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Abstract. Let M be a 2-torsion free primE-ring andX a nonzero faith-

ful and primel’ M-module. Then the existence of a honzero Jordan left
derivationd : M — X satisfying some appropriate conditions impligs

is commutative M is also commutative in the case thlat M — M is a
derivation along with some suitable assumptions.
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1. INTRODUCTION

Let M andT' be additive abelian groupsM is said to be d'-ring if there exists a
mappingM x T' x M — M (sending(z, «, y) into xzay) such that
(a)(z +y)az = zaz + yaz,
z(a+ By = zay + 2Py,
za(y + z) = zay + zaz,
(b)(way)Bz = za(ypz),
forallz,y,z € M anda,3 € T.
M is commutative ifaab = baa, for all a,b € M anda € T'. A subsetA of al'-ring M
is a left(right) ideal ofM if A is an additive subgroup dff andMT A, the set of allnaa
suchthatn € M,a € I"'anda € A (AT'M) is contained irA. Anideal P of aI'-ring M is
prime if P # M and for any idealst andB of M, AT'B C P,thenA C PorB C P. M is
prime if al’ MT'b = Owith a,b € M, thena =0o0rb = 0. M is semiprime ifal’'MTa =0
with a € M, thena = 0. M is of characteristic not equal te (or, n-torsion free) if
nm = 0, form € M impliesm = 0, wheren is an integer. The commutatetz — zaa,
foralla € M,z € X anda € T is denoted bya, z],. An elements in al'—ring M is
called nilpotent if(ac))”a = 0, for all « € I" and for some:. The kernel of a derivation
d on al'—ring M is denoted by Ket and defined by Ket = {a € M : d(a) = 0}. The
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subsetZ (M) = {a € M : aab = baa, for anyb € M anda € T' } is called the centre of
al'—ring M.

Let M be al'-ring and letX be an additive abelian groupX is called al’ M/ -module if
there exists a mappin/ x I' x X — X (sending(m, «, ) into max) such that
(a)(m1 + ma)ax = miax + maoax

m(a + B)x = max + mfx

ma(z1 + x2) = max; + maxs

(b)(miame)fBr = mia(mefz),

forallm,my,ms € M,a,6 €'z, 21,29 €T.

X is faithful if XT'a = 0 forcesa = 0. X is prime if mI'MTxz = 0, for m € M and
z € X implies that eitherr = 0 or mI'’X = 0. An additive mappingl : M — M isa
derivation ifd(aab) = aad(b) + d(a)ab, a left derivation ifd(aad) = aad(b) + bad(a), a
Jordan derivation ifl(aca) = aad(a) + d(a)aa and a Jordan left derivation if{(aca) =
2aad(a), foralla,b € M anda € T.

Y. Ceven [4] worked on Jordan left derivations on completely pritrgngs. He investi-
gated the existence of a nonzero Jordan left derivation on a completely primg M

that makes\ commutative ifaabBc = afBbac, for all a,b,c € M anda, 5 € T'. With

the same assumption, he showed that every Jordan left derivation on a completely prime
I'-ring is a left derivation on it. In this paper, he gave an example of Jordan left derivation
for I'-rings.

Mustafa Asci and Sahin Ceran [7] studied on a nonzero left derivdt@mma primel’-ring

M for which M is commutative with the condition§U) C U andd?(U) C Z, whereU

is an ideal ofM and Z is the centre of\/. They also proved the commutativity 8f by

the nonzero left derivatiod, and right derivationl; on M with the conditionsl, (U) C U
anddldQ(U) c Z.

In [9], Sapanci and Nakajima defined a derivation and a Jordan derivatibrrioigs and
investigated a Jordan derivation on a certain type of completely primieg which is a
derivation. They also gave examples of a derivation and a Jordan derivafiorirgjs.

Bresar and Vukman [2] proved that a Jordan derivation on a prifriag is a derivation.
Furthermore, in [3], Bresar and Vukman showed that the existence of a nonzero Jordan left
derivation of R into X implies R is commutative, wheré® is a ring andX is 2-torsion

free and 3-torsion free lefR-module. In [6], Jun and Kim proved their results without the
property 3-torsion free.

