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Abstract. We present a new approach to study the convergence of some
superquadratic iterative method in Banach space for solving variational
inclusions under different assumptions used in [12, 14, 2]. Here, we re-
lax Lipschitz, Hölder or center–Hölder type conditions by introducing
ω–type–conditioned second order Fréchet derivative. Under this condi-
tions, we show that the sequence is locally superquadratically convergent
if some Aubin continuity property is satisfied. In particular, we recover a
quadratic and a cubic convergence.

AMS (MOS) Subject Classification Codes: 47H04, 65K10, 49J53
Key Words: Generalized equations, Banach space, center-Lipschitz condition, superquad-
ratic method, set-valued map, ω-condition, variational inclusions, Frechet derivative, Aubin
continuity.

1. INTRODUCTION

Generalized equations [18, 19] are an abstract model of a wide variety of variational
problems. They may characterize optimality or equilibrium and then have several applica-
tions economics and engineering (see for example [11]).

Throughout, X and Y are Banach spaces, we denote by IBr(x) the closed ball centered
at x with radius r. The distance from a point x and a subset A of X will be denoted by
dist (x,A) = inf

a∈A
∥x − a∥. A set–valued mapping Λ from X to Y is indicated by Λ :

X −→ 2Y and its graph is the set gph Λ := {(x, y) ∈ X × Y, y ∈ Λ(x)} and Λ−1(y) =
{x ∈ X, y ∈ Λ(x)}. From now on f : X → Y denotes a twice (Fréchet) differentiable
function while G : X −→ 2Y stands for a set–valued mapping with closed graph. We are
concerned with the problem of approximating a solution x∗ of the generalized equation of
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the form
0 ∈ f(x) +G(x), (1.1)

and we consider the following iterative method for solving (1.1):

0 ∈ A(xk+1, xk) +G(xk+1), (1.2)

where,

A(y, x) = f(x) +∇f(x)(y − x) +
1

2
∇2f(x)(y − x)2, ∀x, y ∈ X. (1.3)

Algorithm (1.2) is based on the second–degree Taylor polynomial expansion A of f .
The cubically convergence of method (1.2) is presented in [12] when the set–valued map-
ping [A(·, x∗) + G(·)]−1 is Aubin continuous around (0, x∗) (or pseudo–Lipschitz at
(0, x∗)), and the function f is C2 and the second Fréchet derivative of f is L–Lipschitz
in some neighborhood V of x∗

∥ ∇2f(x)−∇2f(y) ∥≤ L ∥ x− y ∥, x, y ∈ V. (1.4)

Recall that a set-valued map F : Y −→ 2X is pseudo–Lipschitz at (z, w) ∈ gphF
if there exist constants a, b,M such that for every y1, y2 ∈ IBb(z) and for every z1 ∈
F (y1) ∩ IBa(w) there exists z2 ∈ F (y2) with

∥ z1 − z2 ∥≤M ∥ y1 − y2 ∥ .
The pseudo–lipschitzian property is introduced in [5] and is tied to the concept of metric

regularity; actually, the Aubin continuity of F around (z, w) is equivalent to the metric
regularity of the inverse F−1 of F at w for z, i.e., z ∈ F−1(w) and there exists κ ∈ [0,∞[
along with neighborhoods U of w and V of z such that

dist (x, F (y)) ≤ κ dist (y, F−1(x)), ∀x ∈ U, y ∈ V.

The infimum of the set of values κ for which this holds is the modulus of metric regu-
larity. For more details on these topics one can refer to [7, 8, 9, 16, 17, 20, 21].

Geoffroy and Piétrus [14] showed that the sequence (1.2) is locally superquadratic con-
vergent to the solution x∗ whenever ∇2f satisfies some α–Hölder–type condition on some
neighborhood V of x∗ with constant K (α, K > 0):

∥ ∇2f(x)−∇2f(y) ∥≤ K ∥ x− y ∥α, x, y ∈ V. (1.5)

The stability of method (1.2) is investigated in [13] with respect to some perturbations;
more precisely, if we consider the perturbed equation y ∈ f(x)+G(x) (y is some parame-
ter in Y ) then the attraction region does not depend on small perturbations of the parameter
y.

