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Abstract. Let M be a 2-torsion free primeΓ-ring andX a nonzero faith-
ful and primeΓM -module. Then the existence of a nonzero Jordan left
derivationd : M → X satisfying some appropriate conditions impliesM
is commutative.M is also commutative in the case thatd : M → M is a
derivation along with some suitable assumptions.
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1. INTRODUCTION

Let M andΓ be additive abelian groups.M is said to be aΓ-ring if there exists a
mappingM × Γ×M → M (sending(x, α, y) into xαy) such that
(a)(x + y)αz = xαz + yαz,
x(α + β)y = xαy + xβy,
xα(y + z) = xαy + xαz,
(b)(xαy)βz = xα(yβz),
for all x, y, z ∈ M andα, β ∈ Γ.
M is commutative ifaαb = bαa, for all a, b ∈ M andα ∈ Γ. A subsetA of a Γ-ring M
is a left(right) ideal ofM if A is an additive subgroup ofM andMΓA, the set of allmαa
such thatm ∈ M, α ∈ Γ anda ∈ A (AΓM) is contained inA. An idealP of aΓ-ringM is
prime if P 6= M and for any idealsA andB of M, AΓB ⊆ P, thenA ⊆ P orB ⊆ P. M is
prime if aΓMΓb = 0 with a, b ∈ M, thena = 0 or b = 0. M is semiprime ifaΓMΓa = 0
with a ∈ M, thena = 0. M is of characteristic not equal ton (or, n-torsion free) if
nm = 0, for m ∈ M impliesm = 0, wheren is an integer. The commutatoraαx− xαa,
for all a ∈ M , x ∈ X andα ∈ Γ is denoted by[a, x]α. An elementa in a Γ−ring M is
called nilpotent if(aα)na = 0, for all α ∈ Γ and for somen. The kernel of a derivation
d on aΓ−ring M is denoted by Kerd and defined by Kerd = {a ∈ M : d(a) = 0}. The
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subsetZ(M) = {a ∈ M : aαb = bαa, for anyb ∈ M andα ∈ Γ } is called the centre of
aΓ−ring M .
Let M be aΓ-ring and letX be an additive abelian group.X is called aΓM -module if
there exists a mappingM × Γ×X → X (sending(m,α, x) into mαx) such that
(a)(m1 + m2)αx = m1αx + m2αx
m(α + β)x = mαx + mβx
mα(x1 + x2) = mαx1 + mαx2

(b)(m1αm2)βx = m1α(m2βx),
for all m,m1, m2 ∈ M,α, β ∈ Γ, x, x1, x2 ∈ Γ.
X is faithful if XΓa = 0 forcesa = 0. X is prime if mΓMΓx = 0, for m ∈ M and
x ∈ X implies that eitherx = 0 or mΓX = 0. An additive mappingd : M → M is a
derivation ifd(aαb) = aαd(b)+d(a)αb, a left derivation ifd(aαb) = aαd(b)+ bαd(a), a
Jordan derivation ifd(aαa) = aαd(a) + d(a)αa and a Jordan left derivation ifd(aαa) =
2aαd(a), for all a, b ∈ M andα ∈ Γ.

Y. Ceven [4] worked on Jordan left derivations on completely primeΓ-rings. He investi-
gated the existence of a nonzero Jordan left derivation on a completely primeΓ-ring M
that makesM commutative ifaαbβc = aβbαc, for all a, b, c ∈ M andα, β ∈ Γ. With
the same assumption, he showed that every Jordan left derivation on a completely prime
Γ-ring is a left derivation on it. In this paper, he gave an example of Jordan left derivation
for Γ-rings.

Mustafa Asci and Sahin Ceran [7] studied on a nonzero left derivationd on a primeΓ-ring
M for whichM is commutative with the conditionsd(U) ⊆ U andd2(U) ⊆ Z, whereU
is an ideal ofM andZ is the centre ofM. They also proved the commutativity ofM by
the nonzero left derivationd1 and right derivationd2 onM with the conditionsd2(U) ⊆ U
andd1d2(U) ⊆ Z.

In [9], Sapanci and Nakajima defined a derivation and a Jordan derivation onΓ-rings and
investigated a Jordan derivation on a certain type of completely primeΓ-ring which is a
derivation. They also gave examples of a derivation and a Jordan derivation ofΓ-rings.

Bresar and Vukman [2] proved that a Jordan derivation on a primeΓ-ring is a derivation.
Furthermore, in [3], Bresar and Vukman showed that the existence of a nonzero Jordan left
derivation ofR into X implies R is commutative, whereR is a ring andX is 2-torsion
free and 3-torsion free leftR-module. In [6], Jun and Kim proved their results without the
property 3-torsion free.

