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1. INTRODUCTION

In this study, we are concerned with the problem of approximating a locally unique
solutionx? of equation

F (x) = 0, (1.1)

whereF is a Fŕechet-differentiable operator defined on an open convex subsetD of a
Banach spaceX with values in a Banach spaceY .

A large number of problems in applied mathematics and also in engineering are solved
by finding the solutions of certain equations [3,7,11]. These solutions can rarely be found
in closed form. That is why numerical methods are used to solve such equations.

The most popular method for generating a sequence{xn} approximatingx? is undoubt-
edly Newton-Kantorovich method

xn+1 = xn − F ′(xn)−1F (xn) (n ≥ 0) (x0 ∈ D). (1.2)

Here,F ′(x) ∈ L(X, Y ) the space of bounded linear operators fromX into Y denotes the
Fréchet derivative of operatorF .

Local as well as semilocal convergence results for Newton-Kantorovich method (1.2)
under various Lipschitz-type assumptions have been given by many authors [1-14].
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The various semilocal convergence conditions for Newton-Kantorovich method (1.2)
are only sufficient but not necessary. Hence, it is possible using the same information as
before to find weaker sufficient convergence conditions. As an example (see also Sec-
tion 3) we showed [3-7] that the famous Newton-Kantorovich hypothesis (see (3.1)) for
solving nonlinear equations can always be replaced by an at least as weak condition (see
(3.2)). Similar results for Newton-type methods have been given in [1,2,8-14]. Note that
the applicability of these methods is extended, whenever weaker sufficient convergence
conditions become available. Hence, such studies and results are extremely important in
computational mathematics.

The affine invariant condition

‖F ′(x0)−1(F ′(x)− F ′(y))‖ ≤ q(‖x− y‖) for all x, y ∈ D,

where,q : [0, +∞) → [0, +∞) is continuous, and non-decreasing has been used by many
authors in the study of the Newton-Kantorovich method [5,6,7,8,9,12,13,14].

Here, we present new sufficient convergence conditions. Our results extend to solve
equations

F (x) + G(x) = 0, (1.3)

using
xn+1 = xn − F ′(xn)−1(F (xn) + G(xn)) (n ≥ 0) (x0 ∈ D), (1.4)

whereF is as above andG : D → Y is a continuous operator.
The paper is organized as follows: Section 2 contains the semilocal convergence of

methods (1.2) and (1.4), whereas in Section 3 we provide special cases, and numerical
examples.

2. SEMILOCAL CONVERGENCE

We present the semi-local convergence analysis of methods (1.2) and (1.4) in this sec-
tion.

The following auxiliary result is used repeatedly in this paper.

Lemma 1. (Banach lemma on invertible operators [11]) LetT ∈ L(X). Then,T−1 exists
if and only if there is a bounded linear operatorP in X such thatP−1 exists and

‖I − PT‖ < 1.

If T−1 exists, then

‖T−1‖ ≤ ‖P‖
1− ‖I − PT‖ .

Next, in Lemma 2, 3 and Theorem 5 we use method (1.2) to approximate a solutionx?

of equation (1.1).
Let x0 ∈ D. Suppose that the following conditions hold:
(C1) F ′(x0)−1 ∈ L(Y, X) and‖F ′(x0)−1‖ ≤ β,

(C2) 0 < ‖F ′(x0)−1F (x0)‖ ≤ η ,

and
(C3) there exists a continuous strictly increasing functionw : [0,+∞) → [0,+∞)

with w−1 : [0, +∞) → [0, +∞) continuous such that for alls ≥ 0, t ≥ 0 andx, y ∈ D

w−1(s) + w−1(t) ≤ w−1(s + t)



New w-convergence conditions for the Newton-Kantorovich method 79

and
‖F ′(x)− F ′(y)‖ ≤ w(‖x− y‖).

It is convenient for us to define fora0 = b0 = 1, scalar sequences

an+1 =
an

1− βanw(bnη)
, (2.1)

cn =
∫ 1

0

w(tbnη)dtbn, (2.2)

and
bn+1 = βan+1cn. (2.3)

We provide a connection between Newton-Kantorovich method{xn} and scalar se-
quences{an}, {bn}, {cn}.
Lemma 2. Under the(C1)− (C3) conditions further suppose:

(C4) xn ∈ D

and

(C5) βanw(bnη) < 1 .

Then, the following estimates hold:

(In) ‖F ′(xn)−1‖ ≤ anβ,

(IIn) ‖xn+1 − xn‖ = ‖F ′(xn)−1F (xn)‖ ≤ bnη,

and
(IIIn) ‖F (xn+1)‖ ≤ cnη.