Argyros [2] provided a finer local superquadratic convergence of algorithm (1.2) using
α–center–Hölder condition on some neighborhood V of x∗ with constantK0 (α, K0 > 0):

∥ ∇2f(x)−∇2f(x∗) ∥≤ K0 ∥ x− x∗ ∥α, x ∈ V. (1.6)

In this paper, we use different conditions to the previous one to study the convergence of
(1.2). We relax these usual Lipschitz and Hölder conditions by ω–conditioned second de-
rivative. This condition is used in [10, 15] to study Newton’s method for solving nonlinear
equations (G = {0} in (1.1)). The main conditions required are

∥ ∇2f(x)−∇2f(y) ∥≤ ω(∥ x− y ∥), for x, y in V, (1.7)

∥ ∇2f(x)−∇2f(y) ∥≤ σ(∥ x− y ∥) ∥ x− y ∥θ,
for all x, y in V and θ is fixed in (0, 1],

(1.8)

∥ ∇2f(x)−∇2f(x∗) ∥≤ µ(∥ x− x∗ ∥), for x in V, (1.9)
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∥ ∇2f(x)−∇2f(x∗) ∥≤ ϑ(∥ x− x∗ ∥) ∥ x− x∗ ∥θ, for x in V, (1.10)
where ω, σ, µ, ϑ : R+ −→ R+ are a continuous nondecreasing functions. When the
condition (1.7) is satisfied, we say that ∇2f is ω–conditioned. The condition (1.9) is called
µ–center–condition on the second derivative ∇2f . Similar conditions to (1.7) and (1.9) on
the Fréchet derivative ∇f are used in [3] to study of Newton’s methods for solving (1.1).
The inspiration for considering (1.8) comes from [22, 1].

Such a study can be of interest, for example, to variational inequalities for saddle points
(see [21]). Let A and B be nonempty, closed and convex subsets of Rn and Rm respec-
tively, and let L : Rn×Rm −→ R be some C1 convex–concave on A×B. The point (x̄,ȳ)
∈ A×B is a saddle point if the following hold:

L(x, ȳ) ≥ L(x̄, ȳ) ≥ L(x̄, y), for all x ∈ A and y ∈ B. (1.11)

The saddle point condition (1.11) is equivalent to

0 ∈ f(x̄, ȳ) +G(x̄, ȳ), (1.12)

where f and G are defined on A × B by f(x, y) = (∇xL(x, y),−∇yL(x, y)) and by
G(x, y) = NA(x) ×NB(y), with NA (resp. NB) the normal cone to the set A (resp. B).
Hence, the variational problem (1.11) corresponds to generalized equation in formulation
(1.1) and (x̄, ȳ) can be approximated by the method (1.2).

This paper is organized as follows: In section 2 we have collected a fixed point theorem
[6] and a number of necessary results, needed in our local analysis. In section 3, we give
some convergence results using the different assumptions (1.7), (1.8) or (1.9) and the the
Aubin continuity of [A(·, x∗) +G(·)]−1.

2. BACKGROUND MATERIAL AND ASSUMPTIONS

Let us begin with some basic results [4] that will be used throughout this paper. The
first tool in our analysis is the fixed point theorem for set–valued maps proved by Dontchev
and Hager [6].

Lemma 1. (see [6]) Let ϕ a set–valued map from X into the closed subsets of X , let
η0 ∈ X and let r and λ be such that 0 ≤ λ < 1 and the following conditions hold:

(a) dist (η0, ϕ(η0)) ≤ r(1− λ).
(b) e(ϕ(x1) ∩ IBr(η0), ϕ(x2)) ≤ λ ∥ x1 − x2 ∥, ∀x1, x2 ∈ IBr(η0).

