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1. INTRODUCTION

It is well known that various types of functions play a significant role in the theory of
classical point set topology. A great number of papers dealing with such functions have
appeared, and a good number of them have been extended to the setting of multifunctions.
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This implies that both, functions and multifunctions are important tools for studying other
properties of spaces and constructing new spaces from previously existing ones. Recently,
Zorlutuna introduced the conceptwfcontinuous multifunctions [12},-continuity which

is a weaker form of continuity in ordinary was extended to multifunctions. In 2006 and
2009, Noiri et. al. [10] (respectively [8]) introduced and studied slightly m-continuous
multifunctions (respectively slightly-continuous functions). In this paper, introduce a
new generalization ab-continuous multifunction called slightly-continuous multifunc-

tions in topological spaces.

2. PRELIMINARIES

Throughout this papetX, 7) and(Y, o) (or simply X andY’) always mean topological
spaces in which no separation axioms are assumed unless explicitly stated. bieea
subset of a spac&. For a subsetl of (X, 7), Cl(A) andInt(A) denote the closure of
A with respect tor and the interior ofA with respect tor, respectively. Recently, as
generalization of closed sets, the notiorwe€losed sets were introduced and studied by
Hdeib [7]. A pointz € X is called a condensation point df if for eachU € 7 with
x € U, the setU N A is uncountable.A is said to bev-closed [7] if it contains all its
condensation points. The complement of.anlosed set is said to be aropen set. Itis
well known that a subsdt’ of a spacg X, ) is w-open if and only if for each: € W,
there existd/ € 7 such thatr € U andU\W is countable. The family of atb-open
subsets of a topological spat¥, ), denoted bywO (X, 7), forms a topology orX finer
thanr. Thew-closure and thes-interior, that can be defined in the same wayCagA)
andInt(A), respectively, will be denoted hy Cl(A) andw Int(A), respectively. We set
wO(X,z)={A: A€ wO(X)andx € A}. AsubsetU of X is called av-neighborhood
of a pointz € X if there existsV € wO(X, z) such that’ C U. By a multifunction
F:(X,7) — (Y,0), following [3], we shall denote the upper and lower inverse of e&et
of Y by F*(B) andF~(B), respectively, that is,

FT(B)={re€ X:F(x) C B}
and
F(B)={re X :F(z)NB# 0}

In particular,F—(Y) = {z € X : y € F(x)} for each pointy € Y and for eachd C X,

F(A) = UzeaF(x). ThenF is said to be surjection if(X) = Y. A multifunction

F: (X,7)— (Y,0)is said to be surjective if’(X) = Y. A multifunction F' : (X,7) —

(Y, o) is said to be lowew-continuous [12] (resp. upper-continuous) multifunction if
F~(V) € wO(X) (resp.F (V) € wO(X)) for everyV € o.

Definition 1. A topological spacéX, 7) is said to bev-T5 [2] if for each pair of distinct
pointsx andy in X, there exist disjointu-open setd/ andV in X such that € U and
yeV.

Definition 2. A multifunction F' : X — Y is said to be [12]:

(1) upperw-continuous if for each point € X and each open s&t containingF'(x),
there existd/ € wO(X, z) such thattF'(U) C V;

(2) lowerw-continuous if for each point € X and each open s&t such thatF'(z) N
V # (), there existd/ € wO(X, ) such thal/ C F~ (V).
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3. SLIGHTLY w-CONTINUOUS MULTIFUNCTIONS

Definition 3. A multifunction F' : (X, 7) — (Y, o) is said to be:

(1) upper slightlyw-continuous at: € X if for each clopen set” of Y containing
F(z), there existd/ € wO(X) containingz such thatF'(U) C V;

(2) lower slightlyw-continuous at: € X if for each clopen sei’ of Y such thatF'(x)
NV # @, there existd) € wO(X) containingz such thatF'(u) NV # & for
everyu € U,

(3) upper (lower) slightlyw-continuous if it has this property at each point of X.

Remark4. It is clear that every upper-continuous multifunction is upper slightly-
continuous. But the converse is not true in general, as the following example shows.

