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1. INTRODUCTION

Itis well known that many inverse problems typically leads to mathematical models that
are ill-posed (according to Hadamard'’s definition [16]) in the sense that it is not possible
to provide a unique solution.

In this paper we are interested in finding approximation for a solution of the nonlinear
ill-posed operator equation of the Hammerstein type(see [10, 11, 12, 15]) equation

KF(z)=y (1.1)

whereF : D(F) C X — X is monotone and{ : X — Y a bounded linear operator
and X,Y are taken to be Hilbert spaces. Uétx, R) andU(z, R), stand respectively,
for the open and closed ball i with centerz and radiusk > 0. Let L(X) denote the
space of all bounded linear operators frominto itself. It is assumed that (1.1) has a
solutionz € D(F). We are interested in the case whEris a monotone operator (cf.
[24]). i.e.,F : D(F) C X — X satisfies

(F(z1) — F(z2),21 — 22) >0, V1,29 € D(F).
25
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A typical example of (1.1) is the Hammerstein equation of the form

/01 k(s,t)z3(s)ds = y(t), t €[0,1], (1.2)

wherek(.,.) is a nondegenerate kernal which is square integrable, that is,

1 1
/ / (s, £)|Pdsdt < o,
0 0

andf : [0,1] x [0,1] — Ris a suitable function. Note that (1.2) takes the form (1.1) with
K : L?[0,1] — L?[0,1] defined by

Kz(t) = /01 k(s,t)x(s)ds, =€ L*[0,1], t € [0,1]

andF : L?[0,1] — L?[0,1] is the nonlinear operator defined by
F(x)(s) = 2%(s), s€[0,1].
We assume throughout thgtt € Y are the available noisy data with
ly —°ll < 6. (1.3)

Observe that (cf. [15]) the solutiah of (1.1) can be obtained by first solving the linear
equation

Kz=y (1.4)
for z and then solving the nonlinear equation
F(z) =z (1.5)

For the treatment of nonlinear ill-posed problems the standard regularization method is
the method of Tikhonov regularization. But if the nonlinear operator is monotone then a
simpler regularization strategy available is the Lavrentiev regularization. Notdsthat
need not be monotone everfifis monotone. So in the straight forward approach one has
to consider Tihkonov regularization method for approximately solving (1.1).

What we show in this paper is that for the special case wheis linear andF' is
monotone, by splitting the equation (1.1) into (1.4) and (1.5), one can simplify the proce-
dure by specifying a regularization strategy for linear part (1.4) and an iterative method for
nonlinear part (1.5). More precisely, for fixed> 0, § > 0 we consider the regularized
solution of (1.4) withy® in place of y as

20 = (K +al)™Yy° (1.6)
if the operator K in (1.4) is positive self adjoint akd = Y, otherwise we consider
20 = (K*K + o) K*y°. 1.7)

Note that (1.6) is the simplified or Lavrentiev regularization (see [8]) of the equation (1.4)
and (1.7) is the Tikhonov regularization (see [6, 7, 9, 14, 22, 23]) of (1.4). The regular-
ization parameter is chosen according to an adaptive method proposed by Pereverzev and
Schock in [20].
In [15], it is assumed that the bounded inverseFtfz,) exist and considered the se-
quence
xfz«%lq,a = x(vsha - F/(xo)_l(F(fo,a) - Zi)) (18)

with 2 ., = o and proved thatz?, ) converges linearly to the solutiarj, of

inequationF(z) = 2°. (1.9)
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Later in [12], George and Kunhanadan considered the sequefice defined itera-
tively as 7
xfﬂrl,a = ‘rfL,a - F/(‘rfz,a)_l(F(fo,a) - Zi)’ (110)
with 3 , = ¢ and proved thatz?, ,) converges quadratically to the solutiof) of (1.9)
under the assumption that the bounded inversE’¢f) exist in a neighborhood af.
Recall that a sequende,,) is X with lim z,, = «* is said to converge quadratically, if
there exists positive number M, not necessarily less than 1, such that fosatiiciently
large
|Zn1 — || < M|z, — ™|, (1.11)
If the sequencéz,,) has the property that
[Zn1 — 2| < gllzn — 27, 0<g<l1

then (z,,) is said to be linearly convergent. For an extensive discussion of convergence
rate, see Ortega and Rheinboldt [19].

