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1. INTRODUCTION

It is well known that various types of functions play a significant role in the theory of
classical point set topology. A great number of papers dealing with such functions have
appeared, and a good number of them have been extended to the setting of multifunctions.
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This implies that both, functions and multifunctions are important tools for studying other
properties of spaces and constructing new spaces from previously existing ones. Recently,
Zorlutuna introduced the concept ofω-continuous multifunctions [12],ω-continuity which
is a weaker form of continuity in ordinary was extended to multifunctions. In 2006 and
2009, Noiri et. al. [10] (respectively [8]) introduced and studied slightly m-continuous
multifunctions (respectively slightlyω-continuous functions). In this paper, introduce a
new generalization ofω-continuous multifunction called slightlyω-continuous multifunc-
tions in topological spaces.

2. PRELIMINARIES

Throughout this paper,(X, τ) and(Y, σ) (or simplyX andY ) always mean topological
spaces in which no separation axioms are assumed unless explicitly stated. LetA be a
subset of a spaceX. For a subsetA of (X, τ), Cl(A) andInt(A) denote the closure of
A with respect toτ and the interior ofA with respect toτ , respectively. Recently, as
generalization of closed sets, the notion ofω-closed sets were introduced and studied by
Hdeib [7]. A pointx ∈ X is called a condensation point ofA if for eachU ∈ τ with
x ∈ U , the setU ∩ A is uncountable.A is said to beω-closed [7] if it contains all its
condensation points. The complement of anω-closed set is said to be anω-open set. It is
well known that a subsetW of a space(X, τ) is ω-open if and only if for eachx ∈ W ,
there existsU ∈ τ such thatx ∈ U andU\W is countable. The family of allω-open
subsets of a topological space(X, τ), denoted byωO(X, τ), forms a topology onX finer
thanτ . Theω-closure and theω-interior, that can be defined in the same way asCl(A)
andInt(A), respectively, will be denoted byω Cl(A) andω Int(A), respectively. We set
ωO(X,x) = {A : A ∈ ωO(X) andx ∈ A}. A subsetU of X is called aω-neighborhood
of a pointx ∈ X if there existsV ∈ ωO(X,x) such thatV ⊂ U . By a multifunction
F : (X, τ) → (Y, σ), following [3], we shall denote the upper and lower inverse of a setB
of Y by F+(B) andF−(B), respectively, that is,

F+(B) = {x ∈ X : F (x) ⊂ B}
and

F−(B) = {x ∈ X : F (x) ∩B 6= ∅}
In particular,F−(Y ) = {x ∈ X : y ∈ F (x)} for each pointy ∈ Y and for eachA ⊂ X,
F (A) = ∪x∈AF (x). ThenF is said to be surjection ifF (X) = Y . A multifunction
F : (X, τ) → (Y, σ) is said to be surjective ifF (X) = Y . A multifunctionF : (X, τ) →
(Y, σ) is said to be lowerω-continuous [12] (resp. upperω-continuous) multifunction if
F−(V ) ∈ ωO(X) (resp.F+(V ) ∈ ωO(X)) for everyV ∈ σ.

Definition 1. A topological space(X, τ) is said to beω-T2 [2] if for each pair of distinct
pointsx andy in X, there exist disjointω-open setsU andV in X such thatx ∈ U and
y ∈ V .

Definition 2. A multifunctionF : X → Y is said to be [12]:

(1) upperω-continuous if for each pointx ∈ X and each open setV containingF (x),
there existsU ∈ ωO(X,x) such thatF (U) ⊂ V ;

(2) lowerω-continuous if for each pointx ∈ X and each open setV such thatF (x)∩
V 6= ∅, there existsU ∈ ωO(X, x) such thatU ⊂ F−(V ).
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3. SLIGHTLY ω-CONTINUOUS MULTIFUNCTIONS

Definition 3. A multifunctionF : (X, τ) → (Y, σ) is said to be:

(1) upper slightlyω-continuous atx ∈ X if for each clopen setV of Y containing
F (x), there existsU ∈ ωO(X) containingx such thatF (U) ⊂ V ;

(2) lower slightlyω-continuous atx ∈X if for each clopen setV of Y such thatF (x)
∩ V 6= ∅, there existsU ∈ ωO(X) containingx such thatF (u) ∩ V 6= ∅ for
everyu ∈ U ;

(3) upper (lower) slightlyω-continuous if it has this property at each point of X.

Remark4. It is clear that every upperω-continuous multifunction is upper slightlyω-
continuous. But the converse is not true in general, as the following example shows.

