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Abstract. This manuscript is a study of PreA∗-functions. Here a Pre
A∗-function defined as a mappingf : 3n −→ 3, where3 = {0, 1, 2} is a
PreA∗-algebra. Further it has been determined various properties of Pre
A∗-functions. Some basic properties of PreA∗-functions such as duality,
order relation and erstwhile properties are identified in this document.
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1. INTRODUCTION

Burris and Sankappanavar [1] made a detailed description on various aspects of boolean
algebra. In a draft manuscript entitled ”The Equational theory of Disjoint Alternatives”,
Manes [5] introduced the concept of Ada (Algebra of disjoint alternatives)
(A,∧,∨, (−)p, (−)π, 0, 1, 2) which is however differs from the definition of the Ada of
Manes [6] later paper entitled ”Adas and the equational theory of if-then-else”. While the
Ada of the earlier draft seems to be based on extending the If-Then-Else concept more on
the basis of Boolean algebras and the later concept is based on C-algebras(A,∧,∨, (−)∼)
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introduced by Fernando Guzman and Craig C. Squir [2]. Koteswara Rao [4] first in-
troduced the concept of A*-algebra(A,∧,∨, ∗, (−)∼, (−)π, 0, 1, 2) not only studied its
equivalence with Ada, C-algebra, Ada’s connection with 3-Ring, Stone type representation
but also introduced the concept ofA∗-clone, the If-Then-Else structure overA∗-algebra
and Ideal ofA∗-algebra. Venkateswara Rao [13] introduced the concept of PreA∗-algebra
(A,∨, ,∧, (−)∼) analogous toC-algebra as a reduct ofA∗-algebra. Sadhan Kumar [10],
Rechard [8], Kenneth [3] and Peter [7] described various aspects in the concept of boolean
functions. Venkateswara Rao and Srinavasa Rao [14] studied about the concept of PreA∗-
Algebra as a poset Venkataswara Rao et al. [15] initiated a congruence relation and ternary
operation on PreA∗-Algebra.
Venkateswara Rao and Srinivasa Rao [11] defined the congruence relation on Pre A*-
algebra. Venkateswara Rao and Srinivasa Rao [12], introduced the well known Cayley’s
theorem on centre of PreA∗-algebras and also introduced an important operation on Pre
A∗-algebra called ternary operation asΓ(p, q) = (x ∧ p) ∨ (x∼ ∧ q).
Based on the definition and basic properties of PreA∗-algebras and by combining and
comparing properties of Boolean functions, in this manuscript there is defined a PreA∗-
function as a mappingf : 3n −→ 3.
The first section is devoted to the introduction of PreA∗-algebras and and various basic
properties of PreA∗-algebras.
The second section deals with the concept of PreA∗-functions. So, this paper defines a Pre
A∗-function as a mappingf : 3n −→ 3, where3 = {0, 1, 2} is a PreA∗-algebra. Also,
in this section, some important problems are given to more understanding of the notion of
PreA∗-functions.
The third section concerns on properties of PreA∗-functions. Thus various basic proper-
ties of PreA∗-functions such as duality, order relation and other properties are discussed
in this paper.

2. INTRODUCTION TOPRE A∗-ALGEBRAS

Definition 1. An algebra(A,∨,∧, (−)∼) whereA is non-empty set with∨,∧ are binary
operations and(−)∼ is a unary operation satisfying the following axioms:

(1) (x∼)∼ = x, ∀x ∈ A;
(2) x ∧ x = x, ∀x ∈ A;
(3) x ∧ y = y ∧ x, ∀x, y ∈ A;
(4) (x ∧ y)∼ = x∼ ∨ y∼,∀x, y ∈ A;
(5) x ∧ (y ∧ z) = (x ∧ y) ∧ z, ∀x, y, z ∈ A;
(6) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), ∀x, y, z ∈ A;
(7) x ∧ y = x ∧ (x∼ ∧ y), ∀x, y ∈ A is called a PreA∗-algebra.

Example 1. Z3 = 3 = {0, 1, 2} with operations∧,∨, (−)∼ defined as below is a Pre
A∗-algebra.

∧ 0 1 2
0 0 0 2
1 0 1 2
2 2 2 2

∨ 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2
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x x∼

0 1
1 0
2 2

Note 1.The elements0, 1, 2 in the above example satisfy the following laws:
(a)2∼ = 2 (b) 1 ∧ x = x for all x ∈ 3
(c) 0 ∨ x = x for all x ∈ 3 (d) 2 ∧ x = 2 = 2 ∨ x for all x ∈ 3.