Note that the ill-posedness of equation (1.1) in [15] and in [12] is due to the ill-posedness
of the linear equation (1.4). In the present paper we assume that (1.1) is ill-posed in both
the linear part (1.4) and the nonlinear part (1.5). Using the monotonicity we carry out
the convergence analysis by means of suitably constructed majorizing sequences, deviating
from the methods used in [15] and [12]. An advantage of this approach is that the majoriz-
ing sequence gives an a priori error estimate which can be used to determine the number
of iterations needed to achieve a prescribed solution accuracy before actual computation
takes place.

In the present paper we expand the applicability of results in [13] using weaker condi-
tions.

2. BACKGROUND

We consider that the operatérsatisfies the following conditions:

(CO) There existsk > 0 such thal/ (z, R)) C D(F') andF is Fréchet differentiable at
allz € U(z, R).

(C1) There exists a constait > 0 such that for every, v € U(z, R) andv € X,
there exists an elemef(z, u, v) € X satisfying

[F' () — F'(u)]v = F'(u)®(z,u,0), |2(z,u,v)|| < Lljv|||z - ul
forall z,u € U(Z, R) andv € X.
(C1) Letzy € D(F) be fixed. LetR > 0 be such that/(z, R) C D(F). There exists

a constantl, > 0 such that for eaclh € U(%, R) andv € X, there exists an
elementP(z,u,v) € X such that

[F'(x) = F'(u)]v = F'(u)P(z,u,v), [Pz, u,0)|] < Lo|lv||(lz — ol + [l — zol]).
Here is the motivation for the introduction 6€'1)’. We note that that sincgu — z|| <
|lu — zo|| + ||x — x| condition(C1) always impliesC1)’ with Ly = L and® = P but
not necessarily vice versa.

Note that

Lo <L

holds in general an% can be arbitrarily large [1]-[5]. At the end of this study in Section
4 we provide numerical examples whergl)’ but not(C1).

(C2) There exists a continuous, strictly monotonically increasing fungtioni0, a] —
(0, 00) with a > || K||? satisfying;
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e limy_op(A) =

sup ap(N) < p(a), Va € (0,a).

e there exists;e X with |Jv|| <1 such that
F(z) = o(K*K)v (2.1)
Let
2o = (K*K +al) ' K*y.
Hereafter we consides as in (1.7). We observe that
IF(@) = zall < IF(@) = zall + 20 — 22l

. 5
< HF(x)—zaHﬂLﬁ, (2.2)
and
F(2) =24 = F(2)— (K'K+al) 'K*KF(1)
= [ —(K*K+al) 'K*K|F(2)
= ofK*K +al)"'F(2). (2.3)
So by(C?2),
[F(#) — zal < ¢(a). (2.4)

Thus we have the following theorem.

Theorem 1. Letz% be as in (1.7) and théC'2) holds. Then

]
—). 2.5
7a) (2.5)
2.1. A priori choice of the parameter. Note that the estimate(«) + % in (2.5) at-

tains minimum for the choice: := a; which satisfiesp(as) = 2. Let y()) :=

M e 1(N),0 < X < | K||?. Then we have = \/as¢(as) = ¥(p(as)), and
as =~ (¥7H(9)). (2.6)
So Theorem 1 and the above observation lead to the following.

Theorem 2. Lety()) := A/ ~1(A),0 < A < ||K|* and the assumptions of Theorem 1
are satisfied. Fob > 0, letas = ¢~ 1 (¢»=1(8)). Then

IF(2) - 2ol < O(w~(9)).