Example 5. Let X = Re with the topologyr = {0}, Re, Re — Q}. Define a multifunction
F : (Re,7) — (Re,7) as follows:

_ Q if € Re—Q
F(”“")_{ Re-Q ifzeqQ.

ThenF is upper slightlyw-continuous but is not upper-continuous.

Theorem 6. For a multifunctionF’ : (X, 7) — (Y, o), the following statements are equiv-
alent:

(1) F is upper slightlyw-continuous;

(2) For eachz € X and for each clopen sét such thatr € F*(V), there exists an
w-open seU containingz such that/ ¢ F*(V);

(3) For eachz € X and for each clopen séf such thatr € F*(Y\V), there exists
anw-closed set H such thate X\H andF— (V) C H;

(4) F*(V)is anw-open set for any clopen sktof Y;

(5) F~(V)is anw-closed set for any clopen sgtof Y;

(6) F~(Y\V) is anw-closed set for any clopen sétof Y;

(7) FT(Y'\V) is anw-open set for any clopen sétof Y.

Proof. (1)<(2): Follows from Theorem 3.9 and Definition 3.4 of [10].

(2)&(3): Letz € X andV be a clopen set of such thatr € F+(Y'\V). By (ii), there
exists anw-open set/ containingz such thaty ¢ F*(Y\V). ThenF— (V) c X\U.
TakeH = X\U. We haver € X\ H andH is w-open. The converse is similar.
(1)<(4): Letz € FT(V) andV be a clopen set df . By (1), there exists aw-open set

U, containingz such that/,, ¢ F+ (V). It follows that F+ (V) = FLer(V) U,. Since any
S

union ofw-open sets is;-open,F'* (V) is w-open. The converse can be shown similarly.
(4)&(5): Follows from Theorem 3.9 and Definition 3.4 of [10].
(5)=(6)=(7) : Clear. O

Definition 7. [8] A function f : X — Y is called:

(1) slightly w-continuous atr € X if for each clopen seV in Y containingf(x),
there exists amw-open selU in X containingz such thatf(U) C V;
(2) slightly w-continuous if it has this property at each point of X.

Example 8. Let Re be the real numbers, take three topologiesRwas ry;, 7p and 7y,
wherery is the usual topology;p the discrete topology and; the indiscrete topology.
Letf : (Re,7v) — (Re,7p) andg : (Re,7v) — (Re, 77) be the identity functionsy is
slightly w-continuous buy is not slightlyw-continuous.
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Corollary 9. [8] Let (X, 7) and (Y, o) be topological spaces. The following statements
are equivalent for a functiorf : X — Y:

(1) f is slightlyw-continuous;

(2) forevery clopenset C Y, f~1(V) isw-open;

(3) forevery clopensét C Y, f~1(V) isw-closed.

Theorem 10. For a multifunctionF : (X,7) — (Y, 0), the following statements are
equivalent :
(1) Fis lower slightlyw-continuous;
(2) For eachz € X and for each clopen séf such thatX € F—(V), there exists an
w-open selJ containingx such thaty ¢ F~(V);
(3) For eachz € X and for each clopen séf such thatr € F~ (Y'\V), there exists
anw-closed set H such thate X\H andF*(V) C H;
(4) F~(V)is anw-open set for any clopen sgtofY;
(5) F*(V)is anw-closed set for any clopen sgtof Y;
(6) FT(Y\V)is anw-closed set for any clopen sgtof Y;
(7) F~(Y\V) is anw-open set for any clopen setof Y.

Proof. The proof is similar to that of Theorem 6. O

Lemma 11. [1] Let A and B be subsets of a topological spack, 7). If A € wO(X) and
B e 7,thenAN B € wO(B);

Theorem 12. Let F : (X,7) — (Y, o) be a multifunction and/ be an open subset of
X. If F'is a lower (upper) slightlyvs-continuous multifunction, then multifunctidn,, :
U — Y is a lower (upper) slightlyo-continuous multifunction.