Example 2. Z2 = 2 = {0, 1} with operations∧,∨, (−)∼ defined as below is a Pre
A∗-algebra.

∧ 0 1
0 0 0
1 0 1

∨ 0 1
0 0 1
1 1 1

x x∼

0 1
1 0

Note 2.

(1) (2,∨,∧, (−)∼) is a Boolean algebra. So, every Boolean algebra is a PreA∗-
algebra.

(2) Axioms (i) and (iv) imply that the varieties of PreA∗- algebras satisfy all the dual
statements of (i) to (vii).

Theorem 2([9]). Every PreA∗-algebra satisfies the following laws.

(1) x ∨ (x∼ ∧ x) = x
(2) (x ∨ x∼) ∧ y = (x ∧ y) ∨ (x∼ ∧ y)
(3) (x ∨ x∼) ∧ x = x
(4) (x ∨ y) ∧ z = (x ∧ z) ∨ (x∼ ∧ y ∧ z)

3. PRE A*-F UNCTIONS:

This section deals with PreA∗-functions and various examples of PreA∗-functions.
In this section, the binary operations+ and · are used in place of∨ (meet) and∧ (join)
respectively.

In section1, it is mentioned thatZ3 = 3 = {0, 1, 2} is a PreA∗-algebra. Now we define
a PreA∗-function on the PreA∗-algebraZ3.
Note 3.1.A PreA∗-variable is a variable which assumes only the values0, 1 and2. That is,
it is a variable that takes values fromZ3. Two PreA∗-variables are said to be independent
variables if they assume values fromZ3 independent of each other. Clearly, the variablesx
andx∼ are not independent variables. Ifx1 andx2 are two independent PreA∗-variables,
then the ordered pair(x1, x2) assumes value fromZ3×Z3 and the possible values assumed
by (x1, x2) are(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1) and(2, 2). That is the
ordered pair(x1, x2) has nine(9 = 32) possible values.

Similarly, if x1, x2, x3 are three independent PreA∗-variables, then the ordered triplet
(x1, x2, x3) assumes value fromZ3 × Z3 × Z3 and has27 = 33 possible values.
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In general, ifx1, x2, · · · , xn aren independent PreA∗-variables, the orderedn tuples
(x1, x2, · · · , xn) assumes value fromZ3×Z3×· · ·×Z3 = Zn

3 and has3n possible values.

Definition 3. A mappingf : Z3 −→ Z3 is called a PreA∗-function of one variable.

Note 3.2. From this, one can easily show that, there are 27 PreA∗-functions of one
variable.

Definition 4. A mappingf : Zn
3 −→ Z3 is said to be a PreA∗-function ofn variables.

Note 3.3. As mentioned above, ifx1, x2, · · · , xn aren independent PreA∗-variables,
then the domainZn

3 contains3n PreA∗ elements. For example,Z2
3 has 9 PreA∗-variables,

Z3
3 has27 PreA∗-variables,Z4

3 has81 PreA∗-variables, etc. So, consider a mapping
f : Z3 −→ Z3.In Z3 there are3 = 31 number of elements. Thus from counting principle,
the total number of PreA∗-functionsf : Z3 −→ Z3 is 331

= 27 (as mentioned above).
For the mappingf : Z2

3 −→ Z3, in Z2
3 there are9 = 32 number of PreA∗-variables, and

the total number of PreA∗-functionsf : Z2
3 −→ Z3 is 332

.
For the mappingf : Z3

3 −→ Z3, the total number of PreA∗-functions is333
. In general

by counting principle of products, the total number of PreA∗-functionsf : Zn
3 −→ Z3 is

33n

.
Problem 3.1.Let x, y be two independent PreA∗-variables andf(x, y) = x + y∼. Then
find f(0, 0), f(1, 2) andf(2, 2).
Solution: Heref is a functionf : Z2

3 −→ Z3 andx, y are independent PreA∗-variables.
Then;f(0, 0) = 0 + 0∼ = 0 + 1 = 1 (Since0∼ = 1)
f(1, 2) = 1 + 2∼ = 1 + 2 = 2 (As 2∼ = 2)
f(2, 2) = 2 + 2∼ = 2 + 2 = 2