2.2. An adaptive choice of the parameter. The error estimate in the above Theorem has
optimal order with respect t6. Unfortunately, an a priori parameter choice (2.6) cannot
be used in practice since the smoothness properties of the unknown sélugifected in

the functiony are generally unknown. There exist many parameter choice strategies in the
literature (cf. [8], [12], [20], [24], etc.).

In [20], Pereverzev and Schock considered an adaptive selection of the parameter which
does not involve even the regularization method in an explicit manner. In this method the
regularization parameter; are selected from some finite det; : 0 < agp < 1 < -+- <
ay } and the corresponding regularized solution, sgyare studied on-line. In this paper
also, we consider the adaptive method for selecting the paraméter?,.

1F(2) = 2ol < (e(a) +
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Leti € {0,1,2,---, N} anda; = pu* oy wherep > 1 andag = 6. Let

U:=max{i: o(a;) < 5041} (2.7
and
. 5 5 46 .
k:=max{i: ||z, — 25 || < ,7=0,1,2,--- i} (2.8)
J /a]

We will be using the following theorem from [12]

Theorem 3. (cf. [12], Theorem 4.2) Letbe as in (2.7)k be as in (2.8) andrgk be asin
(1.7) withae = .. Thenl < k and

IF@) = 24,1 < @2+ )™ ).

3. SEMILOCAL CONVERGENCE

Now consider the nonlinear equation (1.5) Wﬁil in place ofz. It can be seen as in
[24], Theorem 1.1, that for monotone operatgithe equation

F(a:)—!—%(a:—xo) :Zik (3.1)

where0 < ¢ < «aj has a unique solutiomﬁak_. It is interesting to note that the presence

of regularization parameter;, in (3.1) relieves us of the labour of choosing another reg-
ularization parameter for Lavrentiev regularization in the nonlinear part. We propose the
following iterative method for computing the solutief,, . Forn > 0, let

P B B Qf\ 5 5 Qg , s
anrl.,ozk = xn,ak - (F,(xn,ak) + ?) 1(F(xn,ak) - Zak + ?(wn,ak - .’Eo)), (32)
wherez§ , = x is a starting point of the iteration. The main goal of this section is to
provide sufficient conditions for the convergence of method (3.25)‘2@ and obtain an
error estimate foflz%, — 2 ., ||. We use a majorizing sequence for proving our results

Cx n,xg

[1]-[5]. We need the follwing result on majorizing sequences for method (3.2)

Lemma 4. Let Ly > 0 andn > 0. Suppose that

ho = 16Lgn < 1. (3.3)
Set
q= 1_7\/21_7%. (3.4)
Then, scalar sequendg,, } given by
to=0,t1 =1, tne1 = tn + 2Lo(tn + tn1)(tn — th—1), Yn=1,2,--- (3.5

is increasing, bounded from above By = %q and converges to its unique least upper
boundt* which satisfies

n < t* <t (3.6)
Moreover, the following assertion hold for eagh= 1,2, - - -
0 <tpt1—tn <q(tn —tn—1) <q"n (3.7)
and
. q"
tr—t 7. (3.8)

<
n_l_q
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Proof. We shall prove (3.7) using mathematical induction. Estimate (3.7) holds fo)
by the initial conditions. Then, we have by (3.4) and (6.3) that

1—g¢q

ty <ti+q(ti—to) =n+qn= -

”7 < t**.

Let us assume (3.7) holds for &l< n. Then, we have by (3.4) that

ther —te = 2Lo(tk +th—1)(th — tx—1)
1_qk 1_qk71
< 2L tr — te_
< 0(1_q77+ 1—¢ (e —te-1)
4L07’]

IN

te —tp—1) < qtp —tr_1).
1_q(k k1) < q(tk — tr-1)

Moreover, we obtain that

tepyr < bt qlte—te1) <--<n+an+---+¢"n
1— k+1

Hence, sequencf } is increasing and bounded above 3§ and as such it converges
to t* satisfying (3.6). Estimate (3.8) follows from (3.7) by using standard majorization
techniques [1]-[5]. The proof of the Lemma is complete, Let

Ro(z) = F'(z) + %’“ (3.9)
O

Next we show the main semilocal convergence result for method (3.2).

