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1. INTRODUCTION

It is well known that many inverse problems typically leads to mathematical models that
are ill-posed (according to Hadamard’s definition [16]) in the sense that it is not possible
to provide a unique solution.

In this paper we are interested in finding approximation for a solution of the nonlinear
ill-posed operator equation of the Hammerstein type(see [10, 11, 12, 15]) equation

KF (x) = y (1.1)

whereF : D(F ) ⊂ X → X is monotone andK : X → Y a bounded linear operator
andX, Y are taken to be Hilbert spaces. LetU(x,R) andU(x,R), stand respectively,
for the open and closed ball inX with centerx and radiusR > 0. Let L(X) denote the
space of all bounded linear operators fromX into itself. It is assumed that (1.1) has a
solution x̂ ∈ D(F ). We are interested in the case whenF is a monotone operator (cf.
[24]). i.e.,F : D(F ) ⊂ X → X satisfies

〈F (x1)− F (x2), x1 − x2〉 ≥ 0, ∀x1, x2 ∈ D(F ).
25
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A typical example of (1.1) is the Hammerstein equation of the form

∫ 1

0

k(s, t)x3(s)ds = y(t), t ∈ [0, 1], (1.2)

wherek(., .) is a nondegenerate kernal which is square integrable, that is,
∫ 1

0

∫ 1

0

|k(s, t)|2dsdt < ∞,

andf : [0, 1]× [0, 1] → R is a suitable function. Note that (1.2) takes the form (1.1) with
K : L2[0, 1] → L2[0, 1] defined by

Kx(t) =
∫ 1

0

k(s, t)x(s)ds, x ∈ L2[0, 1], t ∈ [0, 1]

andF : L2[0, 1] → L2[0, 1] is the nonlinear operator defined by

F (x)(s) = x3(s), s ∈ [0, 1].

We assume throughout thatyδ ∈ Y are the available noisy data with

‖y − yδ‖ ≤ δ. (1.3)

Observe that (cf. [15]) the solution̂x of (1.1) can be obtained by first solving the linear
equation

Kz = y (1.4)

for z and then solving the nonlinear equation

F (x) = z. (1.5)

For the treatment of nonlinear ill-posed problems the standard regularization method is
the method of Tikhonov regularization. But if the nonlinear operator is monotone then a
simpler regularization strategy available is the Lavrentiev regularization. Note thatKF
need not be monotone even ifF is monotone. So in the straight forward approach one has
to consider Tihkonov regularization method for approximately solving (1.1).

What we show in this paper is that for the special case whenK is linear andF is
monotone, by splitting the equation (1.1) into (1.4) and (1.5), one can simplify the proce-
dure by specifying a regularization strategy for linear part (1.4) and an iterative method for
nonlinear part (1.5). More precisely, for fixedα > 0, δ > 0 we consider the regularized
solution of (1.4) withyδ in place of y as

zδ
α = (K + αI)−1yδ (1.6)

if the operator K in (1.4) is positive self adjoint andX = Y , otherwise we consider

zδ
α = (K∗K + αI)−1K∗yδ. (1.7)

Note that (1.6) is the simplified or Lavrentiev regularization (see [8]) of the equation (1.4)
and (1.7) is the Tikhonov regularization (see [6, 7, 9, 14, 22, 23]) of (1.4). The regular-
ization parameter is chosen according to an adaptive method proposed by Pereverzev and
Schock in [20].

In [15], it is assumed that the bounded inverse ofF ′(x0) exist and considered the se-
quence

xδ
n+1,α = xδ

n,α − F ′(x0)−1(F (xδ
n,α)− zδ

α), (1.8)

with xδ
0,α = x0 and proved that(xδ

n,α) converges linearly to the solutionxδ
α of

inequationF (x) = zδ
α. (1.9)
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Later in [12], George and Kunhanadan considered the sequence(xδ
n,α) defined itera-

tively as
xδ

n+1,α = xδ
n,α − F ′(xδ

n,α)−1(F (xδ
n,α)− zδ

α), (1.10)

with xδ
0,α = x0 and proved that(xδ

n,α) converges quadratically to the solutionxδ
α of (1.9)

under the assumption that the bounded inverse ofF ′(x) exist in a neighborhood ofx0.
Recall that a sequence(xn) is X with limxn = x∗ is said to converge quadratically, if

there exists positive number M, not necessarily less than 1, such that for alln sufficiently
large

‖xn+1 − x∗‖ ≤ M‖xn − x∗‖2. (1.11)

If the sequence(xn) has the property that

‖xn+1 − x∗‖ ≤ q‖xn − x∗‖, 0 < q < 1

then (xn) is said to be linearly convergent. For an extensive discussion of convergence
rate, see Ortega and Rheinboldt [19].

