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Magnetohydrodynamic Flow due to a Stretching Surface in Rotating Fluid
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Abstract. In this study, we investigate analytical treatment of three di-
mensional MHD viscous flow in a rotating frame. The flow is generated
due to uniform stretching of a sheet in x direction. Analytic solution is ob-
tained through peturbation method after transforming the governing par-
tial differential equation to ordinary differential equation using suitable
similarity transformations. Graphs are plotted to observe the effects of
involved parameters on velocity profiles.
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1. INTRODUCTION

The increasing number of technical applications using megnetohydrodynamics (MHD)
effects has made it desirable to extend many available hydrodynamic solutions to include
the effects of magnetic fields in electrically conducting viscous fluids. For example, liquid-
metal MHD flows take their roots in conventional hydrodynamics of incompressible media,
which becomes important in metallurgical industry, nuclear reactor, sodium cooling sys-
tem, energy storage and power generation [4, 7, 9]. The basic equations of incompressible
MHD are nonlinear and there are many interesting cases where these equations become
linear in terms of unknown quantities and may be solved without any difficulty. This dis-
cussion may be made interesting work in [2, 3, 5, 8, 10]. Hayat et al.[6] obtained the
solution for MHD pipe flow for fourth grade fluid.
Since it is admitted that the viscous flow started due to a stretching sheet is essentially
multidimensional and hence the governing equations are always non linear Navier-Stokes
equations. In this way, the study of such flows possess a great challenge to the mathe-
maticians while seeking analytic solution of these problems. The pioneering study in this
regard was performed by Crane [10] who obtained a closed form solution to his problem.
Crane [1] considered two dimensional problem by considering stretching of sheet in one
direction. Later in 1984, Wang [11] investigated three dimensional flow due to a stretching
sheet being stretched in two lateral directions, Further in 1988, Wang [12] studied three
dimensional flow of viscous fluid over a stretching surface for the case when fluid and
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sheet rotate like a rigid body. In this case, Wang considered the wall stretching only in
one direction but the problem was three dimensional due to the rotating frame assumption.
Wang obtained perturbation solution to this problem by perturbing the parameterλ which
is ratio of rotating rate to stretching rate. In this study, we execute the analysis for the
case of electrically conducting fluids by imposing a uniform magnetic field perpendicular
to the sheet. Analytic solution is obtained by following the same procedure as performed
by Wang [12]. Effects of different involved parameters are observed through graphs. The
paper is organized into five sections. Section 2 contains mathematical formulation of the
problem; perturbation solution is given in section 3; discussion part is numbered as section
4 and finally the conclusion is given in section 5.

2. DEVELOPMENT OF THE PROBLEM

We consider a stretching surface in rigid body rotation with fluid. The motion of the
fluid is three dimensional due to Coriolis force. Let(u, v, w) be the velocity components
in the direction of cartesian axes respectively with the axis rotating at an angular velocity
Ω in the z-direction. The fluid is electrically conducting and magnetic field of strengthB0

is applied perpendicular to the plate.

FIGURE 1. Geometry of problem

In this way, the velocity vector is chosen of the form:

V = [u(x, y, z), v(x, y, z), w(x, y, z)],



Magnetohydrodynamic Flow due to a Stretching Surface in Rotating Fluid 41

and the Navier-Stokes equation in rotating frame is given by (in vector notation):

ρ[
dV

dt
+ 2Ω× V + Ω× (Ω× r)] = −∇p + µ∇2V + J ×B,

and in component form:
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wherep̂ = p− ( 1
2 )ρΩ2r2 is the modified pressure and the continuity equation is given by

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (2.4)

Let the surface (at z=0 )be stretched in x-direction such that the velocities at boundary are
defined as

u = ax, v = w = 0, (2.5)

where ‘a′ has the dimensions[T−1] representing the stretching rate. We introduce the
dimensionless quantities defined by

u = axf
′
(η), v = axh(η), w = −√aνf(η), η = z

√
a

ν
. (2.6)

Due to Eq. (2.6), Eq. (2.4) is satisfied identically and Eqs. (2.1) - (2.5) reduce to ordinary
differential equations

(f
′
)2 − ff

′′ − 2λh = f
′′′ −Kf

′
, (2.7)

f
′
h− fh

′
+ 2λf

′
= h

′′ −Kh, (2.8)

subject to the boundary conditions

f
′
(0) = 1, h(0) = 0, f(0) = 0, (2.9)

h(∞) = 0, f
′
(∞) = 0. (2.10)

whereλ = (Ω/a) is an important non dimensional parameter signifying the relative im-

portance of rotation rate to stretching rate andK = σB2
0

aρ

3. SOLUTION OF THE PROBLEM

We use the perturbation technique to solve our problem. Perturbation solutions are
obtained by assuming the parameterλ as small or large parameter.
Perturbation for small λ
The problem given by Eqs. (2.7) - (2.10) constitutes a nonlinear problem with no exact
analytic solution. For smallλ, one may perturb the solution as follows:

f = f0 + O(λ2), h = λh1 + O(λ3). (3.1)

