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Abstract. In this paper the velocity field and the adequate shear stress
corresponding to the longitudinal flow of a fractional Maxwell fluid, be-
tween two infinite coaxial circular cylinders, are determined by applying
the Laplace and finite Hankel transforms. Initially both cylinders are at
rest and at time t = 0+ both cylinders begin to translate along their com-
mon axis with different constant accelerations. The solutions that have
been obtained are presented in terms of generalized G functions. The
expressions for the velocity field and the shear stress are in the most sim-
plified form, and the point worth mentioning is that these expressions are
free from integral of the generalized G functions, in contrast with [20], in
which the expression for the velocity field involves integral of the gener-
alized G functions. Moreover, these solutions satisfy both the governing
differential equation and all imposed initial and boundary conditions. The
corresponding solutions for ordinary Maxwell and Newtonian fluids are
obtained as limiting case of general solutions. Furthermore, the solutions
for the motion between the cylinders, when one of them is at rest, can also
be obtained from our results.
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1. INTRODUCTION

The study of viscoelastic fluids has many applications in industrial processes. They in-
clude the extrusion of polymer fluids, cooling of the metallic plate in a bath, food stuffs,
exotic lubricants, colloidal and suspension solutions. The classical Navier-Stokes theory
is inadequate to describe the flows of such kinds of fluids. The non-Newtonian charac-
teristics include stress relaxation, the normal stress difference, shear thinning or shear-
thickening and many other. Due to complexity of non-Newtonian fluids, various models
for viscoelastic fluids have been proposed. The first exact solutions for unsteady mo-
tions of such fluids seem to be obtained by Srivastava [27]. However, the exact analytic
solutions for non-Newtonian fluid flows is not an easy task and therefore in literature
such exact solutions are rare. In spite of several challenges, many investigations regard-
ing the exact analytic solutions for flows of non-Newtonian fluids have been performed
[1, 5, 6, 7, 9, 21, 34, 36, 37, 38].

There is a great interest of theoretical and applied scientists to study the fluid flows in the
neighborhood of translating or oscillating bodies. As early as Casarella and Laura [2] ob-
tained an exact solution for the motion of the linearly viscous fluid due to both longitudinal
and torsional oscillations of the rod. Later, Rajagopal [25] found two simple but elegant
solutions for the flow of a second grade fluid induced by the longitudinal and torsional
oscillations of an infinite rod. These solutions have been already extended to Oldroyd-B
fluids by Rajagopal and Bhatnagar [26]. Others interesting results have been recently ob-
tained by Hayat at al [10], Rajagopal [24], Fetecau and Corina Fetecau [4], Tong and Shan
[33], Corina Fetecau at al [8], and Jamil and Fectecau [14].

During last decade, fractional calculus has been successfully applied in the constitutive
modeling of non-Newtonian fluids. The main objective for this approach is that a fractional
model could describe simply and elegantly the complex behavior of a viscoelastic material.
For instance, the exponential relaxation moduli of the existing ordinary models (e.g. the
Maxwell model) [11] can not be described the characteristic of the relaxation processes
of many materials exhibit an algebraic decay. The relaxation process of some material
even jump from one power law state to another [12, 28]. However, experimental evidence
show that these characteristic can be easily described and correlated by fractional models
[12, 16]. These fractional models with compact expressions can be physically visualized
as an infinite hierarchical arrangement of springs and dashpots [16, 35]; thus they are a
natural generalization of the ordinary models. A theoretical advantage of these fractional
models with few parameters that they could describe a large number of different equivalent
and complicated combinations of the conventional springs and dashpots, which could well
be impractical to realize with the traditional springs and dashpots arrangements. These
fractional models with only one or two extra parameters involved, can exhibit a large va-
riety of dynamical behaviors, and thus they are the appropriate tools for describing the
complex characteristic of viscoelastic materials.

Recently one of the viscoelastic fluid namely Maxwell fluid has received special at-
tention. In a simple shear flow of a real fluid, Maxwell model predicts a linear relation
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between shear rate and shear stress. Furthermore, for the Maxwell model it was not pos-
sible to achieve satisfactory fit of experimental data over the entire range of frequencies
[17]. A very good fit of experimental data was achieved when the ordinary Maxwell model
has been replaced by the Maxwell model with fractional calculus [18]. The starting point
of the fractional derivative models of non-Newtonian fluids is usually a classical differen-
tial equation which is modified by replacing the time derivative of an integer order by the
so-called Riemann-Liouville fractional differential operator. This generalization allows us
to define precisely non-integer order integrals or derivatives [22]. There is a vast litera-
ture dealing with such fluids, but we shall recall here only a few of the most recent papers
[13, 19, 23, 29, 30, 32] in cylindrical domains.