Proof. LetV be any clopen subset 8f, x € U andz € o (V). SinceF is lower slightly
w-continuous multifunction, it follows that there existsafopen setG containingz such
thatG ¢ F~(V). By Lemma 11, we have € GNU € wO(U)andGNU C F|;(V).
This shows that the restriction multifunctiahj,, is a lower slightlyw-continuous. The
proof of the upper slightly-continuity of 7}, can be done by a similar manner. O

Corollary 13. If f: (X,7) — (Y, 0) is slightlyw-continuous and is an open subset of
X, then the restrictioryf|,: A — Y is slightlyw-continuous.

Lemma 14. [9] For a multifunctionF : (X, 7) — (Y, o), the following holds:
(1) GH(Ax B)= AN F*(B);
(2) GR(AxB)=ANnF~(B)

for any subsetd of X and B of Y.

Theorem 15. LetF' : (X, 7) — (Y, o) be a multifunction. If the graph multifunction &f
is an upper slightlyo-continuous, the” is an upper slightlyw-continuous.

Proof. Suppose that € X andV any clopen subset df such thatr € F* (V). We
obtain thatr € G5 (X x V) and thatX x V is a clopen set. Since the graph multifunction
Gr is upper slightlyw-continuous, it follows that there exists anopen set/ of X con-
tainingx such that/ C GL(X x V). SinceU C GL(X x V) =X NFH(V)=F*(V).
We obtain that/ ¢ (V). Thus,F is upper slightlyo-continuous. O

Theorem 16. If G : (X,7) — (X x Y,7 x o) is lower slightlyw-continuous, then
F: (X,7) — (Y, 0) is lower slightlyw-continuous multifunction.
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Proof. Suppose thatr » is lower slightlyw-continuous. Letr € X andV be any clopen
set ofY such thatr € '~ (V). ThenX x Vis clopeninX x Y andGp(x) N (X x V)
={z} x F(2)) N (X x V) ={z} x (F(z) N V) # @. SinceGF is lower slightlyw-
continuous, there exists aropenU containingz such that/ C G (X x V); hencell C
F~(V). This shows thafF is lower slightlyw-continuous. O

Theorem 17. Suppose thatX, r) and (X,, 7.) are topological spaces wherec J. Let

F: X — T1I X,beamultifunction fronX to the product spacdl X, andletP,: TII
acJ aeJ acJ

X, — X, be the projection multifunction for each € J which is defined by, ((z,))
= {z,}. If Fis an upper (lower) slightly-continuous multifunction, thef,, o F' is an
upper (lower) slightlyv-continuous multifunction for each € J.

Proof. Take anyag € J. LetV,,, be a clopen set (X9, 7o0). Then
(Pao o F)Y (Vo) = FT(Ply(Vao)) = FT (Vo x TI Xa)

aFag
(resp.(Poo © F) ™ (Vao) = ™~ (Pao(Vao) = F~ (Ve XTI Xa)). Since
Fis an upper (lower) slightlw-continuous multifunction and sindé,, x II X,isa

aFap

clopen set, it follows that'™ (Vo x T X,) (resp.F~ (Voo x 11 X4 ))is anw-open set
a#0 a#al

in (X, 7). This shows thaP, o F' is an upper (lower) slightly-continuous multifunction.
Hence, we obtain tha?, o F'is an upper (lower) slightly-continuous multifunction for
eacha € J. (]

Theorem 18. Let (X, 1), (Y,0),(Z,n) be a topological spaces and multifunctiofs:
X =Y, X - Z. LetF) x Fy: X — Y x Z be a multifunction which is defined
by (Fy x Fy)(x) = Fi(z) x Fy(x) for eachz € X. If F} x F; is upper (lower) slightly
w-continuous multifunction, thef; and F; are upper (lower) slightlyo-continuous mul-
tifunctions.

Proof. Letz € X, K C Y andH C Z be clopen sets such that ¢ F;'(K) and
x € FyF(H). Then we obtain thaF (z) ¢ K andFy(x) C H and thus,F; (z) x Fy()
= (Fy, x Fy)(z) C K x H. We haver € (Fy, x F;)" (K x H). SinceF; x Fy is upper
slightly w-continuous multifunction, it follows that there existsaopen selU containing
x such thaty C (F; x F»)*(K x H). We obtain thal/ C F;"(K) andU C F; (H).
Thus, F; and F, are upper slightlyo-continuous multifunction. The proof of the lower
slightly w-continuity of F; and F; is similar to the above. O

Definition 19. [5] Let (X, 7) be a topological spaceX is said to be a strongly normal
space if for every disjoint closed subséfsand I’ of X, there exist two clopen sets and
VsuchthatK C U, F Cc VandUNV = 0.