Substituting Eq.(3.1) into Eqs.(2.7) - (2.10), we get zeroth order and first order problems
for which the solutions are given below:
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Zeroth order solution

f0 =
1− e−(

√
1+K)η

√
1 + K

(3.2)

First order solution

h1 = − 2
2 + K

ηe−(1− k
2 )η, (3.3)

In this way, Eq. (3.1) becomes

f =
1− e−(

√
1+K)η

√
1 + K

+ O(λ2), (3.4)

h = λ[− 2
2 + K

ηe−(1− k
2 )η] + O(λ3). (3.5)

Perturbation for large λ
The problem becomes singular whenλ is large. We setλ = (1/(ε2)) and stretch the
boundary layer by introducing new scallings:

H = εζ. (3.6)

f = εF0(ζ) + ε3F1(ζ) + O(ε5), (3.7)

h = H0(ζ) + ε2H1(ζ) + O(ε4), (3.8)

Using Eqs.(3.6)-(3.8) in Eqs. (2.7)-(2.10) and solving the resulting equations, we find that

F0 =
1
2

+
1
2
(sinζ − cosζ)e−ζ , (3.9)

and

H1 = −1
2
e−ζsinζ. (3.10)

First order system
The higher order problems are more complicated, so we let

Φ = H1 + F
′
1 (3.11)

Φ
′′

+ 2iΦ = F
′
0(H0 + iF

′
0)− F0(H

′
0 + iF

′′
0 ) + K(H0 + F

′
0). (3.12)

Using the values ofF0 , H0 and their derivatives in above equation, we get

Φ
′′

+ 2iΦ =
i− 1

2
e−2ζ + (

i + 1
2

+ iK)e−(1−i)ζ . (3.13)

with the boundary conditions

Φ(0) = 0, Φ(∞) = 0. (3.14)

Solving Eqs. (3.13) and (3.14), we find

Φ =
3i− 1

20
(e−2ζ − e−(1−i)ζ − i

4
e−(1−i)ζζ − i− 1

2
Ke−(1−i)ζζ). (3.15)

Since
Φ = H1 + iF

′
1 (3.16)

so
F
′
1 = Im(Φ), (3.17)

F1 = Im

∫ ζ

0

Φdζ, (3.18)
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In this way, the above equation becomes

F1 = Im

∫ ζ

0

(
3i− 1

20
(e−2ζ − e−(1−i)ζ − i

4
e−(1−i)ζζ − i− 1

2
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i

8
+
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4

K)
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Thus for largeλ, we have

f = εF0(ζ) + ε3F1(ζ) + O(ε5), (3.21)

f
′
= F

′
0(ζ) + ε2F

′
1(ζ), (3.22)

f
′′

= (F
′′
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so
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0

ε
+ F

′′
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4
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4
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4
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F
′′
1 (0) = Im[

8− 14i− 20iK + 20K

40
] = −7 + 10K

20
. (3.29)

Using Eqs. (3.25) and (3.29) in Eq. (3.24), we get

f
′′
(0) =

−1
ε
− 7 + 10K

20
ε + O(ε3) (3.30)

= −
√

λ− 7 + 10
20
√

λ
+ O(λ−

3
2 ) (3.31)

Further, since

H0 = −sinζ e−ζ , (3.32)

therefore
H
′
0(0) = −1 (3.33)

and

H1(ζ) = Re[
3i− 1

20
(e−2ζ − e−(1−i)ζ − i

4
e−(1−i)ζζ − i− 1

2
Ke−(1−i)ζζ)], (3.34)
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therefore,

H1
1 (ζ) = Re[

3i− 1
20

−2e−2ζ + (1− i)e−(1−i)ζ − (
i

4
+

i− 1
2

K)

e−(1−i)ζ − (1− i)e−(1−i)ζζ], (3.35)

And consequently,

H
′
1(0) =

4 + 10K

20
. (3.36)

From Eq. (3.7), we have

f(∞) = εF0(∞) + ε3F1(∞) + O(ε5), (3.37)

and due to Eqs.(3.9) and (3.26), we respectively have

F0(∞) =
1
2
. (3.38)

and

F1(∞) =
1 + 10K

40
. (3.39)

Using Eqs. (3.38) and (3.39) in Eq. (3.37), we get

f(∞) =
1
2
ε +

1 + 10K

40
ε3 + O(ε5), (3.40)

=
1

2
√

λ
+

1 + 10K

40λ
√

λ
+ O(λ−

5
2 ). (3.41)

From Eq. (3.8), we have

h = H0(ζ) + ε2H1(ζ) + O(ε3), (3.42)

h
′
=

H
′
0(ζ)
ε

+ εH
′
1(ζ) + O(ε3), (3.43)

h
′
(0) =

H
′
0(0)
ε

+ εH
′
1(ζ) + O(ε3), (3.44)