Qing Deng [5] worked on Jordan left derivatiodsf prime ring R of characteristic not
2 into a nonzero faithful and prime left-module X. He proved the commutativity a®
with the Jordan left derivatiod.

Joso Vukman [10] studied on Jordan left derivations on semiprime rings.

In this paper, we prepare a note on the basis of the results of Qing DengI[5iinmys.
We show that the existence of a nonzero Jordan left derivatmma 2-torsion free prime
I'-ring M into a faithful and primé" M/ -module X gives the commutativity of/. We also
obsereve the commutativity aff whend : M — M is derivation.

Throughout this paper, we shall treatb5c = afSbac, for all a,b,c € M anda, 5 € T, as

(%)
2. JORDAN LEFT DERIVATIONS

In order to equare our main results, we use some steps as lemmas.
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Lemma 1. Suppose thaX is a faithful and primd’M-module. Leti,b € M andx € X.
If (the primeT'-ring) M is 2-torsion free satisfying (*) andamgSbymoéx = 0, for all
m € M anda, 3,7, € I',thena=00orb=00rz = 0.

Proof. We use the hypothesis
aamfBbymdzr =0,

foralla,b,m € M,z € X anda, 3,7, € T.

Replacingm by u 4+ v in the above equation and then putting= mBaamBbym, we get
acuBbymBaampBbymdxr+aamBaamBbympBbyudr = 0.This givesaamBaamBbym3
byudx = 0, forall a,b,m,u € M, x € X anda,3,7v,5 € I'. If z = 0, we are done.
Suppose that # 0. SinceX is faithful and prime, thettaamBa)amB(bym3b) = 0, for
alla,b,m € M anda, 8,~ € . Primeness o/ givesaamBa = 0 or bymSb = 0, and
consequentlyg = 0 orb = 0. (]

Lemma 2. Let M be al'—ring satisfying (*) and of characteristic not 3. K is a 2-torsion
freeI' M —module andi : M — X is a Jordan left derivation, then for all, b, ¢ € M and
a,B el

(a) d(aab + baa) = 2aad(b) + 2bad(a),

(b) d(aabfa) = afaad(b) — baafd(a),

(¢) d(aabfBc + cabfa) = (afc + cfa)ad(b) — baafd(c) — bacld(a).

The Proof is obtained in Y. Ceven [4] by using the condition thais of characteristic not
3.

DefineD, (z) = [a, ], foralla,z € M anda € T.

Lemma 3. Let M be al'-ring which satisfies (*) and let € M be a fixed element. Then
(a) Dy (x) is a derivation,

() Do Dg(x) = aaDg(x) — Ds(z)aa,

(¢) DaDp(z) = DgDa(x),

(d) Do Dg(xvy) = Do Dg(x)yy + 2Do () 8D~ (y) + 2yDaDpa(y),

forall z,y € M anda, 3,y € T.

Proof. (a) Forallz,y € M anda, 8 € T and using (*), we have

Do (zBy) = [a,2By]a
= [a, z]aBy + zafa, y]s
— Da(@)By + 7aDs(y).

(b) By definition, we have

DoDg(x) = Du([a,z]p)

= lala, z]p]a
aala, x| — [a, z]paa

= aaDg(z) — Dg(x)aa,
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foralla,x € M anda, 3 €T
(c) Using (*), we get

DoDg(x) = Do([a,z]p)
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foralla,xz € M anda, B €T.
(d) By (b) and (*), we have
D.Dg(zvy) = acafryy— acxyyfa — afxyyoa + zyyBaca
= (aaafz — aaxfa — afraa + xfaca)yy
+2a0xB(ayy — yya) — 2zaaB(ayy — yya)
+zvy(aaafy — aayfa — afyaa + yLaca)
= DaDg(z)vy + 2(acax — zaa)B(avy — yya) + 2yDaDp(x)
= Do Dg()vy + 2D o (7) 3D (y) + 27D Ds(y),
forall z,y € M anda, 3, € T. O
Lemma 4. Let M be aI'-ring satisfying (*) and of characteristic not 3, antl: M — X

a Jordan left derivation, wheré is a faithful and prime’A/ —module. Ifd(a) # 0, for
someq € M, then|[a, [a, b]glav]a, [, b]g]la = 0, forall b € M anda, 8,y €T