Theorem 5. Under (C1)" and the hypotheses in Lemma 4 with
1Ra (o)~ (F(wo) = 2 )l <, (3.10)

further suppose that* < ¢. Then, sequenc{arfwk} generated by (3.2) is well defined,

remains inU (zo,t*) for eachn = 0, 1,2, - and converges to a solutiorﬁ% € U(zog, t*)
of equation (3.1). Moreover, the following estimates hold for eaeh0,1,2, - - -

§ ) § )
||xn+1,ak - xn,ak H < an”xn,ak - xnfl,ak || (311)
H'rfl-‘,-l,ak - xfl,ak || S tn+1 - tn (312)
and
|29, o = @00, | S t° = t, (3.13)
where

1
é 5 ) 5 é
an = LO{/O ”xn,(yk 7$0+9(In_17ak 7‘Tn,(yk)‘|d9+2“l‘n,ak 7560” + ||‘Tn—1,ak 71’0“}‘
(3.14)



Regularization methods for ill-posed problems with monotone nonlinear part 31

Proof. Let G(z) = © — Ra(2) ' [F(z) — 25, + % (x — 20)]. Using (3.2), we have, we
have foru,v € U(zo,t*),

G(u) = Gv) = w—v—Ra(w)'[Fw) = 25, +(u—a0)
+Ra(0) M [F(0) = 25, + (v = 20)]
= = v [Ra(w)™ = Ra(0) I(F(v) = 5, + “£(v — x0)
~Ra(u) ™ (F(u) = F(v) + X (u—v))

= Ra(w) P () — v) — (Pw) — F(v)
—Ro(u) M [F' (v) — F'(u)|Ra(v) ' (F(v) — 25, + %(U — Tp))

= R (u) T (F' (u + t(v — ) — F'(w)) (v — u)dt]
0
+Ro(u) HF (v) — F'(u)](v — G(v)). (3.15)
Let in particularu = %, ,, andv = z%,_, .. Then by(C1)’ and||R(u) ' F'(u)|| < 1,
we obtain (3.11).
Next, we shall prove that the sequenjgg } defined in Lemma 4 is a majorizing se-
quence of the sequenge;, , }.

Note that||z{ ,, — ol = [[Ra(z0)  (F(z0) — 25,)|l < n = t1 — to. Assume that
[#911 o, — @ o, I < tiy1 —t; foralli < k for somek. Then by (3.11)

1,0k

S 6 6 S
Hmk+2,ak - xk+1,(xk H S ak||‘rk+1,(xk - mk,ak || é tk+2 - tk+1' (3'16)

Thus by induction|z5, ; ,, — 23 o, || < tag1 — t, for all n > 0. Hence, it follows

from Lemma 4{t,},n > 0O is a méjokrizing sequence dft), , }. {25 ., },n > Oisa
complete sequence in a Hilbert space and as such it converges t@é(gkme U(zo,t*)
(since andJ (zg, t*) is a closed set). Now by letting — oo in (3.2) we obtainF(mﬁak) =
zgk + % (2 — xﬁak). Estimate (3.13) follows from (3.12) by using standard majorization

techniques [1]- [5]. This completes the proof of the Theorem. |

Remark6. The convergence order of method (1.10) is two [13]. In Theorem 5 the error
bounds are too pessimistic. That is why in practice we shall use the computational order
of convergence (COC) (see eg. [5]) defined by

[2n1 — 25| 20 — 25|
len( n — 60‘ /In _" 7“(5 .
[EE | |2n—1 — 23]

The (COC)p will then be close to 2 which is the order of convergence for(1.10).
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3.1. Linear Convergence. In this subsection, we consider the sequefi® defined it-
eratively by

~ ~ Ok ~ g .