Using Eqs. (3.33) and (3.36) in Eq. (3.44), we get

h
′
(0) =

−1
ε

+
4 + 10K

20
ε + O(ε3), (3.45)

= −√λ− 4 + 10K

20
√

λ
+ O(λ−

3
2 ). (3.46)

From Eq. (3.20), we have

F1 =
1
40

[(−9sinζ + 2cosζ)e−ζ − 3e−2ζ − 5ζe−ζ(sinζ − cos ζ)

+20K(−ζe−ζsinζ − e−5

2
(sinζ + cos ζ) + 1 + 10K)] (3.47)

and from Eq. (3.15), we have

H1 = ReΦ =
1
20

[(cos ζ + 3sinζ)e−ζ − e−2ζ + 5e−ζζsinζ + 10Ke−ζ(sinζ + cos ζ)].
(3.48)

Using Eqs.(3.9) and (3.47) in Eq.(3.7), we reach the final expressions:

f = ε[ 12 + 1
2 (sin ζ − cos ζ)e−ζ ] + ε3

40 [(−9 sin ζ + 2 cos ζ)e−ζ − 3e−2ζ − 5ζe−ζ(sin ζ −
cos ζ)+20K(−ζe−ζ sin ζ− e−ζ

2 (sin ζ +cos ζ))+1+10K]+O(ε5), f 1√
λ
[ 12 + 1

2 (sin ζ−



Magnetohydrodynamic Flow due to a Stretching Surface in Rotating Fluid 45

cos ζ)e−ζ ]+ ε3

40 [(−9 sin ζ+2 cos ζ)e−ζ−3e−2ζ−5ζe−ζ(sin ζ−cos ζ)+20K(−ζe−ζ sin ζ−
e−ζ

2 (sin ζ +cos ζ))+1+10K]+O(ε5), f
′
= cos ζe−ζ + 1

20λ [(sin ζ− cos ζ)e−ζ +3e−2ζ

−5ζe−ζ cos ζ + 10Ke−ζ(sin ζ − cos ζ)] + O(λ2). (3.49)

Using Eqs. (3.32) and (3.48) in Eq. (3.8), we get

h = −1
2
e−ζ sin ζ + ε2

1
20

[(cos ζ + 3 sin ζ)e−ζ − e−2ζ + 5e−ζζ sin ζ

+10Ke−ζ(sin ζ + cos ζ)O(ε)], (3.50)

h
′
=
√

λ
1
2
e−ζ(sin ζ − cos ζ) +

1
20λ

[(sin ζ − cos ζ)e−ζ + 3e−2ζ − 5ζe−ζ cos ζ

+10Ke−ζ(sin ζ − cos ζ)] + O(ε−
3
2 ). (3.51)

4. DISCUSSION

In order to investigate the effects of magnetic field on the velocity profiles, graphs are
plotted in Figs. 2-9. It is noticed that atK = 0 (in the absence of magnetic field), the
results of Wang [12] are recovered. In Figs 2-4, the velocityf(η) is plotted againstη for
varying values ofλ and findingK at different values. From all these figures, it is observed
that by increasing the values ofλ, velocity f decreases and by increasing the value of
the magnetic parameterK, the velocityf(η) increases at the boundary and oscillates in
increasing direction ofη. The x component of velocity, namely,f

′
(η) is plotted against

η for different values ofλ andK in Figs. 5 and 6. From here, it is observed that by
increasing the values ofλ the velocity decreases and as a consequence, the layer thickness
also decreases. In Figs 7-9 the velocity functionh(η) is plotted for different values ofλ and
findingK at different values. Clearly, by increasing values ofλ, boundary layer thickness
decreases. The effect of magnetic field is observed to control the reverse flow and for large
values of the parameterK, the velocity increases at the stretching surface.

5. CONCLUSION

In this study, the perturbation solution is obtained for steady flow of incompressible
viscous fluid over a stretching in a rotating frame of reference. Solutions of small and
large values ofλ are computed separately. Effect of magnetic field on velocity profiles is
studied through graphs. It is observed that by increasing magnetic field, the boundary layer
thickness decreases. It is also noted that the strong magnetic field depreciates the reverse
flow.
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FIGURE 2. The variation ofλ andK onf(η), K = 0.0
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FIGURE 3. The variation ofλ andK onf(η), K = 0.1

FIGURE 4. The variation ofλ andK onf(η), K = 0.3
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FIGURE 5. The variation ofλ andK onf
′
(η), K = 0.0

FIGURE 6. The variation ofλ andK onf
′
(η), K = 0.5
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FIGURE 7. The variation ofλ andK onh(η), K = 0.0

FIGURE 8. The variation ofλ andK onh(η), K = 0.1
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FIGURE 9. The variation ofλ andK onh(η), K = 0.3