Problem 3.2. Let x, y, z be three independent PreA∗-variables and letf(x, y, z) =
xy + xy∼ + z∼. Then findf(1, 0, 2), f(0, 2, 2) andf(1, 1, 1).
Solution: In similar fashion with problem 2.1 above, wheref : Z3

3 −→ Z3, we have;
f(1, 0, 2) = 1 · 0 + 1 · 0∼ + 2∼ = 0 + 1 · 1 + 2 = 0 + 1 + 2 = 2
f(0, 2, 2) = 0 · 2 + 0 · 2∼ + 2∼ = 2 + 0 · 2 + 2 = 2 + 2 + 2 = 2
f(1, 1, 1) = 1 · 1 + 1 · 1∼ + 1∼ = 1 + 1 · 0 + 0 = 1 + 0 + 0 = 1
Note 3.4. From the above two examples, we have an interesting property of PreA∗-
functions.

Theorem 5. If any PreA∗-variable assumes the value 2 in its PreA∗-function (that is, in
its functional value), then the function has the value 2.

Proof. Without loss of generality, letf : Z3
3 −→ Z3 be a PreA∗-function such that

f(x, y, z) = xy∼ + xy + yz∼ + xz. Suppose the variabley assumes the value 2 (that is
y = 2), then;f(x, 2, z) = x · 2∼ + x · 2 + 2 · z∼ + xz = x · 2 + x · 2 + 2 · z∼ + xz
(Since2∼ = 2) = 2 + 2 + 2 + xz = 2 + xz = 2 (By the definition of PreA∗-algebra,
x + 2 = x · 2 = 2,∀x ∈ Z3.) ¤

Note 3.5. This property does not hold in the case of Boolean functions. Though
x + 1 = 1 ,∀x ∈ Boolean algebraB butx · 1 = x, ∀x ∈ B.
Note 3.6. Let f be a PreA∗-function. Thenf(x) = x + x∼ andf(x) = xx∼ are in
their simplified form because, in a PreA∗-algebra the propertiesx + x

′
= 1 andxx

′
= 0

do not hold in general. But in the case of Boolean functionf(x) = x + x
′

= 1 and
f(x) = xx

′
= 0 are in their simplified form (Sincex + x

′
= 1, xx

′
= 0, ∀x ∈ B.)
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Problem 3.3.Simplify the PreA∗-functionf(x, y, z) = xyz + xyx∼z + xyzy∼.
Solution: f is a PreA∗-functionf : Z3

3 −→ Z3 andf(x, y, z) = xyz + xyx∼z + xyzy∼

= xyz + xx∼yz + xyy∼z (Sincexy = yx) = (x + xx∼)yz + xyy∼z = xyz + xyzy∼

(Sincex + xx∼ = x) = x(y + yy∼)z = xyz.

Problem 3.4.Simplify the PreA∗-functionf(x, y, z) = xy(z + z∼)z +xyzy∼+xz∼.
Solution: f(x, y, z) = xyzz + xyz∼z + xyzy∼ + xz∼ = xyz + xyzz∼ + xyy∼z + xz∼

(Sincezz = z) = xy(z + zz∼)+xyy∼z +xz∼ = xyz +xyy∼z +xz∼ (As z + zz∼ = z)
= x(y + yy∼)z + xz∼ = xyz + xz∼ (As y + yy∼ = y)
Problem 3.5.Show thatf(x, y) = xy + xyx∼ + xy + yxy∼ = xy.
Solution: f(x, y) = (x + xx∼)y + xy + xyy∼ = xy + x(y + yy∼) = xy + xy = xy.
From the above problems, one can observe that, a Boolean function can be simplified into
more simplified form than a PreA∗-function and a Boolean function is easy to simplify
than a PreA∗-function. For instance, the PreA∗-function f(x, y, x) = xyzy∼ is in its
simplified form. But the Boolean functionf(x, y, z) = xyzy′ is not in its simplified form.
Since iff(x, y, z) = x(yy

′
)z = x(0)x = 0 (Sincex · 0 = 0, ∀x ∈ B).

Note 3.7:Variables of a Boolean function can be taken as propositional variables. Because,
Boolean algebra itself is the study of logic, and a proposition is a declarative sentence
which has a truth value of true or false but not both.