In this paper, we are interested into the longitudinal motion of a fracional Maxwell fluid
between two infinite coaxial circular cylinders, both of them translate along their com-
mon axis with given constant accelerations. The velocity field and associated tangential
shear stress are determined by means of Laplace and finite Hankel transforms, and are
presented in terms of Bessel and generalized G functions. It is worthy to point out that
the solutions that have been obtained satisfy both the governing differential equations as
well as all imposed initial and boundary conditions. The solutions corresponding to the
ordinary Maxwell and Newtonian fluids, performing the same motion, are also obtained as
limiting cases of general solutions. Furthermore, the respective solutions for the longitu-
dinal motion between the cylinders, when one of them is at rest, are obtained from general
solutions.

2. THE DIFFERENTIAL EQUATIONS GOVERNING THE FLOW

For the problem under consideration, we shall assume a velocity field v and an extra-
stress tensor S of the form

v = v(r, t) = v(r, t)ez; S = S(r, t), (2.1)

where ez is the unit vector in the z-direction of a cylindrical coordinate system r, θ, z. For
such flows the constraint of incompressibility is automatically satisfied. If the fluid is at
rest up to the moment t = 0, then

v(r, 0) = 0; S(r, 0) = 0, (2.2)

The balance of the linear momentum, in the absence of a pressure gradient in the axial
direction (∂θp = 0 due to the rotational symmetry [26]), and the constitutive equation cor-
responding to Maxwell fluid lead to the relevant partial differential equation [6]

(
1 + λ

∂

∂t

)
τ(r, t) = µ

∂v(r, t)

∂r
. (2.3)

where τ(r, t) = Srz(r, t) is the shear stress which is different of zero, and µ is the dynamic
viscosity of the fluid, and λ is the relaxation time. The equations of motion, in the absence
of body forces, reduce to (see for instance Rajagopal and Bhatnagar[26]):

∂p

∂r
=

∂p

∂θ
= 0 and − ∂p

∂z
+

∂τ

∂r
+

τ

r
= ρ

∂v

∂t
, (2.4)
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eliminating τ between Eqs. (2.3) and (2.4), we attain to the governing equation(
1 + λ

∂

∂t

)
∂v(r, t)

∂t
= ν

(
∂2

∂r2
+

1

r

∂

∂r

)
v(r, t). (2.5)

The governing equations corresponding to an incompressible fractional Maxwell fluid, per-
forming the same motion, are given by [5, 6, 8, 23, 30, 32, 33]

(1 + λDβ
t )

∂v(r, t)

∂t
= ν

(
∂2

∂r2
+

1

r

∂

∂r

)
v(r, t); (1 + λDβ

t )τ(r, t) = µ
∂v(r, t)

∂r
, (2.6)

where the fractional differential operator Dβ
t is defined by [22, 31]

Dβ
t f(t) =

1

Γ(1− β)

d

dt

∫ t

0

f(τ)

(t− τ)β
dτ ; 0 ≤ β < 1, (2.7)

and Γ(·) is the Gamma function. Of course, the new material constant λ, although we keep
the same notation, has the dimension of tβ . For β → 1, it tends to the relaxation time. In
the following the system of fractional partial differential equations (2.6), with appropriate
initial and boundary conditions, will be solved by means of Laplace and finite Hankel
transforms. In order to avoid lengthy calculations of residues and contour integrals, the
discrete inverse Laplace transform method will be used [5, 6, 7, 8, 13, 19, 23, 29, 30, 32].

3. STATEMENT OF THE PROBLEM AND THE EXACT ANALYTIC SOLUTIONS

FIGURE 1. Geometry of the problem.

Let us consider an incompressible fractional Maxwell fluid at rest in an annular re-
gion between two straight circular cylinders of radii R1 and R2(> R1) as shown in Fig,
1. At time t = 0+, both cylinders with radii R1 and R2 begin to slide along their common
axis with constant accelerations A1 and A2 respectively. Owing to the shear, the fluid is
gradually moved, its velocity being of the form (2.1)1.