By =3~ (F(wo) + D7 E@) — 2, + @ —w),  (317)

wherei$ = x is a starting point of the iteration. We prove that the sequénteconverge
to the unique solutior?,,, of (3.1) and obtain an error estimate far’,, — 3, ||. The proof
of the following lemma is analogous to the proof of Lemma 4.

Lemma 7. Assume there exigte [0, 1) and nonnegative numbefs), n, o such that

Lg

oS 7. (3.18)

hen the sequende, ) defined by
- ~ Lo (fr — 1) ( )

is increasing, bounded above by := -, and converges to sonte such thap) < ¢* <
1=. Moreover, forn > 0;

0 S n+l — tn S ’F(tn — tnfl) S ’I:n?], (320)

and

LR, (3.21)
7
We shall assume that
LO 2 4;1, 1
=0 24+ 5 <
5P Tt +u_1)w (6 < n
(1 —7)

< min{r(l —7), 7
0

1. (3.22)

Let
G(x) == & — Ra(wo) “[F(z) — 20, + %(x — o). (3.23)

Note that with the above notatioG(#?) = 29, , and||R(zo) || < 1.

Theorem 8. Suppos€C0) and (C1)’ hold. Let the assumptions in Lemma 7 are sat-
isfied withn as in (3.22). Then the sequeng®) defined in (3.17) is well defined and
%8 € Ul(zo,t*) for all n > 0. Further (%) is Cauchy sequence ii(zo,#*) and hence
converges ta:l, € Uz, t*) C U(xo, ) and F (22, ) + 2 (23, — w0) = 2], .

Moreover, the following estimates hold for all> 0,

Hi‘fl—i-l - ‘iiH < i:n-‘rl - E’ru (324)
and
13, — 2l || < T = < —L. (3.25)

= 1—

<
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Proof. Let G be as in (3.23). Then far, v € Uz, *),
G(u) = Gv) = w—v—Ra(wo) " [F(u) = 25, + = (u—ao)
+Ra(w0) " [F(v) = 28, + (v — 20)
= Ra(wo) " [Ra(z0)(u = v) = (F(u) = F(v))] + Ra(fvo)*lafck(v —u)
= Ra(wo) ' [F'(z0)(u —v) = (F(u) = F(v)) + %k(u —v)]
+Ra(w0) " (0 )
= Ra(wo) ' [F'(z0)(u = v) = (F(u) = F(v))]

Thus by(C1)’ we have
IG(uw) = G(v)| < Lot*[lu— o] (3.26)
The rest of the proof is analogous to the proof of Theorem 5. O

Remark9. Now by takingu = xiak andv = ,,_1 in (3.2), we obtain linear convergence
of &y, tozl,, .

Remarkl10. For the remainder of the paper we shall consider only the quadratically con-
vergent sequence:’ ) defined in (3.2) for detailed analysis. The results verbatim hold

n,ap

good in the case of linearly convergent sequeicg defined in (3.17).

Remarkll (a) The semilocal convergence condition given in [13] under (ihé)
conditions are given by
3L 3L
T” <q and h = T” <1 (3.27)
By comparing (3.3) and (3.27) we see that
h L
%0 — 0 as TO — 0

Hence, under our convergence criteria the applicability of method (3.2) is ex-
panded infinitely many times.

(b) If Lo = L the results for method (3.2) coincide with the ones in [13](with ).
Otherwise, i.e., ifLy < L our results constitute an improvement. Note that in this
case the differencess, ., — t,, are tighter than in [13] since we ugg instead of
LandLy < L.