Proof. We shall use induction to show items(In)− (IIIn). (I0) and(II0) follow imme-
diately from the initial conditions. To show(III0), we use (1.2) forn = 0, (II0) and(C3)
to obtain in turn

F (x1) = F (x1)− F (x0)− F ′(x0)(x1 − x0)
=

∫ 1

0
[F ′(x0 + t(x1 − x0))− F ′(x0)](x1 − x0)dt.

(2.4)

So, we get that

‖F (x1)‖ = ‖ ∫ 1

0
[F ′(x0 + t(x1 − x0))− F ′(x0)](x1 − x0)dt‖

≤ ∫ 1

0
w(t‖x1 − x0‖)dt‖x1 − x0‖ ≤

∫ 1

0
w(tb0η)dtb0η = c0η.

(2.5)

If xk+1 ∈ D (k ≤ n), then it follows from(C3)− (C5) and the induction hypotheses that:

‖F ′(xk)−1‖‖F ′(xk+1)− F ′(xk)‖ ≤ akβw(‖xk+1 − xk‖)
≤ βakw(bkη) < 1.

(2.6)

It follows from (2.6) and the Banach Lemma 1 thatF ′(xk+1)−1 ∈ L(Y, X), and

‖F ′(xk+1)−1‖ ≤ ‖F ′(xk)−1‖
1−‖F ′(xk)−1‖‖F ′(xk+1)−F ′(xk)‖

≤ akβ
1−βakw(bkη) = ak+1β,

(2.7)

which shows(In) for all n ≥ 0.
As in (2.4), we also have:

F (xk+1) = F (xk+1)− F (xk)− F ′(xk)(xk+1 − xk)
=

∫ 1

0
[F ′(xk + t(xk+1 − xk))− F ′(xk)](xk+1 − xk)dt.

(2.8)
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Consequently, we get that

‖F (xk+1)‖ ≤ ∫ 1

0
w(t‖xk+1 − xk‖)dt‖xk+1 − xk‖

≤ ∫ 1

0
w(tbkη)dtbkη = ckη,

(2.9)

which shows(IIIn) for all n ≥ 0. Moreover, by (1.2), (2.7) and (2.9) we have that

‖F ′(xk+1)−1F (xk+1)‖ ≤ ‖F ′(xk+1)−1‖‖F (xk+1)‖
≤ βak+1ckη = bk+1η.

(2.10)

That completes the induction for(IIn). ¤ ¤

Next, we shall show the convergence of sequence{xn}, which is equivalent to proving
that{bn} is a Cauchy sequence. To this effect we need the following result:

Lemma 3. Suppose:
Condition(C5) holds. Then, the following assertions hold:
(a) Scalar sequence{an} increases,
(b) limn→∞ bn = 0,
(c) r =

∑∞
k=0 bk < ∞, bk = 1

η w−1( 1
β ( 1

ak
− 1

ak+1
))

and
(d) If U(x0, rη) = {x ∈ X|‖x− x0‖ ≤ rη} ⊆ D, then(C4) holds.

Proof. . (a) We shall show using induction that{an}, {bn}, {cn}, and1 − βanw(bnη)
are positive sequences. In view of the initial conditions,a0, b0, c0 and1 − βa0w(b0η)
are positive. Assumeak, bk, ck and1 − βakw(bkη) are positive fork ≤ n. It follows
from hypothesisck > 0, and (2.3) thatak+1bk+1 > 0. Moreover, by (2.1),ak+1 > 0,
consequentlyw(bk+1η) > 0. Furthermore,1 − βak+1w(bk+1η) > 0 by (C5). The
induction is completed.

Solving (2.1) forw(bnη), we obtain

w(bnη) =
1
β

(
1
an

− 1
an+1

). (2.11)

By telescopic sum, we have:

n−1∑

k=0

w(bkη) =
1
β

(1− 1
an

) (2.12)

and

an =
1

1− β
∑n−1

k=0 w(bkη)
. (2.13)

But 1 − β
∑n−1

k=0 w(bkη) decreases, so{an} given by (2.13) increases. Note also that
an ≥ a0 = 1.

(b) By (a),{an} increases and

0 <
1
an

≤ 1. (2.14)

Therefore,{ 1
an
} is monotonic on the compact set[0, 1] and as such it converges to some

limit denoted bya. By lettingn →∞ in (2.11), we get

lim
n→∞

bn = lim
n→∞

1
η
w−1(

1
β

(
1
an
− 1

an+1
)) =

1
η
w−1( lim

n→∞
1
β

(
1
an
− 1

an+1
)) =

1
η
w−1(0) = 0.