Proof. Leta € M be a fixed element.
By Lemma 3, we have

D,Dgs(z) = aa(afz —xfa) — (afz — xfa)aa, (2.1)

forallz € M anda, 5 € T.
Using (*) in (aab—baa)BaaD(a) = ac(aab—baa)BD(a), foralla,b € M anda, 5 € T
[Y. Ceven, Lemma 2.2(i)], we obtain

(aa(afx — xfa) — (afzx — zfBa)aa)ad(a) =0, (2.2

forallz € M anda, 5 € T.
From(2.1) and(2.2), we get

D,Dgs(z)ad(a) =0, (2.3)

forallz € M anda, 3 € T.
By Lemma 3(d) and2.3), we have

(DoDs(z)vy + 2Do(x) 3D (y))ad(a) =0, (2. 4)

forall z,y € M anda, 3,y € T.
Replacingy by D, (y53z) in (2.4) and by Lemma 3(a), we obtain

(DQDQ(CU)’V(DQ(Z/),BZ + yaDﬁ(Z)) + 2Da(‘r)/8D“/(Da(yﬁz)))ad(a) =0 (2 5)
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Using Lemma 3(c) in2.5), and then using2.3), we get
(DaDg(2)y(Da(y)Bz + yaDgs(2) + DaDg(x)yyaDs(z)))ad(a) =0 (2. 6)

ReplacingD,,(z) for z in (2.6) and then by Lemma 3(c) ar{@.3), we obtain
(DaDs(x)yDa(y)aDp(z))ad(a) =0 2.7
Replacingy by D, (y) in (2.6), and then by Lemma 3(c) ar{d.7), we get
(Do Dg())1(DaDs(y))azad(a) = 0 (2. 8)

Since(2.8) holds for allz € M, we are forced to conclude thét# 0 implies

(DaDg(x))y(DaDps(y)) =0

forall z,y € M anda, 3, € T.
In particular,(DyDg(b))vy((DoDg(b)) =0, forallb € M anda, 3,y € T.
This gives|a, [a, z]glaY]a, [a, %] gla = 0, forall z € M anda, 5,y € T. O

Lemma 5. Let M be a primel'-ring satisfying (*) and of characteristic not 3. Suppose
that X is a faithful and primd” M —module. If there exists a nonzero Jordan left derivation
d: M — X, thenM has no nonzero nilpotent elements(more precigdlyias no nonzero
zero divisors).

Proof. We shall prove this lemma by contradictory supposition. Supposéeithabntains
a nonzero elementwith aaa = 0, for all & € T. Then0 = d(aca) = 2aad(a) and so

aad(a) = 0, (2.9)
foralla €T
Replacinge by b3a in Lemma 2(c) and then using (*) andvd(a) = 0, we have
d(aabpbfa) + d(bBaabBa) = d(aabBbBa + bBaabfa)

(abBa + bBaBa)ad(b) — baaBd(bBa) — babBaBd(a).
Thus

d(aabBbBa) + d(bBaabfa) = aBbBaad(b) (2. 10)
Lemma 2(b) withaaa = 0 andaad(a) = 0 givesd(aabBa) = 0. Replacingb by
bs3b, we obtaind(aabBbBa) = 0. Again d(bfaabfa) = 2bBacd(bBa) = 0. Thus us-
ing d(aabBbfa) = 0 andd(bBaabBa) = 0in (10), we get

apfbBaad(b) =0 (2.11)
Replacingd by b + cin (2.11), and using (*), we obtain
aabBafd(c) + aacBaBd(b) = 0, (2.12)

forall a,b,c € M anda, 3 € T.
Replacingayc + c¢ya for cin (2.12), after that by Lemma 2(ajyaa = 0 and (*), we get
aabBafcyd(a) =0, forall a,b,c € M anda, 3,7 € T and so by Lemma 1,

d(a) =0 (2. 13)