Then ϕ has a fixed–point in IBr(η0). That is, there exists x ∈ IBr(η0) such that x ∈ ϕ(x).
If ϕ is single–valued, then x is the unique fixed point of ϕ in IBr(η0).

By the second order Taylor expansion of f at y ∈ V with the remainder is given by
integral form, the following lemmas are obtained directely.

Lemma 2. We suppose that the assumption (1.7) is satisfied on a convex neighborhood V .
Then for all x and y in V we have the following

∥ f(x)− f(y)−∇f(y) (x− y)− 1

2
∇2f(y) (x− y)2 ∥≤

∥ x− y ∥2
∫ 1

0

(1− t)ω(t ∥ x− y ∥) dt.

In particular, if the assumption (1.9) is satisfied then for all x in V we have the following

∥ f(x)− f(x∗)−∇f(x∗) (x− x∗)− 1

2
∇2f(x∗) (x− x∗)2 ∥≤

∥ x− x∗ ∥2
∫ 1

0

(1− t)µ(t ∥ x− x∗ ∥) dt.
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Lemma 3. We suppose that the assumption (1.8) is satisfied on a convex neighborhood V .
Then for all x and y in V we have the following

∥ f(x)− f(y)−∇f(y) (x− y)− 1

2
∇2f(y) (x− y)2 ∥≤

∥ x− y ∥2+θ

∫ 1

0

tθ (1− t)σ(t ∥ x− y ∥) dt.

Remark 4.
∫ 1

0

(1 − t)ω(t ∥ x − x∗ ∥) dt and
∫ 1

0

tθ (1 − t)σ(t ∥ x − x∗ ∥) dt given in

the previous lemmas are bounded by ω(diam (V )) and σ(diam (V )) respectively where
diam (V ) is the diameter of neighborhood V .

Before stating the main results on this study, we need to introduce some notations. First,
for k ∈ N and (xk) defined in (1.2), let us define the set–valued mappings Q : X −→ 2Y

and ψk : X −→ 2X by the following

Q(.) := A(., x∗) +G(.); ϕk(.) := Q−1(Zk(.)), (2.1)

where Zk is defined from X to Y by

Zk(x) := A(x, x∗)−A(xk, x). (2.2)

Let us mention that x1 is a fixed point of ϕ0 if and only if 0 ∈ A(x1, x0) +G(x1).
We will make the following assumptions in a open convex neighborhood V of x∗:

(H0) ∇f is L–Lipschitz on V with L > 0, and there exists L0 > 0 such that ∥
∇2f(x∗) ∥< L0.

(H1) The condition (1.7) is satisfied on V .
(H1)⋆ The condition (1.8) is satisfied on V .
(H2) The set–valued map [A(., x∗) +G(.)]−1 is pseudo–Lipschitz around (0, x∗) with

constantsM , a and b (these constants are given by definition of Aubin continuity).

3. CONVERGENCE ANALYSIS

The main theorems of this study read as follows:

Theorem 5. Let x∗ be a solution of (1.1). We suppose that assumptions (H0)–(H2) are

satisfied and we denote by β = M

∫ 1

0

(1 − t)ω(t a) dt. Then for every C > β, there

exist δ > 0 such that for every starting point x0 ∈ IBδ(x
∗), and a sequence (xk) for (1.1),

defined by (1.2), which satisfies

∥ xk+1 − x∗ ∥≤ C ∥ xk − x∗ ∥2 . (3.1)

That is, (1.2) generates (xk) with second order.