Note that the ill-posedness of equation (1.1) in [15] and in [12] is due to the ill-posedness
of the linear equation (1.4). In the present paper we assume that (1.1) is ill-posed in both
the linear part (1.4) and the nonlinear part (1.5). Using the monotonicity ofF, we carry out
the convergence analysis by means of suitably constructed majorizing sequences, deviating
from the methods used in [15] and [12]. An advantage of this approach is that the majoriz-
ing sequence gives an a priori error estimate which can be used to determine the number
of iterations needed to achieve a prescribed solution accuracy before actual computation
takes place.

In the present paper we expand the applicability of results in [13] using weaker condi-
tions.

2. BACKGROUND

We consider that the operatorF satisfies the following conditions:

(C0) There existsR > 0 such thatU(x̂, R)) ⊆ D(F ) andF is Fŕechet differentiable at
all x ∈ U(x̂, R).

(C1) There exists a constantL > 0 such that for everyx, u ∈ U(x̂, R) andv ∈ X,
there exists an elementΦ(x, u, v) ∈ X satisfying

[F ′(x)− F ′(u)]v = F ′(u)Φ(x, u, v), ‖Φ(x, u, v)‖ ≤ L‖v‖‖x− u‖
for all x, u ∈ U(x̂, R) andv ∈ X.

(C1)’ Let x0 ∈ D(F ) be fixed. LetR > 0 be such thatU(x̂, R) ⊆ D(F ). There exists
a constantL0 > 0 such that for eachu ∈ U(x̂, R) andv ∈ X, there exists an
elementP (x, u, v) ∈ X such that

[F ′(x)− F ′(u)]v = F ′(u)P (x, u, v), ‖P (x, u, v)‖ ≤ L0‖v‖(‖x− x0‖+ ‖x− x0‖).
Here is the motivation for the introduction of(C1)′. We note that that since‖u − x‖ ≤
‖u− x0‖+ ‖x− x0‖ condition(C1) always implies(C1)′ with L0 = L andΦ = P but
not necessarily vice versa.

Note that
L0 ≤ L

holds in general andLL0
can be arbitrarily large [1]-[5]. At the end of this study in Section

4 we provide numerical examples where(C1)′ but not(C1).
(C2) There exists a continuous, strictly monotonically increasing functionϕ : (0, a] →

(0,∞) with a ≥ ‖K‖2 satisfying;
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• limλ→0 ϕ(λ) = 0
•

sup
λ≥0

αϕ(λ)
λ + α

≤ ϕ(α), ∀α ∈ (0, a].

• there existsv ∈ X with ‖v‖ ≤ 1 such that

F (x̂) = ϕ(K∗K)v (2.1)

Let
zα := (K∗K + αI)−1K∗y.

Hereafter we considerzδ
α as in (1.7). We observe that

‖F (x̂)− zδ
α‖ ≤ ‖F (x̂)− zα‖+ ‖zα − zδ

α‖
≤ ‖F (x̂)− zα‖+

δ√
α

, (2.2)

and

F (x̂)− zα = F (x̂)− (K∗K + αI)−1K∗KF (x̂)
= [I − (K∗K + αI)−1K∗K]F (x̂)
= α(K∗K + αI)−1F (x̂). (2.3)

So by(C2),
‖F (x̂)− zα‖ ≤ ϕ(α). (2.4)

Thus we have the following theorem.