The governing equations are (2.6), while the appropriate initial and boundary conditions
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are

v(r, 0) =
∂v(r, 0)

∂t
= 0, r ∈ [R1, R2] , (3.1)

v(R1, t) = A1t, v(R2, t) = A2t for t ≥ 0 , (3.2)

where A1 and A2 have the unit m/s2.

3.1. Calculation of the velocity field. Applying the Laplace transform to Eq. (2.6)1
and (3.2), and using initial conditions (3.1), we get(

q + λqβ+1
)
v(r, q) = ν

(
∂2

∂r2
+

1

r

∂

∂r

)
v(r, q), r ∈ (R1, R2), (3.3)

v(R1, q) =
A1

q2
, v(R2, q) =

A2

q2
, (3.4)

where the image function v(r, q) is the Laplace transform of the functions v(r, t).
In the following, let us denote by [3]

vH(rn, q) =

∫ R2

R1

rv(r, q)B(r, rn)dr , n = 1, 2, 3, ... (3.5)

the finite Hankel transform of the function v(r, q), and the inverse Hankel transform of the
function vH(rn, q) is given by

v(r, q) =
π2

2

∞∑
n=1

r2nJ
2
0 (R1rn)B(r, rn)

J2
0 (R1rn)− J2

0 (R2rn)
vH(rn, q) . (3.6)

where

B(r, rn) = J0(rrn)Y0(R2rn)− J0(R2rn)Y0(rrn) , (3.7)

while rn are the positive roots of the transcendental equation B(R1, r) = 0, and Jp(·) and
Yp(·) are Bessel functions of the first and second kind of order p .

Multiplying now both sides of (3.3) by rB(r, rn), then integrating it with respect to r
from R1 to R2, and taking into account the Eqs. (3.4) along with the following relations

d

dr
B(r, rn) = −rn

[
J1(rrn)Y0(R2rn)− J0(R2rn)Y1(rrn)

]
, (3.8)

and

J0(z)Y1(z)− J1(z)Y0(z) = − 2

πz
, (3.9)

and the result which we can easily prove∫ R2

R1

r

(
∂2

∂r2
+

1

r

∂

∂r

)
v(r, q)B(r, rn)dr = −2J0(R2rn)v(R1, q)

πJ0(R1rn)
− r2nvH(rn, q),

we find that

vH(rn, q) =
2ν

[
A2J0(R1rn)−A1J0(R2rn)

]
πJ0(R1rn)

1

q2(q + λqβ+1 + νr2n)
. (3.10)
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Eq. (3.10) can be written in the equivalent form as

vH(rn, q) =
2
[
A2J0(R1rn)−A1J0(R2rn)

]
πr2nJ0(R1rn)

1

q2
−

−
2
[
A2J0(R1rn)−A1J0(R2rn)

]
πr2nJ0(R1rn)

1 + λqβ

q(q + λqβ+1 + νr2n)
, (3.11)

Applying the inverse Hankel transform to Eq. (3.11), and using identities

ln (R2/r)

ln (R2/R1)
= −π

∞∑
n=1

J0(R1rn)J0(R2rn)B(r, rn)

J2
0 (R1rn)− J2

0 (R2rn)
, (3.12)

and

ln (r/R1)

ln (R2/R1)
= π

∞∑
n=1

J2
0 (R1rn)B(r, rn)

J2
0 (R1rn)− J2

0 (R2rn)
, (3.13)

we get

v(r, q) =
1

ln(R2/R1)

[
A1 ln

(
R2

r

)
+A2 ln

(
r

R1

)]
1

q2
− (3.14)

− π
∞∑

n=1

J0(R1rn)B(r, rn)
[
A2J0(R1rn)−A1J0(R2rn)

]
J2
0 (R1rn)− J2

0 (R2rn)

1 + λqβ

q(q + λqβ+1 + νr2n)
.