Theorem 6. Let x∗ be a solution of (1.1). We suppose that assumptions (H0), (H1)⋆ and

(H2) are satisfied and we denote by β′ = M

∫ 1

0

tθ (1 − t)σ(t a) dt. Then for every

C ′ > β′, there exist γ > 0 such that for every starting point x0 ∈ IBγ(x
∗), and a sequence

(xk) for (1.1), defined by (1.2), which satisfies

∥ xk+1 − x∗ ∥≤ C ′ ∥ xk − x∗ ∥2+θ . (3.2)

That is, (1.2) generates (xk) with superquadratic convergence. In particular, if θ = 1
then the convergence is cubic.
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Theorem 5 is showed as follows. Once xk is computed, we show that the function ϕk
has a fixed point xk+1 in X . This process allows us to prove the existence of a sequence
(xk) satisfying (1.2). Now, we state a result which is the starting point of our algorithm .
It will be very usefull to prove theorem 5 and reads as follows:

Proposition 7. Under the hypotheses of theorem 5, there exists δ > 0 such that for all
x0 ∈ IBδ(x

∗) (x0 ̸= x∗), the map ϕ0 has a fixed point x1 in Bδ(x
∗) satisfying ∥ x1 −

x∗ ∥≤ C ∥ x0 − x∗ ∥2.

Proposition 8. Under the hypotheses of theorem 6, there exists γ > 0 such that for all
x0 ∈ IBγ(x

∗) (x0 ̸= x∗), the map ϕ0 has a fixed point x1 in Bγ(x
∗) satisfying ∥ x1 −

x∗ ∥≤ C ′ ∥ x0 − x∗ ∥2+θ.

Proof of Proposition 7. By hypothesis (H2) we have

e(Q−1(y′) ∩ IBa(x
∗), Q−1(y′′)) ≤M ∥ y′ − y′′ ∥, ∀y′, y′′ ∈ IBb(0). (3.3)

Fix δ > 0 such that

δ < min

{
a;

1

C
;

√
b

5β

}
. (3.4)

To prove Proposition 7 we intend to show that both assertions (a) and (b) of lemma 1 hold;
where η0 : = x∗, ϕ is the function ϕ0 defined at the very begining of this section and
where r and λ are numbers to be set.

According to the definition of the excess e, we have

dist (x∗, ϕ0(x
∗)) ≤ e

(
Q−1(0) ∩ IBδ(x

∗), ϕ0(x
∗)

)
. (3.5)

Moreover, for all x0 ∈ Bδ(x
∗) such that x0 ̸= x∗ we have by (H1) and Lemma 2

∥ Z0(x
∗) ∥=∥ A(x0, x∗) ∥≤ β ∥ x0 − x∗ ∥2 . (3.6)

Then (3.4) yields, ∥ Z0(x
∗) ∥< b. Hence from (3.3) one has

e

(
Q−1(0)∩IBδ(x

∗), ϕ0(x
∗)

)
= e

(
Q−1(0)∩IBδ(x

∗), Q−1[Z0(x
∗)]

)
≤M β ∥ x∗−x0 ∥2 .

By (3.5), we get
dist (x∗, ϕ0(x

∗)) ≤M β ∥ x∗ − x0 ∥2 . (3.7)

Since C > M β there exists λ ∈ ]0, 1[ such that C(1− λ) ≥M β. Hence,

dist (x∗, ϕ0(x
∗)) ≤ C (1− λ) ∥ x0 − x∗ ∥2 . (3.8)

By setting η0 := x∗ and r := r0 = C ∥ x∗ − x0 ∥2 we can deduce from the last
inequalities that assertion (a) in lemma 1 is satisfied.