Theorem 1. Letzδ
α be as in (1.7) and the(C2) holds. Then

‖F (x̂)− zδ
α‖ ≤ (ϕ(α) +

δ√
α

). (2.5)

2.1. A priori choice of the parameter. Note that the estimateϕ(α) + δ√
α

in (2.5) at-

tains minimum for the choiceα := αδ which satisfiesϕ(αδ) = δ√
αδ

. Let ψ(λ) :=

λ
√

ϕ−1(λ), 0 < λ ≤ ‖K‖2. Then we haveδ =
√

αδϕ(αδ) = ψ(ϕ(αδ)), and

αδ = ϕ−1(ψ−1(δ)). (2.6)

So Theorem 1 and the above observation lead to the following.

Theorem 2. Letψ(λ) := λ
√

ϕ−1(λ), 0 < λ ≤ ‖K‖2 and the assumptions of Theorem 1
are satisfied. Forδ > 0, let αδ = ϕ−1(ψ−1(δ)). Then

‖F (x̂)− zδ
α‖ ≤ O(ψ−1(δ)).

2.2. An adaptive choice of the parameter.The error estimate in the above Theorem has
optimal order with respect toδ. Unfortunately, an a priori parameter choice (2.6) cannot
be used in practice since the smoothness properties of the unknown solutionx̂ reflected in
the functionϕ are generally unknown. There exist many parameter choice strategies in the
literature (cf. [8], [12], [20], [24], etc.).

In [20], Pereverzev and Schock considered an adaptive selection of the parameter which
does not involve even the regularization method in an explicit manner. In this method the
regularization parameterαi are selected from some finite set{αi : 0 < α0 < α1 < · · · <
αN} and the corresponding regularized solution, sayzδ

αi
are studied on-line. In this paper

also, we consider the adaptive method for selecting the parameterα in zδ
α.
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Let i ∈ {0, 1, 2, · · · , N} andαi = µ2iα0 whereµ > 1 andα0 = δ2. Let

l := max{i : ϕ(αi) ≤ δ√
αi
} (2.7)

and

k := max{i : ‖zδ
αi
− zδ

αj
‖ ≤ 4δ√

αj
, j = 0, 1, 2, · · · , i}. (2.8)

We will be using the following theorem from [12]

Theorem 3. (cf. [12], Theorem 4.2) Letl be as in (2.7),k be as in (2.8) andzδ
αk

be as in
(1.7) withα = αk. Thenl ≤ k and

‖F (x̂)− zδ
αk
‖ ≤ (2 +

4µ

µ− 1
)µψ−1(δ).

3. SEMILOCAL CONVERGENCE

Now consider the nonlinear equation (1.5) withzδ
αk

in place ofz. It can be seen as in
[24], Theorem 1.1, that for monotone operatorF, the equation

F (x) +
αk

c
(x− x0) = zδ

αk
(3.1)

where0 < c < αk has a unique solutionxδ
cαk

. It is interesting to note that the presence
of regularization parameterαk, in (3.1) relieves us of the labour of choosing another reg-
ularization parameter for Lavrentiev regularization in the nonlinear part. We propose the
following iterative method for computing the solutionxδ

cαk
. Forn ≥ 0, let

xδ
n+1,αk

= xδ
n,αk

− (F ′(xδ
n,αk

) +
αk

c
)−1(F (xδ

n,αk
)− zδ

αk
+

αk

c
(xδ

n,αk
− x0)), (3.2)

wherexδ
0,αk

:= x0 is a starting point of the iteration. The main goal of this section is to
provide sufficient conditions for the convergence of method (3.2) toxδ

cαk
and obtain an

error estimate for‖xδ
cαk

− xδ
n,αk

‖. We use a majorizing sequence for proving our results
[1]-[5]. We need the follwing result on majorizing sequences for method (3.2)

Lemma 4. LetL0 > 0 andη > 0. Suppose that

h0 = 16L0η ≤ 1. (3.3)

Set

q =
1−√1− h0

2
. (3.4)

Then, scalar sequence{tn} given by

t0 = 0, t1 = η, tn+1 = tn + 2L0(tn + tn−1)(tn − tn−1), ∀n = 1, 2, · · · (3.5)

is increasing, bounded from above byt∗∗ = η
1−q and converges to its unique least upper

boundt∗ which satisfies
η ≤ t∗ ≤ t∗∗. (3.6)

Moreover, the following assertion hold for eachn = 1, 2, · · ·
0 < tn+1 − tn ≤ q(tn − tn−1) ≤ qnη (3.7)

and

t∗ − tn ≤ qn

1− q
η. (3.8)
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Proof. We shall prove (3.7) using mathematical induction. Estimate (3.7) holds forn = 0
by the initial conditions. Then, we have by (3.4) and (6.3) that

t2 ≤ t1 + q(t1 − t0) = η + qη =
1− q2

1− q
η ≤ t∗∗.