Apply the discrete inverse Laplace transform to Eq. (3.14), then using the expansion

1 + λqβ

q(q + λqβ+1 + νr2n)
=

1 + λqβ

q

∞∑
k=0

(
−νr2n
λ

)k
1

λqk+1 (qβ + λ−1)
k+1

=

=
1

λ

∞∑
k=0

(
−νr2n
λ

)k
q−k−2

(qβ + λ−1)
k+1

+
∞∑
k=0

(
−νr2n
λ

)k
qβ−k−2

(qβ + λ−1)
k+1

, (3.15)

and the formulae [13]

L−1
{ 1

qa

}
=

ta−1

Γ(a)
, a > 0, L−1

{ qb

(qa − d)c

}
= Ga,b,c(d, t),

Re(ac− b)> 0, | d
qa

| < 1, (3.16)

where Ga,b,c(d, t) are the generalized G functions defined as [38]

Ga,b,c(d, t) =

∞∑
j=0

dj Γ(c+ j)

Γ(c)Γ(j + 1)

t(c+j)a−b−1

Γ[(c+ j)a− b]
, (3.17)
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we find that

v(r, t) =
1

ln(R2/R1)

[
A1 ln

(
R2

r

)
+A2 ln

(
r

R1

)]
t−

−π
∞∑

n=1

J0(R1rn)B(r, rn)
[
A2J0(R1rn)−A1J0(R2rn)

]
J2
0 (R1rn)− J2

0 (R2rn)
×

×
[ 1
λ

∞∑
k=0

(
−νr2n
λ

)k

G
β,−k−2,k+1

(
−λ−1, t

)
+

+

∞∑
k=0

(
−νr2n
λ

)k

G
β,β−k−2,k+1

(
−λ−1, t

) ]
. (3.18)

3.2. Calculation of the shear stress. Applying the Laplace transform to Eq. (2.6)2,
and having in mind initial condition (2.2)1, we get

(1 + λqβ)τ(r, q) = µ
∂v(r, q)

∂r
. (3.19)

Using Eq. (3.14) and the relation

1

q(q + λqβ+1 + νr2n)
=

1

λ

∞∑
k=0

(
−νr2n
λ

)k
1

qk+2 (qβ + λ−1)
k+1

,

we find that

τ(r, q) =
µ(A2 −A1)

λr ln
(
R2/R1

) 1

q2 (qβ + λ−1)
+

+
πµ

λ

∞∑
n=1

rnJ0(R1rn)B1(r, rn)
[
A2J0(R1rn)−A1J0(R2rn)

]
J2
0 (R1rn)− J2

0 (R2rn)
×

×
∞∑
k=0

(
−νr2n
λ

)k
1

qk+2 (qβ + λ−1)
k+1

, (3.20)

where

B1(r, rn) = J1(rrn)Y0(R2rn)− J0(R2rn)Y1(rrn) . (3.21)

Now, applying the inverse Laplace transform to Eq. (3.20) and using Eq. (3.16)2, we get
the shear stress under the form

τ(r, t) =
µ(A2 −A1)

λr ln
(
R2/R1

)Rβ,−2

(
−λ−1, t

)
+

+
πµ

λ

∞∑
n=1

rnJ0(R1rn)B1(r, rn)
[
A2J0(R1rn)−A1J0(R2rn)

]
J2
0 (R1rn)− J2

0 (R2rn)
×

×
∞∑
k=0

(
−νr2n
λ

)k

Gβ,−k−2,k+1

(
−λ−1, t

)
. (3.22)
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4. LIMITING CASES

1. Making β → 1 into Eqs. (3.18) and (3.22), we find the velocity field and the shear
stress

vM (r, t) =
1

ln(R2/R1)

[
A1 ln

(
R2

r

)
+A2 ln

(
r

R1

)]
t−

− π

∞∑
n=1

J0(R1rn)B(r, rn)
[
A2J0(R1rn)−A1J0(R2rn)

]
J2
0 (R1rn)− J2

0 (R2rn)
×

×
[ 1
λ

∞∑
k=0

(
−νr2n
λ

)k

G1,−k−2,k+1

(
−λ−1, t

)
+

+

∞∑
k=0

(
−νr2n
λ

)k

G1,−k−1,k+1

(
−λ−1, t

) ]
, (4.1)

τ
M
(r, t) =

µ(A2 −A1)

λr ln
(
R2/R1

)R1,−2

(
−λ−1, t

)
+

+
πµ

λ

∞∑
n=1

rnJ0(R1rn)B1(r, rn)
[
A2J0(R1rn)−A1J0(R2rn)