Similarly, each Boolean variable has the value0 or 1 but not both and we can associate
the truth value true by 1 and the truth value false by0. But a PreA∗-function is an ex-
tension of this function, and introduces another proposition with undefined truth value that
can be represented by the value2.

4. PROPERTIES OFPRE A∗-FUNCTIONS

In this section we give attention to various basic properties of PreA∗-functions. A Pre
A∗-expression in the variablesx1, x2, · · · , xn are defined recursively as0, 1, 2, x1, x2, · · · ,
xn are PreA∗-expressions. IfE1 andE2 are PreA∗-expressions thenE∼

1 , (E1 + E2)
and(E1E2) are also PreA∗-expressions. Each PreA∗-expression represents a PreA∗-
function.

Definition 6. Let f be a PreA∗-function, then the algebraic degree off denoted bydeg(f)
is the number of variables in the highest order term.

Example 4.1.The functionf(x) = 1 has degree zero.
The functionf(x) = x has degree one.
The functionf(x, y) = x + xy has degree two.
The functionf(x, y, z) = x + xz + xyz has degree three.

Definition 7. The dual of a PreA∗-expression is obtained by interchanging PreA∗-sums
and PreA∗-products, interchanging0s and1s and interchanging of2 with itself.

Example 4.2.The dual of the PreA∗-expressionx(y + 0) is x + (y · 1) which is also
PreA∗-expression. The dual ofx∼ · 2 + (y∼ + z) is x∼ + 2 · (y∼ · z).
Note 4.1.The dual of a PreA∗-functionf is represented by a PreA∗-expression is a func-
tion represented by the dual of this expression, and is denoted byfd.
An identity between PreA∗-functions remain valid when the dual of both sides of the iden-
tity are taken. This is called the principle of duality, and is useful for obtaining new identity.
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Example 4.3.. By taking the duality on both sides of the identityx + (xx∼) = x, we
obtain the identityx · (x + x∼) = x.

Theorem 8. Letf : Zn
3 −→ Z3 be any PreA∗-function, then the following holds;

a) f + 2 = 2 = 2 + f
b) f · 2 = 2 = 2 · f
Proof. Sincef : Zn

3 −→ Z3 is any PreA∗-function, its value is an element ofZ3 =
{0, 1, 2}. Hence, from the definition of PreA∗-algebra;x + 2 = 2 = 2 + x for all x ∈ Z3

x · 2 = 2 = 2 · x for all x ∈ Z3 (AsZ3 is a PreA∗-algebra).
Consequently, (a) and (b) follows. This completes the proof. ¤
Definition 9. Let f andg be two PreA∗-functions of degreen. The sumf + g (PreA∗-
sum) and the PreA∗-productfg are defined as;(f + g)(x1, x2, · · · , xn) = f(x1, x2, · · · ,
xn)+g(x1, x2, · · · , xn) and(fg)(x1, x2, · · · , xn) = f(x1, x2, · · · , xn)g(x1, x2, · · · , xn).

Definition 10. The PreA∗-functionsf andg of n variables are said to be equal if and only
if f(x1, x2, · · · , xn) = g(x1, x2, · · · , xn).

Definition 11. The dual of a PreA∗-function f is the functionfd defined byfd(X) =
[f(X∼)]∼∀X = (x1, x2, · · · , xn) ∈ 3n,whereX∼ = (x∼1 , x∼2 , · · · , x∼n ).

Example 4.4:.Letf be the two variable PreA∗-function defined byf(0, 0) = 1, f(0, 2)
= 2, f(1, 1) = 1, f(0, 1) = 1, f(1, 2) = 2 andf(1, 0) = 0. Findfd.
Solution: fd(0, 0) = [f(0∼, 0∼)]∼ = [f(1, 1)]∼ = 1∼ = 0
fd(0, 2) = [f(0∼, 2∼)]∼ = [f(1, 2)]∼ = 2∼ = 2
fd(1, 1) = [f(1∼, 1∼)]∼ = [f(0, 0)]∼ = 1∼ = 0
fd(0, 1) = [f(0∼, 1∼)]∼ = [f(1, 0)]∼ = 0∼ = 1
fd(1, 2) = [f(1∼, 2∼)]∼ = [f(0, 2)]∼ = 2∼ = 2
fd(1, 0) = [f(1∼, 0∼)]∼ = [f(0, 1)]∼ = 1∼ = 0.

