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Abstract. We extend the applicability of an inexact Newton method in or-
der to approximate a locally unique solution of a nonlinear equation in a
Banach space setting. The recurrent relations method is used to prove the
existence-convergence theorem. Our error bounds are tighter and the in-
formation on the location of the solution at least as precise under the same
information as before. Our results compare favorably with earlier studies
in [1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20]. A numerical
example involving a nonlinear integral equation of a Chandrasekhar type
is also presented in this study.
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1. INTRODUCTION

Let X andY be Banach spaces, letD be a nonempty open convex subset ofX and let
F : D̄ 7−→ Y be a continuous function that is Fréchet differentiable on D. In this study we
are concerned with the problem of approximating a locally unique solutionx∗ of equation

F (x) = 0. (1.1)

Computational sciences have received substantial and significant interest of researchers in
recent years in several areas such as engineering sciences, economic equilibrium theory and
mathematics. These sciences can solve various problems by passing first through mathe-
matical modelling and then later looking for the solution iteratively [4, 5]. For example,
finding a local minimum of function is connected to solving a set of nonlinear equations
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(1.1). So, numerical methods are crucial and necessary for solving of these nonlinear equa-
tions. Note that similar equations than (1.1) are used in the case of discrete systems. The
unknowns of engineering equations can be functions (difference, differential and integral
equations), vectors (systems of linear or nonlinear algebraic equations), or real or com-
plex numbers (single algebraic equations with single unknowns). Except in special cases,
the most commonly used solution methods are iterative–when starting from one or several
initial approximations a sequence is constructed that converges to a solution of the equa-
tion. Iteration methods are also applied for solving control and optimization problems. In
such cases, the iteration sequences converge to an optimal solution of the problem at hand.
Since all of these methods have the same recursive structure, they can be introduced and
discussed in a general framework. Finally, note that in computational sciences, the prac-
tice of numerical analysis for finding such solutions is essentially connected to variants of
Newton’s method.

In [2, 3, 4], Argyros introduced the inexact Newton method INM as
{

yn = xn − F ′(xn)−1F (xn),
xn+1 = yn − zn, n = 0, 1, . . .

(1.2)

in order to approximate the solutionx∗ of (1.1). Herex0 ∈ D andzn is a sequence in
X depending onxn, yn and earlier iterates. Ifzn = 0, we obtain Newton’s method and
if zn = F ′(yn)−1F (yn) we obtain the standard two-step Newton method. Several other
choices ofzn and analyses of the resulting iterative schemes can be found in [2, 3, 4].

In a previous paper [6], Argyros and Hilout used a Kantorovich-type approach to prove
the semilocal convergence of INM. In the present paper we will use recurrent relations
to provide the semilocal convergence analysis of INM under different Kantorovich-type
convergence conditions. The results obtained here can be extended to a version of INM
involving outer or generalized inverses along the lines of Chen and Nashed [12] and Argy-
ros and Hilout [7]. Other Newton-type iterative methods for equation (1.1) can be found in
[13, 14, 15, 16, 17, 18, 19, 20].

This paper is organized as follows. In Section 2 we provide the semilocal convergence
analysis of INM and present comparisons of our results with earlier studies in the litera-
ture. Section 3 contains special cases of our main results. Finally, we present a numerical
example involving a nonlinear integral equation of a Chandrasekhar type appearing in the
study of radiative heat transfer.

2. SEMILOCAL CONVERGENCE ANALYSIS OFINM

Let U(x0, τ) andŪ(x0, τ) be, respectively, the open and closed ball inX with center
x0 and radiusτ > 0. Let L(Y,X) be the space of bounded linear operators fromY into
X. Our main result in this section is the following semilocal convergence result for INM.