]
J2
0 (R1rn)− J2

0 (R2rn)
×

×
∞∑
k=0

(
−νr2n
λ

)k

G1,−k−2,k+1

(
−λ−1, t

)
, (4.2)

corresponding to an ordinary Maxwell fluid performing the same motion.
2. Now making λ → 0 into Eqs. (4.1) and (4.2) and using

lim
λ→0

1

λk
G1,b,k(−λ−1, t) =

t−b−1

Γ(−b)
, b < 0,

we find the velocity field and the shear stress

v
N
(r, t) =

1

ln(R2/R1)

[
A1 ln

(
R2

r

)
+A2 ln

(
r

R1

)]
t− (4.3)

− π

ν

∞∑
n=1

J0(R1rn)B(r, rn)
[
A2J0(R1rn)−A1J0(R2rn)

]
r2n [J

2
0 (R1rn)− J2

0 (R2rn)]

(
1− e−νr2nt

)
,

τN (r, t) =
µ(A2 −A1)

r ln
(
R2/R1

) t+ (4.4)

+ πρ
∞∑

n=1

J0(R1rn)B1(r, rn)
[
A2J0(R1rn)−A1J0(R2rn)

]
rn [J2

0 (R1rn)− J2
0 (R2rn)]

(
1− e−νr2nt

)
.

corresponding to a Newtonian fluid performing the same motion.

5. CONCLUSIONS AND NUMERICAL RESULTS

In this paper, the velocity field and the adequate tangential shear stress, correspond-
ing to the flow of a fractional Maxwell fluid between two infinite circular cylinders which
slide along common axis, are determined by using Laplace and finite Hankel transforms.
At time t = 0+ both cylinders begin to move along their common axis with constant ac-
celeration A1 and A2. The solutions are presented in terms of Bessel (J0(·), Y0(·), J1(·)
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and Y1(·) ) and generalized G functions, satisfy the corresponding governing equations as
well as all imposed initial and boundary conditions.

Making A1 = 0 and A2 = A into Eqs. (3.18) and (3.22), for instance, we obtain the
velocity field and the shear stress

v(r, t) =
A ln (r/R1)

ln(R2/R1)
t−Aπ

∞∑
n=1

J2
0 (R1rn)B(r, rn)

J2
0 (R1rn)− J2

0 (R2rn)
×

×
[ 1
λ

∞∑
k=0

(
−νr2n
λ

)k

Gβ,−k−2,k+1

(
−λ−1, t

)
+

+
∞∑
k=0

(
−νr2n
λ

)k

Gβ,β−k−2,k+1

(
−λ−1, t

) ]
, (5.1)

τ(r, t) =
µA

λr ln
(
R2/R1

)Rβ,−2

(
−λ−1, t

)
+

πµA

λ

∞∑
n=1

rnJ
2
0 (R1rn)B1(r, rn)

J2
0 (R1rn)− J2

0 (R2rn)
×

×
∞∑
k=0

(
−νr2n
λ

)k

Gβ,−k−2,k+1

(
−λ−1, t

)
(5.2)

corresponding to the flow between cylinders when the inner cylinder is at rest.
Fig. 2 shows the profile of the velocity field and shear stress corresponding to the Eqs.

(5.1) and (5.2) for different values of time, when the inner cylinder is at rest. It shows that
both velocity and shear stress are increasing functions with regards to t, it also shows that
velocity is an increasing function of r on the whole flow domain.

Similarly, making A1 = A and A2 = 0 into Eqs. (3.18) and (3.22), we obtain the
velocity field and the shear stress

v(r, t) =
A ln (R2/r)

ln(R2/R1)
t+Aπ

∞∑
n=1

J0(R1rn)J0(R2rn)B(r, rn)

J2
0 (R1rn)− J2

0 (R2rn)
×

×
[ 1
λ

∞∑
k=0

(
−νr2n
λ

)k

Gβ,−k−2,k+1

(
−λ−1, t

)
+

+
∞∑
k=0

(
−νr2n
λ

)k

Gβ,β−k−2,k+1

(
−λ−1, t

) ]
, (5.3)

τ(r, t)=
µA

λr ln
(
R2/R1

)R
β,−2

(
−λ−1, t

)
−Aπµ

λ

∞∑
n=1

rnJ0(R1rn)J0(R2rn)B1(rrn)

J2
0 (R1rn)− J2

0 (R2rn)

×
∞∑
k=0

(
−νr2n
λ

)k

Gβ,−k−2,k+1

(
−λ−1, t

)
(5.4)

corresponding to the flow between cylinders when the outer cylinder is at rest.
Fig. 3 show the profile of the velocity field and shear stress corresponding to the Eqs.