Theorem 12. If f andg are two PreA∗-functions, then the following holds.

(1) (fd)d = f (Involution: the dual of the dual is the function itself)
(2) (f∼)d = (fd)∼

(3) (f + g)d = fdgd

(4) (fg)d = fd + gd

Proof. (a) and (b) follow immediately from the definition of duality. For property (c),
consider;(f + g)d(X) = (f + g)∼(X∼) = [f(X∼) + g(X∼)]∼ = [f(X∼)]∼[g(X∼)]∼

(By De Morgan’s law)= fdgd Property (d) follows from the properties (a) and (c). ¤
Note 4.2.A unary operation∗ : x −→ x∗ on a non empty setA is called an involution

if (x∗)∗ = x, ∀x ∈ A.

Corollary 13. If we define the PreA∗-function2 by2(X) = 2, ∀X ∈ 3n, then(f +2)d =
2 = (f · 2)d.

Proof. (f + 2)d(X) = (f + 2)∼(X∼) = [(f + 2)(X∼)]∼ = [f(X∼)]∼[2(X∼)]∼ (By
property (c) above)= fd · 2∼ (By the definition of2) = 2 (By theorem 8 above) In a
similar fashion, we have(f · 2)d = 2 =⇒ (f + 2)d = 2 = (f · 2)d. ¤
Definition 14. Let f be a PreA∗-function of degreen. Thenf∼ is a PreA∗-function and
is defined asf∼(x1, x2, · · · , xn) = [f(x1, x2, · · · , xn)]∼.

.
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Definition 15. The relation≤ on the set of PreA∗-functions of degreen is defined as
f ≤ g, wheref andg are PreA∗-functions if and only if;g(x1, x2, · · · , xn) = 2 whenever
f(x1, x2, · · · , xn) = 2.

Example 4.5.Let f andg be two PreA∗-functions such thatf(x, y) = x andg(x, y) =
x + y. Thenf ≤ g.
Solution: Let f(x, y) = x = 2 which implies thatx = 2. Then,g(x, y) = x + y =
2 + y = 2∀y ∈ Z3. Which implies that iff = 2 theng = 2. Thereforef ≤ g.

Theorem 16. If f andg are PreA∗-functions of degree n then follows the following.
a) f ≤ f + g
b) fg ≤ f

Proof. (a) Letf andg be PreA∗-functions of degreen. If f(x1, x2, · · · , xn) = 2 then(f+
g)(x1, x2, · · · , xn) = f(x1, x2, · · · , xn)+g(x1, x2, · · · , xn) = 2+g(x1, x2, · · · , xn) = 2
( By the dominance property of2) Hencef(x1, x2, · · · , xn) = 2 =⇒ (f +g)(x1, x2, · · · ,
xn) = 2. Thereforef ≤ f + g. (b)Let(fg)(x1, x2, · · · , xn) = f(x1, x2, · · · , xn)g(x1,
x2, · · · , xn) = 2. Hencef(x1, x2, · · · , xn) = 2. Which implies that,fg ≤ f . ¤

Note 4.3.From the above theorem 3.2, it is also true thatg ≤ f + g andfg ≤ g.

Theorem 17. The relation≤ is a partial ordering on the set of PreA∗-functions of degree
n.

Proof. Let f, g andh be PreA∗-functions of ordern. Thenf(x1, x2, · · · , xn) = 2 =⇒
f(x1, x2, · · · , xn) = 2 is reflexive. Suppose thatf ≤ g andg ≤ h then,f(x1, x2, · · · , xn)
= 2 if and only if g(x1, x2, · · · , xn) = 2 which implies thatf = g. Thus≤ is anti
symmetric. Assume thatf ≤ g ≤ h, then if f(x1, x2, · · · , xn) = 2, it follows that
g(x1, x2, · · · , xn) = 2, which implies thath(x1, x2, · · · , xn) = 2. That isf(x1, x2, · · · ,
xn) = 2 =⇒ h(x1, x2, · · · , xn) = 2 =⇒ f ≤ h. Hence the relation≤ is transitive.
Therefore, the relation≤ is a partial order on the set of PreA∗-functions. ¤

Definition 18. A join semi lattice(S,∨) is said to be directed above if and only if for
x, y ∈ S, there exists an elementa ∈ S such thata ≥ x, a ≥ y.