Theorem 1. Let F : D ⊂ X 7→ Y be a Fŕechet differentiable operator on a nonempty
open convex subset of a Banach spaceX with values in a Banach spaceY . Suppose that
J0 = F ′(x0)−1 ∈ L(Y,X) for somex0 ∈ D and that the following conditions hold:

‖J0‖ ≤ β, (2.1)

‖F (x0)‖ ≤ η, (2.2)

‖F ′(x)− F ′(y)‖ ≤ L‖x− y‖ for all x, y ∈ D, (2.3)

‖F ′(x)‖ ≤ c for all x ∈ D. (2.4)
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Suppose further that the sequencezn is chosen so that

‖zn‖ ≤ b

2
‖Jn‖‖yn − xn‖2 (2.5)

for someb ≥ 0 andJn = F ′(xn)−1. Let

γ = max{b, Lβ,
1
2
(L + bcβ),

b

2

√
L

L + bβc
}. (2.6)

Letf(t) = 2
2−2t−t2 andg(t) = t(1+ t2) and letτ2 ≈ 0.334375061169603 be the smallest

positive zero of the scalar equationf2(t)g(t)− 1 = 0. Suppose further that

a0 = βγηβ < τ2, (2.7)

U(x0, τ) ⊆ D (2.8)

whereτ = η(1+a0/2)
1−f(a0)g(a0)

. Then, the sequence INM (1.2) is well defined, remains inU(x0, τ)
and converges to a solutionx∗ of equation (1.1) in the ball̄U(x0, τ). This solution is
unique inU(x0,

2
Lβ − τ) ∩D if τ < 2/(Lβ).

Proof. It is easy to verify thatτ1 = [(143 + 6
√

906)1/3 − 23(143 + 6
√

906)−1/3) −
1]/6 ≈ 0.4192238370 is the smallest positive zero of the scalar equationf(t)g(t)−1 = 0.
Sincea0 < τ2 < τ1 < 1/2, we must havef(a0)g(a0) < 1 andf2(a0)g(a0) < 1 and
a0(1 + a0) = 1

2 (a0 + 1)2 − 1
2 < 1. It follows from (2.5), (2.6), (2.8) and (2.7) that

‖x1 − y0‖ = ‖z0‖ ≤ b

2
‖J0‖‖y0 − x0‖2 ≤ b

2
βη‖y0 − x0‖

≤ γ

2
βη‖y0 − x0‖ =

a0

2
‖y0 − x0‖

and

‖x1 − x0‖ ≤ ‖x1 − y0‖+ ‖y0 − x0‖ ≤ (1 + a0/2)‖y0 − x0‖
≤ (1 + a0/2)η = τ [1− f(a0)g(a0)] < τ.

Using (2.6) and (2.8) we see that

‖J0‖‖F ′(x1)− F ′(x0)]‖ ≤ Lβ‖x1 − x0‖ ≤ βL(1 + a0/2)‖y0 − x0‖
≤ γη(1 + a0/2) = a0(1 + a0/2) < 1

It follows from the Banach Lemma on invertible operators [18] thatJ1 exists and‖J1‖ ≤
‖J0‖

1−a0(1+a0/2) = f(a0)‖J0‖. Thereforey1 ∈ D is well defined and

F (x1) = [F (x1)− F (y0)− F ′(y0)(x1 − y0)] + [F (y0) + F ′(y0)(x1 − y0)]

=
∫ 1

0

[F ′(y0 + θ(x1 − y0))− F ′(y0)] dθ(x1 − y0) + [F (y0) + F ′(y0)(x1 − y0)]

=
∫ 1

0

[F ′(y0 + θ(x1 − y0))− F ′(y0)] dθ(x1 − y0)

+
∫ 1

0

[F ′(x0 + θ(y0 − x0))− F ′(x0)] dθ(y0 − x0) + F ′(y0)(x1 − y0).
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Using (2.3)-(2.6) and the above expressions, we see that

‖F (x1)‖ ≤ L

2
‖x1 − y0‖2 +

L

2
‖y0 − x0‖2 + c‖x1 − y0‖

≤ L

2
(
b

2
‖J0‖‖y0 − x0‖2)2 +

L

2
‖y0 − x0‖2 +

cb‖J0‖
2

‖y0 − x0‖2

≤
[
Lb2β2η2

8
+

L + cbβ

2

]
‖y0 − x0‖2

=
1
2
(L + cβb)[(ηβ

b

2

√
L

L + bβc
)2 + 1]‖y0 − x0‖2

≤ γ[(ηβγ)2 + 1]‖y0 − x0‖2 ≤ γη(1 + a2
0)‖y0 − x0‖.