Example 5. LetX = Re with the topologyτ = {∅, Re, Re−Q}. Define a multifunction
F : (Re, τ) → (Re, τ) as follows:

F (x) =
{

Q if x ∈ Re−Q
Re−Q if x ∈ Q.

ThenF is upper slightlyω-continuous but is not upperω-continuous.

Theorem 6. For a multifunctionF : (X, τ) → (Y, σ), the following statements are equiv-
alent:

(1) F is upper slightlyω-continuous;
(2) For eachx ∈ X and for each clopen setV such thatx ∈ F+(V ), there exists an

ω-open setU containingx such thatU ⊂ F+(V );
(3) For eachx ∈ X and for each clopen setV such thatx ∈ F+(Y \V ), there exists

anω-closed set H such thatx ∈ X\H andF−(V ) ⊂H;
(4) F+(V ) is anω-open set for any clopen setV of Y ;
(5) F−(V ) is anω-closed set for any clopen setV of Y ;
(6) F−(Y \V ) is anω-closed set for any clopen setV of Y ;
(7) F+(Y \V ) is anω-open set for any clopen setV of Y .

Proof. (1)⇔(2): Follows from Theorem 3.9 and Definition 3.4 of [10].
(2)⇔(3): Let x ∈ X andV be a clopen set ofY such thatx ∈ F+(Y \V ). By (ii), there
exists anω-open setU containingx such thatU ⊂ F+(Y \V ). ThenF−(V ) ⊂ X\U .
TakeH = X\U . We havex ∈ X\H andH is ω-open. The converse is similar.
(1)⇔(4): Let x ∈ F+(V ) andV be a clopen set ofY . By (1), there exists anω-open set
Ux containingx such thatUx ⊂ F+(V ). It follows thatF+(V ) = ∪

x∈F+(V )
Ux. Since any

union ofω-open sets isω-open,F+(V ) is ω-open. The converse can be shown similarly.
(4)⇔(5): Follows from Theorem 3.9 and Definition 3.4 of [10].
(5)⇔(6)⇔(7) : Clear. ¤

Definition 7. [8] A function f : X → Y is called:

(1) slightly ω-continuous atx ∈ X if for each clopen setV in Y containingf(x),
there exists anω-open setU in X containingx such thatf(U) ⊂ V ;

(2) slightly ω-continuous if it has this property at each point of X.

Example 8. Let Re be the real numbers, take three topologies onRe as τU , τD and τI ,
whereτU is the usual topology,τD the discrete topology andτI the indiscrete topology.
Let f : (Re, τU ) → (Re, τD) andg : (Re, τU ) → (Re, τI) be the identity functions.g is
slightlyω-continuous butf is not slightlyω-continuous.
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Corollary 9. [8] Let (X, τ) and (Y, σ) be topological spaces. The following statements
are equivalent for a functionf : X → Y :

(1) f is slightlyω-continuous;
(2) for every clopen setV ⊂ Y , f−1(V ) is ω-open;
(3) for every clopen setV ⊂ Y , f−1(V ) is ω-closed.

Theorem 10. For a multifunctionF : (X, τ) → (Y, σ), the following statements are
equivalent :

(1) F is lower slightlyω-continuous;
(2) For eachx ∈ X and for each clopen setV such thatX ∈ F−(V ), there exists an

ω-open setU containingx such thatU ⊂ F−(V );
(3) For eachx ∈ X and for each clopen setV such thatx ∈ F−(Y \V ), there exists

anω-closed set H such thatx ∈ X\H andF+(V ) ⊂H;
(4) F−(V ) is anω-open set for any clopen setV of Y ;
(5) F+(V ) is anω-closed set for any clopen setV of Y ;
(6) F+(Y \V ) is anω-closed set for any clopen setV of Y ;
(7) F−(Y \V ) is anω-open set for any clopen setV of Y .

Proof. The proof is similar to that of Theorem 6. ¤

Lemma 11. [1] LetA andB be subsets of a topological space(X, τ). If A ∈ ωO(X) and
B ∈ τ , thenA ∩B ∈ ωO(B);

Theorem 12. Let F : (X, τ) → (Y, σ) be a multifunction andU be an open subset of
X. If F is a lower (upper) slightlyω-continuous multifunction, then multifunctionF|U :
U → Y is a lower (upper) slightlyω-continuous multifunction.

Proof. Let V be any clopen subset ofY , x ∈ U andx ∈ F−|U (V ). SinceF is lower slightly
ω-continuous multifunction, it follows that there exists anω-open setG containingx such
thatG ⊂ F−(V ). By Lemma 11, we havex ∈ G ∩ U ∈ ωO(U) andG ∩ U ⊂ F−|U (V ).
This shows that the restriction multifunctionF|U is a lower slightlyω-continuous. The
proof of the upper slightlyω-continuity ofF|U can be done by a similar manner. ¤

Corollary 13. If f : (X, τ) → (Y, σ) is slightlyω-continuous andA is an open subset of
X, then the restrictionf|A : A → Y is slightlyω-continuous.