4. ERRORBOUNDS UNDER SOURCE CONDITIONS
(C3) There exists a continuous, strictly monotonically increasing fungtion(0, b] —
(0,00) with b > || F’(x0)|| satisfying;
[ ] lim)\ﬂo (,01()\) = 07

api(A)
a1y YA€ (0,b
St a < p1(w) (0,0]

and
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o there exists € X with |jv|| < 1 (cf. [18]) such that
o — T = (pl(F/(.IQ))’U.

e for eachz € U(z, R) there exists a bounded linear operafr, ) (cf.[21])
such that
Fl(x) = F'(x0))G(x, x0)
with ||G(S(},3?0)|| < k.
Assume that; < 15222 and for the sake of simplicity assume thata) < ¢(«) for
a>0.

Theorem 12. Supposer?,,, is the solution of

F(z)+ %k(x — 1) = zik
and(C1)’" and (C3) holds. Then
< PalaD) 2 )0
corll =1 (1= ¢)ky — LoR
Proof. Note thatc(F(z?,,) — 20, ) + aw (2, — 20) =0, SO
& < [lag(F'(x0) + axl) " (o — 2)]|
HI(F (o) + ard) " e(F(&) = 23, )|
H[(F (x0) + ) ™M [F' (o) (22, — &)
—c(F(a3,,) = F(@))]|
vk (F" (o) + e I) ™" (o — 2) (4.1)
+HF(E) = 20, + T

wherel := || (F'(z) + i, 1)~ [ [F'(20) = cF" (& + (2%, — #)|(2%,, — #)dt|. So by
(C3), we obtain

|& —

&
[0

IN

r

IA

I(F" (x0) + arl) " s
H(L = )|(F'(20) + ) Ls2|
LoR|2%,, — 2| + (1 — ¢)ky |2

IN

— & 42)

CO COL

where )
51 = / [F'(20) — F'(& + t(a?,, —&))](l,, — 2)dt,

— F'(x / G(@ +t(d,, — &),20)(aly, — 2)dt.
Hence by (4.1) and (4.2) we have

5 A Tzo

- <
Ck £L'|| - 1- (1 — C)kl LoR

pr(an) + (2+ 25)pp=1(6)
- 1-— (1 — C)k‘l LoR ’

|l

where
Tay = [l (F' (o) + ar )™ (w0 — &) + |F(&) = 25, I
This completes the proof of the theorem.
The following Theorem is a consequence of Theorem 5 and Theorem 12. |
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Theorem 13. Letz,, be defined as in (3.2). If all assumptions of the Theorems 5 and 12
are fulfilled, then
. q"n _
2 —zn| < 1o O(¢=1(8)).
q

4.1. Stopping index. Let

1
— 4.3
ng} (4.3)

ng = min{n : ¢" <
Then we have the following

Theorem 14. Let xf% be the unique solution of (3.1) amiﬂk be as in (3.2). Let the
assumptions in Theorem (1), (C1)’, (C2) be satisfied. Let; be as in (4.3). Then we
have

125, 0 — 2] = O(7(9)). (4.4)

N,k

5. IMPLEMENTATION OF ADAPTIVE CHOICE RULE

The main goal of this section is to provide a starting point for the iteration approximating
the unique solution® , of (3.1)and then to provide an algorithm for the determination of a
parameter fulfilling the balancing principle (2.8).

Fori,j € {0,1,2,--- , N}, we have

20 =20 = (o — ;) (K*K + a; ) HEK*K + a; 1) T K*y°.

Qg Q5

The implementation of our method involves the following steps:

Step |
e i=1
e Solve forw; : (K*K + a;w; = K*y°
e Solve forZi_’j : (K*K + aiI)*lzi_j = (Oéj — ai)wi,j <7
o If |zi4] > 5, then takek = i — 1.
e Otherwise, repeat with+ 1 in place ofi.
Step Il

e Chooser, € D(F) such that| R, (zo) ' (F(xz)) — 23,)|| < n for somen > 0.
° ChOOSG] < 1-+1-16Lon \/1516L077

Step 1l
e n=1
o If ¢* < L thentaken, :=n
H . .
e Otherwise , repeat with + 1 in place ofn