Qing Deng [5] worked on Jordan left derivationsd of prime ringR of characteristic not
2 into a nonzero faithful and prime leftR-moduleX. He proved the commutativity ofR
with the Jordan left derivationd.

Joso Vukman [10] studied on Jordan left derivations on semiprime rings.

In this paper, we prepare a note on the basis of the results of Qing Deng [5] inΓ-rings.
We show that the existence of a nonzero Jordan left derivationd on a 2-torsion free prime
Γ-ring M into a faithful and primeΓM -moduleX gives the commutativity ofM. We also
obsereve the commutativity ofM whend : M → M is derivation.

Throughout this paper, we shall treataαbβc = aβbαc, for all a, b, c ∈ M andα, β ∈ Γ, as
(∗).

2. JORDAN LEFT DERIVATIONS

In order to equare our main results, we use some steps as lemmas.
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Lemma 1. Suppose thatX is a faithful and primeΓM -module. Leta, b ∈ M andx ∈ X.
If (the primeΓ-ring) M is 2-torsion free satisfying (*) andaαmβbγmδx = 0, for all
m ∈ M andα, β, γ, δ ∈ Γ, thena = 0 or b = 0 or x = 0.

Proof. We use the hypothesis

aαmβbγmδx = 0,

for all a, b, m ∈ M , x ∈ X andα, β, γ, δ ∈ Γ.
Replacingm by u + v in the above equation and then puttingv = mβaαmβbγm, we get
aαuβbγmβaαmβbγmδx+aαmβaαmβbγmβbγuδx = 0.This givesaαmβaαmβbγmβ
bγuδx = 0, for all a, b, m, u ∈ M , x ∈ X andα, β, γ, δ ∈ Γ. If x = 0, we are done.
Suppose thatx 6= 0. SinceX is faithful and prime, then(aαmβa)αmβ(bγmβb) = 0, for
all a, b,m ∈ M andα, β, γ ∈ Γ. Primeness ofM givesaαmβa = 0 or bγmβb = 0, and
consequently,a = 0 or b = 0. ¤

Lemma 2. LetM be aΓ−ring satisfying (*) and of characteristic not 3. IfX is a 2-torsion
freeΓM−module andd : M → X is a Jordan left derivation, then for alla, b, c ∈ M and
α, β ∈ Γ,
(a) d(aαb + bαa) = 2aαd(b) + 2bαd(a),
(b) d(aαbβa) = aβaαd(b)− bαaβd(a),
(c) d(aαbβc + cαbβa) = (aβc + cβa)αd(b)− bαaβd(c)− bαcβd(a).

The Proof is obtained in Y. Ceven [4] by using the condition thatM is of characteristic not
3.

DefineDα(x) = [a, x]α, for all a, x ∈ M andα ∈ Γ.

Lemma 3. LetM be aΓ-ring which satisfies (*) and leta ∈ M be a fixed element. Then
(a) Dα(x) is a derivation,
(b) DαDβ(x) = aαDβ(x)−Dβ(x)αa,
(c) DαDβ(x) = DβDα(x),
(d) DαDβ(xγy) = DαDβ(x)γy + 2Dα(x)βDγ(y) + xγDαDβ(y),
for all x, y ∈ M andα, β, γ ∈ Γ.

Proof. (a) For allx, y ∈ M andα, β ∈ Γ and using (*), we have

Dα(xβy) = [a, xβy]α
= [a, x]αβy + xα[a, y]β
= Dα(x)βy + xαDβ(y).

(b) By definition, we have

DαDβ(x) = Dα([a, x]β)
= [a[a, x]β ]α
= aα[a, x]β − [a, x]βαa

= aαDβ(x)−Dβ(x)αa,
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for all a, x ∈ M andα, β ∈ Γ.
(c) Using (*), we get

DαDβ(x) = Dα([a, x]β)
= [a, [a, x]β ]α
= aα(aβx− xβa)− (aβx− xβa)αa

= aβ(aαx− xαa)− (aαx− xαa)βa

= [a, [a, x]α]β
= Dβ([a, x]α)
= DβDα(x),

for all a, x ∈ M andα, β ∈ Γ.
(d) By (b) and (*), we have

DαDβ(xγy) = aαaβxγy − aαxγyβa− aβxγyαa + xγyβaαa

= (aαaβx− aαxβa− aβxαa + xβaαa)γy

+2aαxβ(aγy − yγa)− 2xαaβ(aγy − yγa)
+xγ(aαaβy − aαyβa− aβyαa + yβaαa)
= DαDβ(x)γy + 2(aαx− xαa)β(aγy − yγa) + xγDαDβ(x)
= DαDβ(x)γy + 2Dα(x)βDγ(y) + xγDαDβ(y),

for all x, y ∈ M andα, β, γ ∈ Γ. ¤

Lemma 4. Let M be aΓ-ring satisfying (*) and of characteristic not 3, andd : M → X
a Jordan left derivation, whereX is a faithful and primeΓM−module. Ifd(a) 6= 0, for
somea ∈ M, then[a, [a, b]β ]αγ[a, [a, b]β ]α = 0, for all b ∈ M andα, β, γ ∈ Γ.