Lemma 14. [9] For a multifunctionF : (X, τ) → (Y, σ), the following holds:

(1) G+
F (A×B) = A ∩ F+(B);

(2) G−F (A×B) = A ∩ F−(B)
for any subsetA of X andB of Y .

Theorem 15. LetF : (X, τ) → (Y, σ) be a multifunction. If the graph multifunction ofF
is an upper slightlyω-continuous, thenF is an upper slightlyω-continuous.

Proof. Suppose thatx ∈ X andV any clopen subset ofY such thatx ∈ F+(V ). We
obtain thatx ∈ G+

F (X ×V ) and thatX ×V is a clopen set. Since the graph multifunction
GF is upper slightlyω-continuous, it follows that there exists anω-open setU of X con-
tainingx such thatU ⊂ G+

F (X × V ). SinceU ⊂ G+
F (X × V ) = X ∩ F+(V ) = F+(V ).

We obtain thatU ⊂ F+(V ). Thus,F is upper slightlyω-continuous. ¤

Theorem 16. If GF : (X, τ) → (X × Y, τ × σ) is lower slightlyω-continuous, then
F : (X, τ) → (Y, σ) is lower slightlyω-continuous multifunction.
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Proof. Suppose thatGF is lower slightlyω-continuous. Letx ∈ X andV be any clopen
set ofY such thatx ∈ F−(V ). ThenX × V is clopen inX × Y andGF (x) ∩ (X × V )
= ({x} × F (x)) ∩ (X × V ) = {x} × (F (x) ∩ V ) 6= ∅. SinceGF is lower slightlyω-
continuous, there exists anω-openU containingx such thatU ⊂G−F (X ×V ); henceU ⊂
F−(V ). This shows thatF is lower slightlyω-continuous. ¤
Theorem 17. Suppose that(X, τ) and(Xα, τα) are topological spaces whereα ∈ J . Let
F : X → Π

α∈J
Xα be a multifunction fromX to the product spaceΠ

α∈J
Xα and letPα : Π

α∈J

Xα → Xα be the projection multifunction for eachα ∈ J which is defined byPα((xα))
= {xα}. If F is an upper (lower) slightlyω-continuous multifunction, thenPα ◦ F is an
upper (lower) slightlyω-continuous multifunction for eachα ∈ J .

Proof. Take anyα0 ∈ J . Let Vα0 be a clopen set in(Xα0, τα0). Then

(Pα0 ◦ F )+(Vα0) = F+(P+
α0(Vα0)) = F+(Vα0 × Π

α 6=α0

Xα)

(resp.(Pα0 ◦ F )−(Vα0) = F−(P−α0(Vα0)) = F−(Vα0 × Π
α 6=α0

Xα)). Since

F is an upper (lower) slightlyω-continuous multifunction and sinceVα0 × Π
α 6=α0

Xα is a

clopen set, it follows thatF+(Vα0× Π
α6=0

Xα) (resp.F−(Vα0 × Π
α 6=α0

Xα)) is anω-open set

in (X, τ). This shows thatPα0◦F is an upper (lower) slightlyω-continuous multifunction.
Hence, we obtain thatPα ◦ F is an upper (lower) slightlyω-continuous multifunction for
eachα ∈ J . ¤
Theorem 18. Let (X, τ), (Y, σ), (Z, η) be a topological spaces and multifunctionsF1:
X → Y , F2: X → Z. Let F1 × F2: X → Y × Z be a multifunction which is defined
by (F1 × F2)(x) = F1(x) × F2(x) for eachx ∈ X. If F1 × F2 is upper (lower) slightly
ω-continuous multifunction, thenF1 andF2 are upper (lower) slightlyω-continuous mul-
tifunctions.

Proof. Let x ∈ X, K ⊂ Y and H ⊂ Z be clopen sets such thatx ∈ F+
1 (K) and

x ∈ F+
2 (H). Then we obtain thatF1(x) ⊂ K andF2(x) ⊂ H and thus,F1(x) × F2(x)

= (F1 × F2)(x) ⊂ K ×H. We havex ∈ (F1 × F2)+(K ×H). SinceF1 × F2 is upper
slightly ω-continuous multifunction, it follows that there exists anω-open setU containing
x such thatU ⊂ (F1 × F2)+(K × H). We obtain thatU ⊂ F+

1 (K) andU ⊂ F+
2 (H).