Let us assume (3.7) holds for allk ≤ n. Then, we have by (3.4) that

tk+1 − tk = 2L0(tk + tk−1)(tk − tk−1)

≤ 2L0(
1− qk

1− q
η +

1− qk−1

1− q
η)(tk − tk−1)

≤ 4L0η

1− q
(tk − tk−1) ≤ q(tk − tk−1).

Moreover, we obtain that

tk+1 ≤ tk + q(tk − tk−1) ≤ · · · ≤ η + qη + · · ·+ qkη

≤ 1− qk+1

1− q
η < t∗∗.

Hence, sequence{tk} is increasing and bounded above byt∗∗ and as such it converges
to t∗ satisfying (3.6). Estimate (3.8) follows from (3.7) by using standard majorization
techniques [1]-[5]. The proof of the Lemma is complete, Let

Rα(x) = F ′(x) +
αk

c
. (3.9)

¤

Next we show the main semilocal convergence result for method (3.2).

Theorem 5. Under(C1)′ and the hypotheses in Lemma 4 with

‖Rα(x0)−1(F (x0)− zδ
αk

)‖ ≤ η, (3.10)

further suppose thatt∗ ≤ q. Then, sequence{xδ
n,αk

} generated by (3.2) is well defined,

remains inU(x0, t
∗) for eachn = 0, 1, 2, · and converges to a solutionxδ

cαk
∈ U(x0, t∗)

of equation (3.1). Moreover, the following estimates hold for eachn = 0, 1, 2, · · ·

‖xδ
n+1,αk

− xδ
n,αk

‖ ≤ an‖xδ
n,αk

− xδ
n−1,αk

‖ (3.11)

‖xδ
n+1,αk

− xδ
n,αk

‖ ≤ tn+1 − tn (3.12)

and

‖xδ
n,αk

− xδ
cαk
‖ ≤ t∗ − tn, (3.13)

where

an = L0{
∫ 1

0

‖xδ
n,αk

−x0 +θ(xδ
n−1,αk

−xδ
n,αk

)‖dθ+2‖xδ
n,αk

−x0‖+‖xδ
n−1,αk

−x0‖}.
(3.14)
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Proof. Let G(x) = x − Rα(x)−1[F (x) − zδ
αk

+ αk

c (x − x0)]. Using (3.2), we have, we
have foru, v ∈ U(x0, t

∗),

G(u)−G(v) = u− v −Rα(u)−1[F (u)− zδ
αk

+
αk

c
(u− x0)]

+Rα(v)−1[F (v)− zδ
αk

+
αk

c
(v − x0)]

= u− v − [Rα(u)−1 −Rα(v)−1](F (v)− zδ
αk

+
αk

c
(v − x0))

−Rα(u)−1(F (u)− F (v) +
αk

c
(u− v))

= Rα(u)−1[F ′(u)(u− v)− (F (u)− F (v)]

−Rα(u)−1[F ′(v)− F ′(u)]Rα(v)−1(F (v)− zδ
αk

+
αk

c
(v − x0))

= Rα(u)−1[F ′(u)(u− v)− (F (u)− F (v))]
+Rα(u)−1[F ′(v)− F ′(u)](v −G(v))

= Rα(u)−1[F ′(u)(u− v) +
∫ 1

0

(F ′(u + t(v − u))(v − u)dt]

+Rα(u)−1[F ′(v)− F ′(u)](v −G(v))

=
∫ 1

0

Rα(u)−1[(F ′(u + t(v − u))− F ′(u))(v − u)dt]

+Rα(u)−1[F ′(v)− F ′(u)](v −G(v)). (3.15)

Let in particularu = xδ
n,αk

andv = xδ
n−1,αk

. Then by(C1)′ and‖R(u)−1F ′(u)‖ ≤ 1,
we obtain (3.11).

