second-order finite difference discretization of equaf®i) results
in the following set of nonlinear equations

(3.3)

Vi +h2vi2—2vi+vi =0
F(v) = , ' - (3.4)
for i=1,2,...,(m—1) andfrom(3.3) vy =v, =0
wherev = [v1, v, . .. ,v(m,l)]T For the above system-of-nonlinear-equations, we provide
the Fréchet derivative
_2 -
e 0 0 -0 0
m 2v
1 ==-2 1 0 0 0
m 2
v,
Fv)y=| 0 1 =-21 0 0
m
Wi
0 0 0 0 ..o1 by
L m -

Letm = 101, 7o = [5,5,...,5]" and we choosé = 1. To solve the linear systems (step
1 and step 2 in the methdd.2)), we employ MatLab routine “linsolve” which uses LU
factorization with partial pivoting. Figure 1 plots our numerical solution.
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