Thus,F1 andF2 are upper slightlyω-continuous multifunction. The proof of the lower
slightly ω-continuity ofF1 andF2 is similar to the above. ¤
Definition 19. [5] Let (X, τ) be a topological space.X is said to be a strongly normal
space if for every disjoint closed subsetsK andF of X, there exist two clopen setsU and
V such thatK ⊂ U , F ⊂ V andU ∩ V = ∅.

Recall that a multifunctionF : (X, τ) → (Y, σ) is said to be punctually closed if for
eachx ∈ X, F (x) is closed.

Theorem 20. Let F : (X, τ) → (Y, σ) be a punctually closed from a topological space
X to a strongly normal spaceY an upper slightlyω-continuous multifunction and let
F (x) ∩ F (y) = ∅ for each pair of distinct pointsx andy of X. ThenX is anω-T2 space.

Proof. Let x andy be any two distinct points inX. Then we haveF (x)∩F (y) =∅. Since
Y is strongly normal, it follows that there exist disjoint clopen setsU andV containing
F (x) andF (y), respectively. ThusF+(U) andF+(V ) are disjointω-open sets containing
x andy, respectively and hence(X, τ) is ω-T2. ¤
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Definition 21. [11] [2] A topological space(X, τ) is said to be mildly compact (resp.
ω-compact) if every clopen (resp.ω-open) cover ofX has a finite subcover.

Theorem 22. Let F : (X, τ) → (Y, σ) be a surjective an upper slightlyω-continuous
multifunction such thatF (x) is mildly compact for eachx ∈ X. If X is ω-compact space,
thenY is mildly compact.

Proof. Let {Vα : α ∈ Λ} be a clopen cover ofY . SinceF (x) is mildly compact for each
x ∈ X, there exists a finite subsetΛ(x) of Λ such thatF (x) ⊂ ∪{Vα: α ∈ Λ(x)}. Put
V (x) = ∪{Vα: α ∈ Λ(x)}. SinceF is an upper slightlyω-continuous, there exists an
ω-open setU(x) of X containingx such thatF (U(x)) ⊂ V (x). Then{U(x) : x ∈ X}
is anω-open cover ofX and sinceX is ω-compact, there exists a finite number of points,
say,x1, x2, x3,... xn in X such that

X = ∪{U(xi) : i = 1, 2, ..., n}
Hence we have

Y = F (X) = F (
n∪

i=1
U(xi)) =

n∪
i=1

F (U(xi)) ⊂
n∪

i=1
V (xi) =

n∪
i=1

∪
α∈Λ(xi)

Vα.

This shows thatY is mildly compact. ¤

Definition 23. Let F : (X, τ) → (Y, σ) be a multifunction. The multigraphG(F ) is said
to beω-co-closed if for each(x, y) /∈ G(F ), there existω-open setU and clopen setV
containingx andy, respectively, such that(U × V ) ∩ G(F ) =∅.

Definition 24. [6] A topological space(X, τ) is said to be clopenT2 (clopen Hausdorff)
if for each pair of distinct pointsx andy in X, there exist disjoint clopen setsU andV in
X such thatx ∈ U andy ∈ V .

Theorem 25. If a multifunctionF : (X, τ) → (Y, σ) is an upper slightlyω-continuous
such thatF (x) is mildly compact relative toY for eachx ∈ X andY is a clopen Hausdorff
space, then the multigraphG(F ) of F is ω-co-closed inX × Y .

Proof. Let (x, y) ∈ (X × Y )\G(f). That isy /∈ F (x). SinceY is clopen Hausdorff, for
eachz ∈ F (x), there exist disjoint clopen setsV (z) andU(z) of Y such thatz ∈ U(z) and
y ∈ V (z). Then{U(z) : z ∈ F (x)} is a clopen cover ofF (x) and sinceF (x) is mildly
compact, there exists a finite number of points, say,z1, z2, .... ,zn in F (x) such thatF (x)
⊂ ∪{U(zi) : i = 1, 2, ...,n}. PutU = ∪{U(zi): i = 1, 2, ...,n} andV = ∩ {V (yi): i = 1,
2, ...,n}. ThenU andV are clopen sets inY such thatF (x) ⊂ U , y ∈ V andU ∩ V =
∅. SinceF is upper slightlyω-continuous multifunction, there exists anω-open setW of
X containingx such thatF (W ) ⊂ U . We have(x, y) ∈W × V ⊂ (X × Y ) \ G(F ). We
obtain that(W × V ) ∩ G(F ) =∅; henceG(F ) is ω-co-closed inX × Y . ¤
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