Theorem 19. Let F be the set of all PreA∗-functions. Then(F,∨) is a directed above
join semi lattice. But(F,∧) is not a meet semi lattice.

Proof. Define(f ∨ g)(X) = f(X)∨ g(X), (f ∧ g)(X) = f(X)∧ g(X), ∀x ∈ Zn
3 , where

f andg are PreA∗-functions fromZn
3 −→ Z3, f

∼(X) = [f(X)]∼, 0(X) = 0, 1(X) =
1, 2(X) = 2 ∀X ∈ Zn

3 . Then we have that;[(f ∨ g) ∨ h](X) = (f ∨ g)(X) ∨ h(X)
= [f(X)∨g(X)]∨h(X) = f(X)∨[g(X)∨h(X)] = f(X)∨[(g∨h)(X)] = [f∨(g∨h)](X)
(The associative property of∨ is simply inherited from the definition of PreA∗-algebra.)
(f ∨ f)(X) = f(X) ∨ f(X) = f(X), ∀f ∈ F (Sincex ∨ x = x, ∀x ∈ 3). Hence(F,∨)
is a join semi lattice. For allf, g ∈ F there is a function2 = 2(X), ∀X ∈ 3n such that
2 ≥ f, 2 ≥ g. (Since in a PreA∗-function2 ∨ f = f ∨ 2 = 2 + f = 2,∀f ∈ F .) For all
f, g ∈ F, f ∨ g = g ∨ f . Therefore,(F,∨) is a directed above join semi lattice. But(F,∨)
is not a meet semi lattice. If, letf(x, y) = x ∨ y be a PreA∗-function from32 to 32 then;
[f(x, y)] ∧ [f(x, y)] = (x ∨ y) ∧ (x ∨ y) = (x ∧ x) ∨ (x ∧ y) ∨ (x ∧ y) ∨ (y ∧ y)
= x∨ (x∧ y)∨ y = x∨ (x∨ 1)∧ y 6= x∨ y = f(x, y) (Sincex∨ 1 6= 1,∀x ∈ 3). Which
implies thatf ∨ f 6= f,∀f ∈ F . Thus(F,∧) is not meet semi lattice. ¤
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Note 4.4.

(1) Let F denotes the set of all Boolean functions fromZn
2 −→ Z2. Define(f ∨

g)(X) = f(X) ∨ g(X), (f ∧ g)(X) = f(X) ∧ g(X), ∀X ∈ Zn
2

f
′
(X) = [f(X)]

′
, 0(X) = 0, 1(X) = 1,∀X ∈ Zn

2 . Then the set(F,∨,∧) forms
a lattice. But the set of PreA∗-functions does not form a lattice under these two
binary operations. Because, the propertyx = x ∨ (x ∧ y) and its dual (absorption
laws) and the idempotent lawx ∧ x = x for a set to be a lattice do not hold on the
set of PreA∗-functions.

(2) (F,∨,∧), whereF is the set of Boolean functions, is a complemented lattice. But
not the set of PreA∗-functions.

Note 4.5.A bounded latticeL is said to be a complemented lattice if for eacha ∈ L there
exists an elementb ∈ L such thata ∧ b = 0 anda ∨ b = 1.

Conclusion: It is observed that in general, ifx1, x2, · · · , xn are n independent PreA∗-
variables, the orderedn tuples(x1, x2, · · · , xn) assumes value fromZ3×Z3 · · ·×Z3 = Zn

3

and has3n possible values. It is concluded that, there are27 PreA∗-functions of one
variable. Also in general by counting principle of products, it is obtained the total number
of Pre A∗-functionsf : Zn

3 −→ Z3 is 33n

. It is noticed that if any PreA∗-variable
assumes the value2 in its PreA∗-function (that is in its functional value), then the function
has the value2. It has been observed that, a Boolean function can be simplified into more
simplified form than a PreA∗-function and a Boolean function is easy to simplify than a
PreA∗-function. The principle of duality of a PreA∗-expression is obtained. An identity
between PreA∗-functions remain valid when the dual of both sides of the identity are
taken. Also there is defined the relation≤ and verified that the relation≤ is a partial order
on the set of PreA∗-functions. It is observed that the set of Boolean functions form a lattice
and the set of PreA∗-functions does not form a lattice under these two binary operations.
It is observed that the set of all PreA∗-functions is a directed above join semi lattice but is
not a meet semi lattice.
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