Next, we shall prove that the sequence{tn} defined in Lemma 4 is a majorizing se-
quence of the sequence{xδ

n,αk
}.

Note that‖xδ
1,αk

− x0‖ = ‖Rα(x0)−1(F (x0) − zδ
αk

)‖ ≤ η = t1 − t0. Assume that
‖xδ

i+1,αk
− xδ

i,αk
‖ ≤ ti+1 − ti for all i ≤ k for somek. Then by (3.11)

‖xδ
k+2,αk

− xδ
k+1,αk

‖ ≤ ak‖xδ
k+1,αk

− xδ
k,αk

‖ ≤ tk+2 − tk+1. (3.16)

Thus by induction‖xδ
n+1,αk

− xδ
n,αk

‖ ≤ tn+1 − tn for all n ≥ 0. Hence, it follows
from Lemma 4{tn}, n ≥ 0 is a majorizing sequence of{xδ

n,αk
}. {xδ

n,αk
}, n ≥ 0 is a

complete sequence in a Hilbert space and as such it converges to somexδ
cαk

∈ U(x0, t∗)
(since andU(x0, t∗) is a closed set). Now by lettingn →∞ in (3.2) we obtainF (xδ

cαk
) =

zδ
αk

+ αk

c (x0 − xδ
cαk

). Estimate (3.13) follows from (3.12) by using standard majorization
techniques [1]- [5]. This completes the proof of the Theorem. ¤

Remark6. The convergence order of method (1.10) is two [13]. In Theorem 5 the error
bounds are too pessimistic. That is why in practice we shall use the computational order
of convergence (COC) (see eg. [5]) defined by

% ≈ ln
(‖xn+1 − xδ

α‖
‖xn − xδ

α‖
)

/ ln
( ‖xn − xδ

α‖
‖xn−1 − xδ

α‖
)

.

The (COC)% will then be close to 2 which is the order of convergence for(1.10).
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3.1. Linear Convergence. In this subsection, we consider the sequence(x̃δ
n) defined it-

eratively by

x̃δ
n+1 := x̃δ

n − (F ′(x0) +
αk

c
I)−1(F (x̃δ

n)− zδ
αk

+
αk

c
(x̃δ

n − x0)), (3.17)

wherex̃δ
0 = x0 is a starting point of the iteration. We prove that the sequence(x̃δ

n) converge
to the unique solutionxδ

cαk
of (3.1) and obtain an error estimate for‖xδ

cαk
−x̃δ

n‖. The proof
of the following lemma is analogous to the proof of Lemma 4.

Lemma 7. Assume there exist̃r ∈ [0, 1) and nonnegative numbersL0, η, α such that

L0

(1− r̃)
η ≤ r̃. (3.18)

Then the sequence(t̃n) defined by

t̃n+1 = t̃n +
L0

(1− r̃)
η(t̃n − t̃n−1) (3.19)

is increasing, bounded above byt̃∗∗ := η
1−r̃ , and converges to somẽt∗ such that0 < t̃∗ ≤

η
1−r̃ . Moreover, forn ≥ 0;

0 ≤ t̃n+1 − t̃n ≤ r̃(t̃n − t̃n−1) ≤ r̃nη, (3.20)

and

t̃∗ − t̃n ≤ r̃n

1− r̃
η. (3.21)

We shall assume that

L0

2
ρ2 + ρ + (2 +

4µ

µ− 1
)µψ−1(δ) ≤ η

≤ min{r(1− r̃),
r̃(1− r̃)

L0
}. (3.22)

Let

G̃(x) := x−Rα(x0)−1[F (x)− zδ
αk

+
αk

c
(x− x0)]. (3.23)

Note that with the above notation,̃G(x̃δ
n) = x̃δ

n+1 and‖R̃(x0)−1‖ ≤ 1.