Now, we show that condition (b) of Lemma 1 is satisfied. Since
1

C
≥ δ and ∥ x∗ −

x0 ∥≤ δ, we have r0 ≤ δ ≤ a. Moreover by Lemma 2, we have for x ∈ IBδ(x
∗),

∥ Z0(x) ∥ = ∥ A(x, x∗)−A(x0, x) ∥
≤ ∥ A(x, x∗) ∥ + ∥ A(x0, x) ∥
≤ β ∥ x− x∗ ∥2 +β ∥ x− x0 ∥2≤ 5β δ2

(3.9)

Then by (3.4) we deduce that for all x ∈ IBδ(x
∗), Z0(x) ∈ IBb(0). Then it follows that

for all x′, x′′ ∈ IBr0(x
∗), we have

I = e(ϕ0(x
′) ∩ IBr0(x

∗), ϕ0(x
′′)) ≤ e(ϕ0(x

′) ∩ IBδ(x
∗), ϕ0(x

′′)), (3.10)
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which yields by (3.3)

I ≤ M ∥ Z0(x
′)− Z0(x

′′) ∥
≤ M ∥ ∇f(x∗)(x′ − x′′)−∇f(x0)(x′ − x′′)

+
1

2
∇2f(x∗)(x′ − x∗)2 − 1

2
∇2f(x∗)(x′′ − x∗)2

+
1

2
∇2f(x0)(x

′′ − x0)
2 − 1

2
∇2f(x0)(x

′ − x0)
2 ∥

≤ M ∥ ∇f(x∗)(x′ − x′′)−∇f(x0)(x′ − x′′)

+
1

2
∇2f(x∗)(x′ − x′′ + x′′ − x∗)2 − 1

2
∇2f(x∗)(x′′ − x∗)2

+
1

2
∇2f(x0)(x

′′ − x0)
2 − 1

2
∇2f(x0)(x

′ − x′′ + x′′ − x0)
2 ∥

= M ∥ ∇f(x∗)(x′ − x′′)−∇f(x0)(x′ − x′′)

+
1

2

(
∇2f(x∗)(x′ − x′′)2 −∇2f(x0)(x

′ − x′′)2
)

+∇2f(x∗)(x′′ − x0 + x0 − x∗)(x′ − x′′)−∇2f(x0)(x
′′ − x0)(x

′ − x′′) ∥

≤ M

(
∥ ∇f(x∗)−∇f(x0) ∥ ∥ x′ − x′′ ∥

+
1

2
∥ ∇2f(x∗)−∇2f(x0) ∥ ∥ x′ − x′′ ∥2

+ ∥ ∇2f(x∗)−∇2f(x0) ∥ ∥ x′′ − x0 ∥ ∥ x′ − x′′ ∥

+ ∥ ∇2f(x∗) ∥ ∥ x0 − x∗ ∥ ∥ x′ − x′′ ∥
)

(3.11)
By Assumptions (H0)–(H1) and (3.4) we deduce that

I ≤ M(Lδ + ω(a) δ + 2ω(a) δ + L0 δ) ∥ x′ − x′′ ∥
= M δ (L+ L0 + 3ω(a)) ∥ x′ − x′′ ∥ (3.12)

Without loss of generality we may assume that δ <
λ

M (L+ L0 + 3ω(a))
. Then con-

dition (b) of Lemma 1 is satisfied. Since both conditions of Lemma 1 are fulfilled, we can
deduce the existence of a fixed point x1 ∈ IBr0(x

∗) for the map ϕ0. Then the proof of
Proposition 7 is complete. �

Idea of the proof of Proposition 8. The proof of Proposition 8 is the same one as that
of the proof of Proposition 7. It is enough to make some modifications by choosing the
constant γ such that

γ < min

{
a;

(
1

C ′

) 1
1+θ

;

(
b

(1 + 22+θ)β′

) 1
2+θ

}
. (3.13)

�

Now that we proved Proposition 7 and Proposition 8, the proof of Theorem 5 and The-
orem 6 is straightforward as it is shown below.

Proof of Theorems 5 and 6. Proceeding by induction, keeping η0 = x∗ and setting
rk = C ∥ xk − x∗ ∥2 and r′k = C ′ ∥ xk − x∗ ∥2+θ, the application of Proposition 7 and
Proposition 8 to the map ϕk respectively gives the desired results. �

Remark 9. Theorem 5 and Theorem 6 remain true under (1.9) and (1.10).
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