Step IV
° SOlvezg’ak : (F/(‘T?fl,ak) + %I)(zjak — x?fl’ak) = F(x?fl’ak) — wg +
%(xg—l,ak - xo) forj = ]-7 23 s, N

6. EXAMPLES
In this section we present two examples whgré) is not satisfied butC'1)’ is satisfied.

Example 15. Let X =Y =R, D = [0,00), 29 = 1 and define functio#” on D by

a2t
1 + c1x + ca, (6.1)

K2

F(z) =




36 loannis K. Argyros, Santhosh George

wherecy, c; are real parameters and > 2 an integer. TherF”(z) = z'/* + ¢; is not
Lipschitz onD. However central Lipschitz conditiof©2)’ holds forL, = 1.
Indeed, we have

IF'(z) — F'(z0)|| = 2" — 2|
B |x — o]

B it i1

IOL +...+x 7

SO
||F/(;1;) — F’(!E(ﬂ” < L0|x —x0|,

Example 16. We consider the integral equations
b
u(s) = () + A / G(s, tyu(t) F/mdt, n e N. 6.2)

Here, f is a given continuous function satifyinis) > 0,s € [a,b], A is a real number,
and the kerne( is continuous and positive i, b] x [a, b].

For example, wheii/(s, t) is the Green kernel, the corresponding integral equation is
equivalent to the boundary value problem

u// — )\u1+1/7l
u(a) = fla),u(b) = f(b).

These type of problems have been consider¢d] i3], [17].
Equation of the form (6.2) generalize equations of the form

b
u(s) = / G(s, Du(t)"dt 6.3)

studied in[1], [3], [17]. Instead of (6.2) we can try to solve the equatiofi) = 0 where
F:QCCla,b] — Cla,b],Q ={u € Cla,b] : u(s) > 0,s € [a,b]},

and ,
F(u)(s) = u(s) — f(s) — A / (s, Du(t) 1/ dt.

The norm we consider is the max-norm.
The derivativeF” is given by

b
F'(u)v(s) =v(s) — M1+ %)/ G(s, t)u(t)Y v (t)dt, ve Q.

First of all, we notice thatF” does not satisfy a Lipschitz-type condition{in Let us
consider, for instancdg, b] = [0, 1], G(s,t) = 1 andy(t) = 0. ThenF’(y)v(s) = v(s)

and
b

1@ = Pl =N+ ) [ a0

If F’ were a Lipschitz function, then
IF'(2) = F'(y)|| < Lillz -y,

or, equivalently, the inequality

1
/ z(t)Y/"dt < Ly max x(s), (6.4)
0 z€[0,1]
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would hold for allz € © and for a constanL,. But this is not true. Consider, for example,
the functions

t
xj(t):;, j>1, te][0,1].

If these are substituted into (6.4)

1 L2 1—-1/n
_— < & < Ly(1+1 > 1.
1/n(1+1/n) = J 2( /n> vj
This inequality is not true WhEﬁ—> 00.

Therefore, condition (6.4) is not satisfied in this case. However, condi@id)’ holds.

To show this, lek((t) = f(t) andy = mmée[a y f(8),a > 0 Then forv € Q,

I () = E'(zo)ull - = AL+~ maX\/ (s, 0)(x()™ = F(OY "o (t)dt]

SE a,

1
M1+ = G(s,t
R[¢ +n)sr§[§f;] (s,1)

IN

_ G(s,t)|z(t)—f(t
whereG,,(s,t) = x(t)("—U/"+w(t)(sls_2)>|/x"(f)(t)1S")-l&-"“*‘f(t)("_l)/”
Hence,

vl
[Al(1+1/n)

I[F"(z) = F'(zo)Jv|| = W oI G (s, t)dt||x — zol|

Lol — oll,

whereLy = ‘i'(nl%l)f”)]\f and N = maxX¢[q,p] ff G(s, t)dt. Then conditionC'1)’ holds
for sufficiently smalh.

IA
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