Theorem 8. Suppose(C0) and (C1)′ hold. Let the assumptions in Lemma 7 are sat-
isfied withη as in (3.22). Then the sequence(x̃δ

n) defined in (3.17) is well defined and
x̃δ

n ∈ U(x0, t̃
∗) for all n ≥ 0. Further (x̃δ

n) is Cauchy sequence inU(x0, t̃
∗) and hence

converges toxδ
cαk

∈ U(x0, t̃∗) ⊂ U(x0, t̃
∗∗) andF (xδ

cαk
) + αk

c (xδ
cαk

− x0) = zδ
αk

.
Moreover, the following estimates hold for alln ≥ 0,

‖x̃δ
n+1 − x̃δ

n‖ ≤ t̃n+1 − t̃n, (3.24)

and

‖x̃δ
n − xδ

cαk
‖ ≤ t̃∗ − t̃n ≤ r̃nη

1− r̃
. (3.25)
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Proof. Let G̃ be as in (3.23). Then foru, v ∈ U(x0, t̃
∗),

G̃(u)− G̃(v) = u− v −Rα(x0)−1[F (u)− zδ
αk

+
αk

c
(u− x0)]

+Rα(x0)−1[F (v)− zδ
αk

+
αk

c
(v − x0)]

= Rα(x0)−1[Rα(x0)(u− v)− (F (u)− F (v))] + Rα(x0)−1 αk

c
(v − u)

= Rα(x0)−1[F ′(x0)(u− v)− (F (u)− F (v)) +
αk

c
(u− v)]

+Rα(x0)−1 αk

c
(v − u)

= Rα(x0)−1[F ′(x0)(u− v)− (F (u)− F (v))]

Thus by(C1)′ we have

‖G̃(u)− G̃(v)‖ ≤ L0t̃
∗‖u− v‖. (3.26)

The rest of the proof is analogous to the proof of Theorem 5. ¤

Remark9. Now by takingu = xδ
cαk

andv = x̃n−1 in (3.2), we obtain linear convergence
of x̃n to xδ

cαk
.

Remark10. For the remainder of the paper we shall consider only the quadratically con-
vergent sequence(xδ

n,αk
) defined in (3.2) for detailed analysis. The results verbatim hold

good in the case of linearly convergent sequence(x̃δ
n) defined in (3.17).

Remark11. (a) The semilocal convergence condition given in [13] under the(C1)
conditions are given by

3Lη

2
≤ q1 and h =

3Lη

2
≤ 1. (3.27)

By comparing (3.3) and (3.27) we see that

h0

h
→ 0 as

L0

L
→ 0.

Hence, under our convergence criteria the applicability of method (3.2) is ex-
panded infinitely many times.

(b) If L0 = L the results for method (3.2) coincide with the ones in [13](withc = αk).
Otherwise, i.e., ifL0 < L our results constitute an improvement. Note that in this
case the differences˜tn+1 − t̃n are tighter than in [13] since we useL0 instead of
L andL0 < L.

4. ERRORBOUNDS UNDER SOURCECONDITIONS

(C3) There exists a continuous, strictly monotonically increasing functionϕ1 : (0, b] →
(0,∞) with b ≥ ‖F ′(x0)‖ satisfying;

• limλ→0 ϕ1(λ) = 0,
•

sup
λ≥0

αϕ1(λ)
λ + α

≤ ϕ1(α) ∀λ ∈ (0, b]

and
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• there existsv ∈ X with ‖v‖ ≤ 1 (cf. [18]) such that

x0 − x̂ = ϕ1(F ′(x0))v.

• for eachx ∈ U(x0, R) there exists a bounded linear operatorG(x, x0) (cf.[21])
such that

F ′(x) = F ′(x0))G(x, x0)
with ‖G(x, x0)‖ ≤ k1.

Assume thatk1 < 1−L0R
1−c and for the sake of simplicity assume thatϕ1(α) ≤ ϕ(α) for

α > 0.

Theorem 12. Supposexδ
cαk

is the solution of

F (x) +
αk

c
(x− x0) = zδ

αk

and(C1)′ and (C3) holds. Then

‖x̂− xδ
cαk
‖ ≤

ϕ1(αk) + (2 + 4µ
µ−1 )µψ−1(δ)

1− (1− c)k1 − L0R
.