(2.15)



New w-convergence conditions for the Newton-Kantorovich method 81

(c) r is finite since by the first hypothesis in(C3) and (2.15):

r =
∞∑

k=0

1
η
w−1(

1
β

(
1
ak
− 1

ak+1
)) ≤ 1

η
w−1(

∞∑

k=0

1
β

(
1
ak
− 1

ak+1
)) =

1
η
w−1(

1
β

(1− a)).

(d) We have‖x1 − x0‖ ≤ b0η = η ⇒ x1 ∈ U(x0, rη). Assumexk ∈ U(x0, rη) ⊆ D
for all k ≤ n. Then, we have by Lemma 1 in turn that

‖xk+1 − x0‖ ≤ ‖xk+1 − xk‖+ · · ·+ ‖x1 − x0‖ ≤ (bk + · · ·+ b0)η ≤ rη (2.16)

⇒
xk+1 ∈ U(x0, rη) ⊆ D. ¤ ¤

We can show the semilocal convergence result for Newton-Kantorovich method (1.2).

Theorem 4. Under conditions(C1)− (C3), (C5), further suppose
(C6) U(x0, rη) ⊆ D.
Then, sequence{xn} generated by Newton-Kantorovich method (1.2) is well defined,

remains inU(x0, rη) for all n ≥ 0, and converges to a solutionx? ∈ U(x0, rη) of equation
F (x) = 0. Moreover, the following estimates hold:

‖xn − x?‖ ≤
∞∑

k=n

bkη < rη. (2.17)

Furthermore,x? is the only solution of equationF (x) = 0 in

D1 = D0

⋂
D, (2.18)

where

D0 = U(x0, r0) (2.19)

provided thatr0 ≥ rη is the maximum number satisfying

β

∫ 1

0

w((1− t)rη + tr0)dt = 1. (2.20)

Proof. It follows from Lemmas 2 and 3 (see also(IIn)) that{xn} is a Cauchy sequence
in a Banach spaceX and as such it converges to somex? ∈ U(x0, rη) (sinceU(x0, rη)
is a closed set). We havelimn→∞ w(bnη) = 0, which implies by (2.2), the continuity of
functionw and the assertion (b) in Lemma 3 thatlimn→∞ cn = 0. By lettingk → ∞ in
(2.9) and using the continuity of operatorF , we obtainF (x?) = 0.

By (C6), we get

‖xn+1 − x0‖ ≤
n∑

k=0

‖xk+1 − xk‖ ≤
n∑

k=0

bkη < rη,

⇒ xn+1 ∈ U(x0, rη)
⇒ x? = limn→∞ xn ∈ U(x0, rη).
Let m > n. Then, we have

‖xn − xm‖ ≤
m−1∑

k=n

‖xk − xk+1‖ ≤
m−1∑

k=n

bkη < rη. (2.21)

By lettingm →∞ in (2.21), we obtain (2.17).
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Finally, to show uniqueness, lety? ∈ D0 be a solution of equationF (x) = 0. Define
linear operator

M =
∫ 1

0

F ′(x? + t(y? − x?))dt. (2.22)

By (C1), (C3) and (2.20), we obtain in turn:

‖F ′(x0)−1‖‖M − F ′(x0)‖ ≤ β
∫ 1

0
w((1− t)‖x? − x0‖+ t‖y? − x0‖)dt

< β
∫ 1

0
w((1− t)rη + tr0)dt = 1.

(2.23)

It follows from (2.23), and the Banach lemma 2.1 thatM−1 exists. Using the identity

0 = F (y?)− F (x?) = M(y? − x?),

we deducex? = y?. ¤ ¤

Remark5. It follows from (C3) that
(C3)′ there always exists a continuous non-decreasing functionw0 : [0,+∞) →

[0, +∞) with w0(0) = 0 such that for allx ∈ D

‖F ′(x)− F ′(x0)‖ ≤ w0(‖x− x0‖).
Note that

w0 ≤ w

holds in general, andww0
can be arbitrarily large [3-7]. Hence(C3)′ is not an additional

hypothesis. In view of(C3)′, and (2.5)c0, anda1 can be defined in a tighter way by

a1 =
a0

1− βa0w0(b0η)
and

c0 =
∫ 1

0

w0(tb0η)dtb0.

The new{an}, {bn} and{cn} sequences are tighter majorizing (for{xn}) than before
under the same computational cost. Moreover, the uniqueness ball is extended, sincew0

can replacew (see (2.23)) in condition (2.20).

The results obtained here can be extended to hold for equations containing a not neces-
sarily differentiable term.