Proof. Let a ∈ M be a fixed element.
By Lemma 3, we have

DαDβ(x) = aα(aβx− xβa)− (aβx− xβa)αa, (2. 1)

for all x ∈ M andα, β ∈ Γ.
Using (*) in (aαb−bαa)βaαD(a) = aα(aαb−bαa)βD(a), for all a, b ∈ M andα, β ∈ Γ
[Y. Ceven, Lemma 2.2(i)], we obtain

(aα(aβx− xβa)− (aβx− xβa)αa)αd(a) = 0, (2. 2)

for all x ∈ M andα, β ∈ Γ.
From(2.1) and(2.2), we get

DαDβ(x)αd(a) = 0, (2. 3)

for all x ∈ M andα, β ∈ Γ.
By Lemma 3(d) and(2.3), we have

(DαDβ(x)γy + 2Dα(x)βDγ(y))αd(a) = 0, (2. 4)

for all x, y ∈ M andα, β, γ ∈ Γ.
Replacingy by Dα(yβz) in (2.4) and by Lemma 3(a), we obtain

(DαDβ(x)γ(Dα(y)βz + yαDβ(z)) + 2Dα(x)βDγ(Dα(yβz)))αd(a) = 0 (2. 5)
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Using Lemma 3(c) in(2.5), and then using(2.3), we get

(DαDβ(x)γ(Dα(y)βz + yαDβ(z) + DαDβ(x)γyαDβ(z)))αd(a) = 0 (2. 6)

ReplacingDα(z) for z in (2.6) and then by Lemma 3(c) and(2.3), we obtain

(DαDβ(x)γDα(y)αDβ(z))αd(a) = 0 (2. 7)

Replacingy by Dα(y) in (2.6), and then by Lemma 3(c) and(2.7), we get

(DαDβ(x))γ(DαDβ(y))αzαd(a) = 0 (2. 8)

Since(2.8) holds for allz ∈ M, we are forced to conclude thatd 6= 0 implies

(DαDβ(x))γ(DαDβ(y)) = 0

for all x, y ∈ M andα, β, γ ∈ Γ.
In particular,(DαDβ(b))γ((DαDβ(b)) = 0, for all b ∈ M andα, β, γ ∈ Γ.
This gives[a, [a, x]β ]αγ[a, [a, x]β ]α = 0, for all x ∈ M andα, β, γ ∈ Γ. ¤

Lemma 5. Let M be a primeΓ-ring satisfying (*) and of characteristic not 3. Suppose
thatX is a faithful and primeΓM−module. If there exists a nonzero Jordan left derivation
d : M → X, thenM has no nonzero nilpotent elements(more precisely,M has no nonzero
zero divisors).

Proof. We shall prove this lemma by contradictory supposition. Suppose thatM contains
a nonzero elementa with aαa = 0, for all α ∈ Γ. Then0 = d(aαa) = 2aαd(a) and so

aαd(a) = 0, (2. 9)

for all α ∈ Γ.
Replacingc by bβa in Lemma 2(c) and then using (*) andaαd(a) = 0, we have

d(aαbβbβa) + d(bβaαbβa) = d(aαbβbβa + bβaαbβa)
= (aβbβa + bβaβa)αd(b)− bαaβd(bβa)− bαbβaβd(a).

Thus

d(aαbβbβa) + d(bβaαbβa) = aβbβaαd(b) (2. 10)

Lemma 2(b) withaαa = 0 and aαd(a) = 0 gives d(aαbβa) = 0. Replacingb by
bβb, we obtaind(aαbβbβa) = 0. Again d(bβaαbβa) = 2bβaαd(bβa) = 0. Thus us-
ing d(aαbβbβa) = 0 andd(bβaαbβa) = 0 in (10), we get

aβbβaαd(b) = 0 (2. 11)

Replacingb by b + c in (2.11), and using (*), we obtain

aαbβaβd(c) + aαcβaβd(b) = 0, (2. 12)

for all a, b, c ∈ M andα, β ∈ Γ.
Replacingaγc + cγa for c in (2.12), after that by Lemma 2(a),aαa = 0 and (*), we get
aαbβaβcγd(a) = 0, for all a, b, c ∈ M andα, β, γ ∈ Γ and so by Lemma 1,

d(a) = 0 (2. 13)