Proof. Note thatc(F (xδ
cαk

)− zδ
αk

) + αk(xδ
cαk

− x0) = 0, so

‖xδ
cαk

− x̂‖ ≤ ‖αk(F ′(x0) + αkI)−1(x0 − x̂)‖
+‖(F ′(x0) + αkI)−1c(F (x̂)− zδ

αk
)‖

+‖(F ′(x0) + αkI)−1[F ′(x0)(xδ
cαk

− x̂)

−c(F (xδ
cαk

)− F (x̂))]‖
≤ ‖αk(F ′(x0) + αkI)−1(x0 − x̂)‖ (4.1)

+‖F (x̂)− zδ
αk
‖+ Γ

whereΓ := ‖(F ′(x0) + αkI)−1
∫ 1

0
[F ′(x0)− cF ′(x̂ + t(xδ

cαk
− x̂)](xδ

cαk
− x̂)dt‖. So by

(C3), we obtain

Γ ≤ ‖(F ′(x0) + αkI)−1s1‖
+(1− c)‖(F ′(x0) + αkI)−1s2‖

≤ L0R‖xδ
cαk

− x̂‖+ (1− c)k1‖xδ
cαk

− x̂‖ (4.2)

where

s1 :=
∫ 1

0

[F ′(x0)− F ′(x̂ + t(xδ
cαk

− x̂))](xδ
cαk

− x̂)dt,

s2 := F ′(x0)
∫ 1

0

G(x̂ + t(xδ
cαk

− x̂), x0)(xδ
cαk

− x̂)dt.

Hence by (4.1) and (4.2) we have

‖xδ
cαk

− x̂‖ ≤ τx0

1− (1− c)k1 − L0R

≤
ϕ1(αk) + (2 + 4µ

µ−1 )µψ−1(δ)

1− (1− c)k1 − L0R
,

where
τx0 := ‖αk(F ′(x0) + αkI)−1(x0 − x̂)‖+ ‖F (x̂)− zδ

αk
‖.

This completes the proof of the theorem.
The following Theorem is a consequence of Theorem 5 and Theorem 12. ¤
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Theorem 13. Let xn be defined as in (3.2). If all assumptions of the Theorems 5 and 12
are fulfilled, then

‖x̂− xn‖ ≤ qnη

1− q
+ O(ψ−1(δ)).

4.1. Stopping index. Let

nk = min{n : qn ≤ 1
µk
}. (4.3)

Then we have the following

Theorem 14. Let xδ
cαk

be the unique solution of (3.1) andxδ
n,αk

be as in (3.2). Let the
assumptions in Theorem 1,(C1), (C1)′, (C2) be satisfied. Letnk be as in (4.3). Then we
have

‖xδ
nk,αk

− x̂‖ = O(ψ−1(δ)). (4.4)

5. IMPLEMENTATION OF ADAPTIVE CHOICE RULE

The main goal of this section is to provide a starting point for the iteration approximating
the unique solutionxδ

cα of (3.1)and then to provide an algorithm for the determination of a
parameter fulfilling the balancing principle (2.8).

For i, j ∈ {0, 1, 2, · · · , N}, we have

zδ
αi
− zδ

αj
= (αj − αi)(K∗K + αiI)−1(K∗K + αjI)−1K∗yδ.

The implementation of our method involves the following steps:
Step I

• i=1
• Solve forwi : (K∗K + αiI)wi = K∗yδ

• Solve forzi,j : (K∗K + αiI)−1zi,j = (αj − αi)wi, j ≤ i
• If ‖zi,j‖ > 4

µj , then takek = i− 1.

• Otherwise, repeat withi + 1 in place ofi.

Step II

• Choosex0 ∈ D(F ) such that‖Rα(x0)−1(F (x))− zδ
αk

)‖ ≤ η for someη > 0.

• Chooseq ≤ 1−√1−16L0η
2

Step III

• n = 1
• If qn ≤ 1

µk , then takenk := n

• Otherwise , repeat withn + 1 in place ofn

Step IV

• Solvexδ
j,αk

: (F ′(xδ
j−1,αk

) + αk

c I)(xδ
j,αk

− xδ
j−1,αk

) = F (xδ
j−1,αk

) − wk +
αk

c (xδ
j−1,αk

− x0) for j = 1, 2, · · · , nk.

6. EXAMPLES

In this section we present two examples where(C1) is not satisfied but(C1)′ is satisfied.