In the remaining results we use method (1.4) to approximate a solutionx? of equation
(1.3).

Let us suppose:
(C7) there exists a continuous, non-decreasing functionv0 : [0,+∞) → [0,+∞)

with v(0) = 0 such that for allx, y ∈ D:

‖G(x)−G(y)‖ ≤ v(‖x− y‖)‖x− y‖.
Define sequence{cn} by

cn = [
∫ 1

0

w(tbnη)dt + v(bnη)]bn,

where as{an} and{bn} are given by (2.1) and (2.3), respectively.
Then, using the identity:

F (xn+1) + G(xn+1) =
∫ 1

0
[F ′(xn + t(xn+1 − xn))− F ′(xn)](xn+1 − xn)dt

+G(xn+1)−G(xn),
(2.24)
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(instead of (2.4) (forn = 0), (2.8)) and following the rest of the proof of Theorem 4
(excluding the uniqueness part) we arrive at:

Theorem 6. Under the conditions(C1)− (C3), (C5)− (C7) the following hold:
Sequence{xn} generated by Newton-Kantoroovich method (1.4), is well defined, re-

mains inU(x0, rη) for all n ≥ 0, and converges to a solutionx? ∈ U(x0, rη) of equation
F (x) + G(x) = 0. Moreover, the following estimates hold:

‖xn − x?‖ ≤
∞∑

k=n

bkη < rη. (2.25)

We can show a uniqueness result but we use a condition other than (2.20).

Proposition 7. Under the hypotheses of Theorem 2.6, further suppose:
there existsr1 ≥ rη such that

β(
∫ 1

0

w(tr1)dt + v(r1)) ≤ aq < 1 for some q ∈ (0, 1), (2.26)

thenx? is the unique solution of equationF (x) + G(x) = 0 in D3 = D
⋂

D2,
where

D2 = U(x0, r1),
anda is given in Lemma 2.3.

Proof. Let y? ∈ D3 be a solution of equationF (x) + G(x) = 0. Using (1.4), we get the
identity

xn+1 − y? = −F ′(xn)−1[F (xn)− F (y?)− F ′(xn)(xn − y?) + G(xn)−G(y?)]
= −F ′(xn)−1[

∫ 1

0

(
F ′(y? + t(xn − y?))− F ′(xn)

)
dt(xn − y?)

+G(xn)−G(y?)],
(2.27)

so,

‖xn+1 − y?‖ ≤ anβ[
∫ 1

0
w(t‖xn − y?‖)dt + v(‖xn − y?‖)]‖xn − y?‖

≤ anβ[
∫ 1

0
w(tr1)dt + v(r1)]‖xn − y?‖

≤ q‖xn − y?‖.
(2.28)

Hence, we get
‖xn+1 − y?‖ ≤ qn‖x0 − y?‖ ≤ qnr1,

which implieslimn→∞ xn = y?. But we know thatlimn→∞ xn = x?. Hence, we deduce
x? = y?. ¤

It turns out that condition(C5) can be replaced by the at least as weak
(C5)′ βw0(dnη) < 1.
Indeed, introduce scalar sequences{pn}, {dn} by

p0 = β, d0 = 1,

dn =
n∑

k=0

bk

and
pn+1 =

p0

1− βw0(dnη)
.

We get

dn =
1
η
w−1

0 (
1
p0
− 1

pn+1
).
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Then, in view of the observation

‖F ′(x0)−1‖‖F ′(xk+1)− F ′(x0)‖
≤ βw0(‖xk+1 − x0‖)
≤ βw0(‖xk+1 − xk‖+ ‖xk − xk−1‖+ · · ·+ ‖x1 − x0‖)
≤ βw0((bk + bk−1 + · · ·+ b0)η) = βw0(dkη), (2.29)

estimate (2.7) can be replaced by the at least as precise

‖F ′(xk+1)−1‖ ≤ p0

1− βw0(‖xk+1 − xk‖+ ‖xk − xk−1‖+ · · ·+ ‖x1 − x0‖)
≤ p0

1− βw0(dkη)
. (2.30)

With these changes, we arrive at the following analogs of Lemmas 2, 3, Theorem 4, 6 and
Proposition 7. ¤

Lemma 8. Suppose(C1) − (C4), (C3)′ and (C5)′ hold. Then, the following estimates
hold

‖F ′(xn)−1‖ ≤ pn,

‖xn+1 − xn‖ ≤ bnη

and
‖F (xn+1)‖ ≤ cnη.