Interchanging: andb in Lemma 2(b) and then b{2.13) andaad(a) = 0, we getd(baa3b)
= 0. This implies that

aacfafBd(baaBb) =0, (2. 14)
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forall a,b,c € M anda, 8 € T'. Replacing by baaSb in (2.12) and using(2.14), we get
aabaafBbfapd(c) = 0, forall a,b,c € M anda, 8 € T'. This implies that3d(c) = 0, by
Lemma 1. Replacing by cac in a8d(c) = 0, and then using (*), we have

aacBd(c) =0, (2. 15)

foralla,c € M anda, 3 €T.

Replacingc by b + ¢ in (16), we getaabfd(c) + aacBd(b) = 0. Again, replacing: by
aac in aabBd(c) + aacBd(b) = 0 and usingaca = 0, we getaabfd(aac) = 0, for
all a,b,¢c € M anda, 8 € T'. This implies thatd(aac) = 0, by the faithfulness and the
primeness ofX.

Applying d(a) = 0 andaad(c) = 0, we obtaind(aac) = d(caa 4+ aac) = 2cad(a) +
2aad(c). Replacinga by b8a in d(caa) = 0 andc by b3c in d(aac) = 0 and adding the
obtained results, we have

d(aabfc + cabfa) = 0, (2. 16)

foralla,b € M anda, 5 € T.

The faithfulness and primeness &fand (*) in (2.11) givesagd(b) = 0. With the help
of the Lemma 2(c) andgd(b) = 0, (2.16) givesaacfd(b) = 0, for all a,b,c € M and
a, f € T'. Henced(b) = 0, for all b € M. But this is a contradiction. O

We now state and prove our main result.

Theorem 6. Let M be a primel'-ring satisfying (*) and of characteristic not 2, ankd a
nonzero leff” M/-module. Suppose tha is faithful and prime. If there exists a nonzero
Jordan left derivationd : M — X, thenM is commutative.

Proof. In order to develop [1, Theorem 2.2], it suffices to consider the case\ihiat of
characteristic not 3. Consider an elemer¢ M such thati(a) # 0. Then by Lemma 4,
we getfa, [a, ] s]aY(a, [a,b]gla = 0, forall b € M anda, 3,7 € I'. By Lemma 5, we get

[a, [a,b]gla = 0, forall b € M anda, 8 € T'. This implies thaua]a, b = [a, b]gaa, for

allb € M anda, 8 € T'and soa € Z(M). ThusM = Z(M)UKerd. Sinced is nonzero,
we conclude thal/ = Z (M), by Brauer’s trick (which states that a group cannot be the
union of its two proper subgroups). Therefold,is commutative. O

Finally, keeping relation with Theorem 6, we developed [11, Theorem 2] as follows.

Theorem 7. Let M be a primel'-ring satisfying (*) and of characteristic not 2. If there
exists a nonzero derivatioh: M — M such thata, [a, d(a)]gle € Z(M),forall a € M
anda, 8 € T', thenM is commutative.

Proof. In view of [12, Theorem 2], we consider the case théatis of characteristic not
3. Then for anya € M anda,$ € I', and using (*) and the condition that is of
characteristic not 3, we have

d(acafa) acafd(a) + d(aca)Ba

acafd(a) + aad(a)fBa + d(a)aafa — afd(a)aa + d(a)Baca
3aad(a)fa = aala,d(a)]g — [a, d(a)]gaa

0,0, d(@)]s]a € Z(M).

_|_

With the same conditions above and we get
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d((aaapfa)y(acafa)d(acafa)) = (acafa)y(acaafa)dd(acafa)+ (acafa)y

d(aaafa)d(acafa) + d(acafa)y(acafa)
d(acafa)

= (aaafa)y(d(aaafa)dé(acafa) — (acafa)d
d(acafa)) + d(acafa)y((acafa)d(acafa))
—((aaafa)d(acafa))
~vd(acafa) + 3(acafa)y(acafa)dd(acafa)

= 0

and hencél/ is commutative. O
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