Interchanginga andb in Lemma 2(b) and then by(2.13) andaαd(a) = 0, we getd(bαaβb)
= 0. This implies that

aαcβaβd(bαaβb) = 0, (2. 14)
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for all a, b, c ∈ M andα, β ∈ Γ. Replacingb by bαaβb in (2.12) and using(2.14), we get
aαbαaβbβaβd(c) = 0, for all a, b, c ∈ M andα, β ∈ Γ. This implies thataβd(c) = 0, by
Lemma 1. Replacingc by cαc in aβd(c) = 0, and then using (*), we have

aαcβd(c) = 0, (2. 15)

for all a, c ∈ M andα, β ∈ Γ.
Replacingc by b + c in (16), we getaαbβd(c) + aαcβd(b) = 0. Again, replacingc by
aαc in aαbβd(c) + aαcβd(b) = 0 and usingaαa = 0, we getaαbβd(aαc) = 0, for
all a, b, c ∈ M andα, β ∈ Γ. This implies thatd(aαc) = 0, by the faithfulness and the
primeness ofX.
Applying d(a) = 0 andaαd(c) = 0, we obtaind(aαc) = d(cαa + aαc) = 2cαd(a) +
2aαd(c). Replacinga by bβa in d(cαa) = 0 andc by bβc in d(aαc) = 0 and adding the
obtained results, we have

d(aαbβc + cαbβa) = 0, (2. 16)

for all a, b ∈ M andα, β ∈ Γ.
The faithfulness and primeness ofX and (*) in (2.11) givesaβd(b) = 0. With the help
of the Lemma 2(c) andaβd(b) = 0, (2.16) givesaαcβd(b) = 0, for all a, b, c ∈ M and
α, β ∈ Γ. Henced(b) = 0, for all b ∈ M. But this is a contradiction. ¤

We now state and prove our main result.

Theorem 6. Let M be a primeΓ-ring satisfying (*) and of characteristic not 2, andX a
nonzero leftΓM -module. Suppose thatX is faithful and prime. If there exists a nonzero
Jordan left derivationd : M → X, thenM is commutative.

Proof. In order to develop [1, Theorem 2.2], it suffices to consider the case thatM is of
characteristic not 3. Consider an elementa ∈ M such thatd(a) 6= 0. Then by Lemma 4,
we get[a, [a, b]β ]αγ[a, [a, b]β ]α = 0, for all b ∈ M andα, β, γ ∈ Γ. By Lemma 5, we get
[a, [a, b]β ]α = 0, for all b ∈ M andα, β ∈ Γ. This implies thataα[a, b]β = [a, b]βαa, for
all b ∈ M andα, β ∈ Γ and soa ∈ Z(M). ThusM = Z(M)∪Kerd. Sinced is nonzero,
we conclude thatM = Z(M), by Brauer’s trick (which states that a group cannot be the
union of its two proper subgroups). Therefore,M is commutative. ¤

Finally, keeping relation with Theorem 6, we developed [11, Theorem 2] as follows.

Theorem 7. Let M be a primeΓ-ring satisfying (*) and of characteristic not 2. If there
exists a nonzero derivationd : M → M such that[a, [a, d(a)]β ]α ∈ Z(M), for all a ∈ M
andα, β ∈ Γ, thenM is commutative.

Proof. In view of [12, Theorem 2], we consider the case thatM is of characteristic not
3. Then for anya ∈ M andα, β ∈ Γ, and using (*) and the condition thatM is of
characteristic not 3, we have

d(aαaβa) = aαaβd(a) + d(aαa)βa

= aαaβd(a) + aαd(a)βa + d(a)αaβa− aβd(a)αa + d(a)βaαa

+ 3aαd(a)βa = aα[a, d(a)]β − [a, d(a)]βαa

= [a, [a, d(a)]β ]α ∈ Z(M).

With the same conditions above and we get
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d((aαaβa)γ(aαaβa)δ(aαaβa)) = (aαaβa)γ(aαaβa)δd(aαaβa) + (aαaβa)γ
d(aαaβa)δ(aαaβa) + d(aαaβa)γ(aαaβa)
δ(aαaβa)

= (aαaβa)γ(d(aαaβa)δ(aαaβa)− (aαaβa)δ
d(aαaβa)) + d(aαaβa)γ((aαaβa)δ(aαaβa))
−((aαaβa)δ(aαaβa))
γd(aαaβa) + 3(aαaβa)γ(aαaβa)δd(aαaβa)

= 0

and henceM is commutative. ¤
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