(5.3) and (5.4) for different values of time, when the outer cylinder is at rest. It shows that
velocity as well as shear stress (in absolute value) is an increasing function with regards to
t, as like in Fig. 2. While velocity is a decreasing function of r on the whole flow domain,
in contrast to Fig 2.

In order to reveal some relevant physical aspects of the obtained results, the diagrams
of the velocity v(r, t) and the shear stress τ(r, t) given by Eqs. (3.18) and (3.22), have
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been drawn against r for different values of the time t and of the material parameters. Figs.
4 shows the influence of time on the fluid motion. It is clearly seen that the velocity (in
absolute value), as well as the shear stress is an increasing function of t. In Figs. 5, it
is shown the influence of the kinematic viscosity ν on the fluid motion. It is clearly seen
that the velocity is a decreasing function of ν. The influence of the relaxation time λ on
the fluid motion is shown in Figs. 6, as expected both the velocity and the shear stress are
decreasing functions with respect to λ. In Fig. 7, it is shown the influence of the fractional
parameter β on the fluid motion. It is clearly seen that the velocity is a decreasing function
with respect to β, while the shear stress is an increasing one with regards to β.

Finally, for comparison, the diagrams of v(r, t) and τ(r, t) corresponding to the three
models (fractional Maxwell, ordinary Maxwell and Newtonian) are together depicted in
Fig. 8 for the same values of the common material constants and time t. In all cases the
velocity of the fluid is an increasing function with respect to r. The Newtonian fluid is the
swiftest, while the Maxwell fluid is the slowest on the whole flow domain. One thing is
of worth mentioning that units of the material constants are SI units in all figures, and the
roots rn have been approximated by nπ/(R2 −R1).
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FIGURE 2. Profiles of the velocity v(r, t) and shear stress τ(r, t) given
by Eqs. (5.1) and (5.2) for R1 = 0.3, R2 = 0.5, A1 = 0, A2 = A =
1, ν = 0.004, µ = 2.916, λ = 4, β = 0.5, and different values of t.

FIGURE 3. Profiles of the velocity v(r, t) and shear stress τ(r, t) given
by Eqs. (5.3) and (5.4) for R1 = 0.3, R2 = 0.5, A1 = A = 1, A2 =
0, ν = 0.004, µ = 2.916, λ = 4, β = 0.5, and different values of t.
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FIGURE 4. Profiles of the velocity v(r, t) and shear stress τ(r, t) given
by Eqs. (3.18) and (3.22) for R1 = 0.3, R2 = 0.5, A1 = −1, A2 =
1, ν = 0.004, µ = 2.916, λ = 4, β = 0.5, and different values of t.

FIGURE 5. Profiles of the velocity v(r, t) and shear stress τ(r, t) given
by Eqs. (3.18) and (3.22) for R1 = 0.3, R2 = 0.5, A1 = −1, A2 =
1, t = 6s, µ = 30, λ = 2.5, β = 0.1, and different values of ν.
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FIGURE 6. Profiles of the velocity v(r, t) and shear stress τ(r, t) given
by Eqs. (3.18) and (3.22) for R1 = 0.3, R2 = 0.5, A1 = −1, A2 =
1, t = 11s, ν = 0.005, µ = 2, 916, β = 0.5, and different values of λ.

FIGURE 7. Profiles of the velocity v(r, t) and shear stress τ(r, t) given
by Eqs. (3.18) and (3.22) for R1 = 0.3, R2 = 0.5, A1 = −1, A2 =
1, t = 10s, ν = 0.005, µ = 2, 916, λ = 4 and different values of
β = 0.6.
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FIGURE 8. Profiles of the velocity v(r, t) and shear stress τ(r, t) corre-
sponding to the Newtonian, Maxwell and fractional Maxwell fluids, for
R1 = 0.3, R2 = 0.5, A1 = −1, A2 = 1, t = 10s, ν = 0.004, µ =
2.916, λ = 4 and β = 0.1