Lemma 9. Suppose(C5)′ holds. Then, sequence
(a) {pn} increases,
(b) {dn} is increasingly convergent,
(c) limn→∞ bn = 0,
(d) r =

∑∞
k=0 bk < ∞

and
(e) If U(x0, rη) ⊆ D, then(C4) holds.

Similarly, we obtain analogs of Theorem 4,6 and Proposition 7 (simply replace(C5) by
(C5)′)).

Remark10. The results obtained here can further be refined, if we further assume:
(C3)′′ there exists a functionp : [0, 1] → [0, +∞) such that

w(st) ≤ p(s)w(t) for all s ∈ [0, 1] and t ∈ [0, +∞).

This condition has been successfully used to sharpen the error bounds for particular ex-
pressions [5,6,7,8,9,12,13,14]. Note that such a functionp always exists. Indeed, ifw is a
nonzero function onR+, then one can definep : [0, 1] → [0,+∞) by

p(s) = sup{w(st)
w(t)

: t ∈ [0, +∞), with w(t) > 0}.

Note that in this case the results obtained in this study hold with
∫ 1

0
w(tbnη)dt replaced by

Pw(bnη), where

P =
∫ 1

0

p(s)ds.

Finally, note that the results obtained here can be provided in affine invariant form, if we
replace operatorF by F ′(x0)−1F [5-7].
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3. SPECIAL CASES AND APPLICATIONS

Condition (C5) is difficult to verify in general. However,(C5) holds in some very
interesting cases. Let us consider the Lipschitz case, i.e.,w(s) = Ls, w0(s) = L0s, and
G = 0. Then, the famous for its simplicity and clarity Newton-Kantorovich hypothesis

hK = βLη ≤ 1
2

(3.1)

implies condition(C5) and

rK =
2

1 +
√

1− 2hK

[11].

Moreover, our condition given in [3], [11] by

hAH = βLη ≤ 1
2
, (3.2)

where,

L =
1
8
(L + 4L0 +

√
L2 + 8L0L)

also implies(C5) and

rAH =
2

2− αβ
,

where,

α =
4L

L +
√

L2 + 8L0L
.

Note that

hK ≤ 1
2
→ hAH ≤ 1

2
but not necessarily vise versa unless ifL0 = L.

In the first example we show that the Kantorovich hypothesis (see (3.1)) is satisfied with
the bigger uniqueness ball of solution than before [2], [7].

Example 11. Let X = Y = R be equipped with the max-norm. Letx0 = 1, D =
U(x0, 1− q), q ∈ [0, 1) and define functionF onD by

F (x) = x3 − q. (3.3)

Then, we obtain thatβ = 1
3 , L = 6(2 − q), L0 = 3(3 − q) andη = 1

3 (1 − q). Then, the
famous for its simplicity and clarity Kantorovich hypothesis for solving equations using
(NKM) [1,2,7] is satisfied, say forq = .6, since

hK = βLη =
2
3
(2− q)(1− q) = 0.373333 . . . <

1
2
. (3.4)

Hence, (NKM) converges starting atx0 = 1. We also have thatr = 1.330386708, η =
.133 . . ., rη = .177384894, L0 = 7.2 < L = 8.4 andr0 = 2

βL0
− rη = .655948439. That

is our Theorem 2.4 guarantees the convergence of (NKM) tox? = 3
√

0.6 = .843432665
and the uniqueness ball is better than the one given in (KT).

In the second example we apply Theorem 4 to a nonlinear integral equation of Chand-
rasekhar-type.
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Example 12. Let us consider the equation

x(s) = 1 +
s

4
x(s)

∫ 1

0

x(t)
s + t

dt, s ∈ [0, 1]. (3.5)

Note that solving (3.5) is equivalent to solvingF (x) = 0, whereF : C[0, 1] → C[0, 1]
defined by

[F (x)](s) = x(s)− 1− s

4
x(s)

∫ 1

0

x(t)
s + t

dt, s ∈ [0, 1]. (3.6)

Using (3.6), we obtain that the Fréchet-derivative ofF is given by

[F ′(x)y](s) = y(s)− s

4
y(s)

∫ 1

0

x(t)
s + t

dt− s

4
x(s)

∫ 1

0

y(t)
s + t

dt, s ∈ [0, 1]. (3.7)

Let us choose the initial pointx0(s) = 1 for eachs ∈ [0, 1]. Then, we have thatβ =
1.534463572, η = .2659022747, L0 = L = ln 2 = .693147181, h = .392066334
andr = 1.23784269 (see also [1,2,3,7]). Then, hypotheses of Theorem 2.4 are satisfied.
In consequence, equationF (x) = 0 has a solutionx? in U(1, ρ), whereρ = rη =
.298816793.
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