Recall that a multifunctiorf’ : (X, 7) — (Y, 0) is said to be punctually closed if for
eachr € X, F(x) is closed.

Theorem 20. Let F : (X,7) — (Y, o) be a punctually closed from a topological space
X to a strongly normal spac& an upper slightlyw-continuous multifunction and let
F(z)N F(y) = o for each pair of distinct points andy of X. ThenX is anw-T5 space.

Proof. Letz andy be any two distinct points iiX. Then we havé’(z) N F(y) = . Since
Y is strongly normal, it follows that there exist disjoint clopen détand V' containing
F(z)andF(y), respectively. Thug'* (U) andF'* (V) are disjointu-open sets containing
x andy, respectively and hendeX, 7) is w-T5. O
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Definition 21. [11] [2] A topological spacg X, 7) is said to be mildly compact (resp.
w-compact) if every clopen (resp-open) cover ofX has a finite subcover.

Theorem 22. Let F' : (X,7) — (Y, o) be a surjective an upper slightty-continuous
multifunction such thaF'(z) is mildly compact for eack € X. If X is w-compact space,
thenY is mildly compact.

Proof. Let {V, : @ € A} be a clopen cover df. SinceF(z) is mildly compact for each

x € X, there exists a finite subsa{x) of A such thatF'(z) C U{V,: a € A(z)}. Put
V(z) = U{V,: a € A(x)}. SinceF is an upper slightlyw-continuous, there exists an
w-open sel/(z) of X containingz such thatF'(U(z)) C V(x). Then{U(x) : x € X}

is anw-open cover ofX and sinceX is w-compact, there exists a finite number of points,
say,ri, Lo, L3,... T, iIN X such that

X=U{U(z;):1=1,2,...,n}
Hence we have

Y=FX)=F(U U@)=UFU@@)c UV(g)=0U U V.
=1 1=1 =1 =1 aeA(z;)

This shows that” is mildly compact. |

Definition 23. Let F' : (X, 7) — (Y, o) be a multifunction. The multigrap¥(F') is said
to bew-co-closed if for eacl{z,y) ¢ G(F), there existv-open set/ and clopen set’
containingz andy, respectively, such thdt/ x V') N G(F) = @.

Definition 24. [6] A topological spacd X, 7) is said to be clopeff, (clopen Hausdorff)
if for each pair of distinct pointg andy in X, there exist disjoint clopen setsandV in
X suchthatt € U andy € V.

Theorem 25. If a multifunctionF : (X,7) — (Y, o) is an upper slightlyv-continuous
such thatF'(z) is mildly compact relative t&” for eachz € X andY is a clopen Hausdorff
space, then the multigraph(F') of F' is w-co-closed inX x Y.

Proof. Let (x,y) € (X x Y)\G(f). Thatisy ¢ F(x). SinceY is clopen Hausdorff, for
eachz € F(x), there exist disjoint clopen set&z) andU (z) of Y such that € U(z) and
y € V(z). Then{U(z) : z € F(x)} is a clopen cover of'(x) and sinceF'(x) is mildly
compact, there exists a finite number of points, sayzs, ... , 2, in F(x) such thatF'(x)
CWHU(%):1=1,2,..,n}. PutU =U{U(z):i=1, 2, ...m}andV =N {V(y;): i =1,
2, ...,n}. ThenU andV are clopen sets il such thatF(z) C U,y € VandUNV =
. SinceF is upper slightlyw-continuous multifunction, there exists aropen setV of
X containingz such thatF(W) Cc U. We have(z,y) e W x V C (X xY) \ G(F). We
obtain that W x V) N G(F) = @; henceG(F) is w-co-closed inX x Y. O
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