Example 15. LetX = Y = R, D = [0,∞), x0 = 1 and define functionF onD by

F (x) =
x1+ 1

i

1 + 1
i

+ c1x + c2, (6.1)



36 Ioannis K. Argyros, Santhosh George

wherec1, c2 are real parameters andi > 2 an integer. ThenF ′(x) = x1/i + c1 is not
Lipschitz onD. However central Lipschitz condition(C2)′ holds forL0 = 1.

Indeed, we have

‖F ′(x)− F ′(x0)‖ = |x1/i − x
1/i
0 |

=
|x− x0|

x
i−1

i
0 + · · ·+ x

i−1
i

so
‖F ′(x)− F ′(x0)‖ ≤ L0|x− x0|.

Example 16. We consider the integral equations

u(s) = f(s) + λ

∫ b

a

G(s, t)u(t)1+1/ndt, n ∈ N. (6.2)

Here,f is a given continuous function satifyingf(s) > 0, s ∈ [a, b], λ is a real number,
and the kernelG is continuous and positive in[a, b]× [a, b].

For example, whenG(s, t) is the Green kernel, the corresponding integral equation is
equivalent to the boundary value problem

u′′ = λu1+1/n

u(a) = f(a), u(b) = f(b).

These type of problems have been considered in[1], [3], [17].
Equation of the form (6.2) generalize equations of the form

u(s) =
∫ b

a

G(s, t)u(t)ndt (6.3)

studied in[1], [3], [17]. Instead of (6.2) we can try to solve the equationF (u) = 0 where

F : Ω ⊆ C[a, b] → C[a, b], Ω = {u ∈ C[a, b] : u(s) ≥ 0, s ∈ [a, b]},
and

F (u)(s) = u(s)− f(s)− λ

∫ b

a

G(s, t)u(t)1+1/ndt.

The norm we consider is the max-norm.
The derivativeF ′ is given by

F ′(u)v(s) = v(s)− λ(1 +
1
n

)
∫ b

a

G(s, t)u(t)1/nv(t)dt, v ∈ Ω.

First of all, we notice thatF ′ does not satisfy a Lipschitz-type condition inΩ. Let us
consider, for instance,[a, b] = [0, 1], G(s, t) = 1 andy(t) = 0. ThenF ′(y)v(s) = v(s)
and

‖F ′(x)− F ′(y)‖ = |λ|(1 +
1
n

)
∫ b

a

x(t)1/ndt.

If F ′ were a Lipschitz function, then

‖F ′(x)− F ′(y)‖ ≤ L1‖x− y‖,
or, equivalently, the inequality

∫ 1

0

x(t)1/ndt ≤ L2 max
x∈[0,1]

x(s), (6.4)
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would hold for allx ∈ Ω and for a constantL2. But this is not true. Consider, for example,
the functions

xj(t) =
t

j
, j ≥ 1, t ∈ [0, 1].

If these are substituted into (6.4)

1
j1/n(1 + 1/n)

≤ L2

j
⇔ j1−1/n ≤ L2(1 + 1/n), ∀j ≥ 1.

This inequality is not true whenj →∞.
Therefore, condition (6.4) is not satisfied in this case. However, condition(C1)′ holds.

To show this, letx0(t) = f(t) andγ = mins∈[a,b] f(s), α > 0 Then forv ∈ Ω,

‖[F ′(x)− F ′(x0)]v‖ = |λ|(1 +
1
n

) max
s∈[a,b]

|
∫ b

a

G(s, t)(x(t)1/n − f(t)1/n)v(t)dt|

≤ |λ|(1 +
1
n

) max
s∈[a,b]

Gn(s, t)

whereGn(s, t) = G(s,t)|x(t)−f(t)|
x(t)(n−1)/n+x(t)(n−2)/nf(t)1/n+···+f(t)(n−1)/n ‖v‖.

Hence,

‖[F ′(x)− F ′(x0)]v‖ =
|λ|(1 + 1/n)

γ(n−1)/n
max

s∈[a,b]

∫ b

a

G(s, t)dt‖x− x0‖
≤ L0‖x− x0‖,

whereL0 = |λ|(1+1/n)
γ(n−1)/n N andN = maxs∈[a,b]

∫ b

a
G(s, t)dt. Then condition(C1)′ holds

for sufficiently smallλ.
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