Therefore

‖y1 − x1‖ ≤ ‖J1‖‖F (x1‖
≤ ‖J0‖f(a0)γη(1 + a2

0)‖y0 − x0‖
≤ βγη(1 + a2

0)f(a0)‖y0 − x0‖
= a0(1 + a2

0)f(a0)‖y0 − x0‖ = f(a0)g(a0)‖y0 − x0‖,

L‖J1‖‖y1 − x1‖ ≤ βLf2(a0)g(a0)‖y0 − x0‖,
≤ βγηf2(a0)g(a0) = a0f

2(a0)g(a0),

‖x2 − y1‖ ≤ b

2
‖J1‖‖y1 − x1‖2

≤ b

2
‖J0‖f2(a0)g(a0)‖y0 − x0‖‖y1 − x1‖

≤ a0

2
f2(a0)g(a0)‖y1 − x1‖,

‖x2 − x1‖ ≤ ‖x2 − y1‖+ ‖y1 − x1‖
≤

[
1 +

a0

2
f2(a0)g(a0)

]
‖y1 − x1‖

≤ ηf(a0)g(a0)
[
1 +

a0

2
f2(a0)g(a0)

]

≤ ηf(a0)g(a0)(1 + a0/2),

‖x2 − x0‖ ≤ ‖x2 − x1‖+ ‖x1 − x0‖
≤ (1 + a0/2)(1 + f(a0)g(a0))η = τ [1− f(a0)g(a0)][1 + f(a0)g(a0)]
≤ τ.

We conclude thatx2 ∈ D. Moreover, since‖J1‖‖F ′(x2)−F ′(x1)‖ ≤ a0f
2(a0)g(a0)[1+

a0
2 f2(a0)g(a0)] < 1, we see thatJ2 exists, by the Banach Lemma on invertible operators

and‖J2‖ ≤ f(a0f(a0)2g(a0))‖J1‖. Therefore we can deduce thaty2, x2, x3 ∈ D in an
analogous way.

If we seta1 = a0f
2(a0)g(a0) then a straightforward induction argument shows that the

sequence

an+1 = anf2(an)g(an) (2.9)
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is increasing and satisfies the conditionan(an + an/2) < 1 for all n ≥ 0. Furthermore, if
yn, zn, xn+1 ∈ D, another induction argument shows thatJn = F ′(xn)−1 exists and

‖Jn‖ ≤ f(an−1)‖Jn−1‖
‖yn − xn‖ ≤ f(an−1)g(an−1)‖yn−1 − xn−1‖

≤ (f(a0)g(a0))n‖y0 − x0‖ < η,

L‖Jn‖‖yn − xn‖ ≤ an,

‖xn+1 − yn‖ ≤ an

2
‖yn − xn‖,

‖xn+1 − xn‖ ≤ (1 +
an

2
)‖yn − xn‖,

‖xn+1 − x0‖ ≤ (1 +
an

2
)
1− (f(a0)g(a0))n+1

1− f(a0)g(a0)
‖y0 − x0‖

<
(1 + a0/2)η

1− f(a0)g(a0)
= τ

These recurrence relations show that the defining sequence (1.2) of INM is well defined. It
follows that

‖yn − xn‖ ≤ f(an−1)g(an−1)‖yn−1 − xn−1‖

≤ · · · ≤ (
n−1∏

i=0

f(ai)g(ai))‖y0 − x0‖

≤ (f(a0)g(a0))n‖y0 − x0‖,

‖xn+1 − xn‖ ≤
n+m−1∑

j=n

‖xj+1 − xj‖

≤
n+m−1∑

j=n

(1 +
aj

2
)‖xj − xj−1‖

≤ (1 +
an

2
)

n+m−1∑

j=n

(
j−1∏

i=0

f(ai)g(ai))‖y0 − x0‖

≤ (1 +
a0

2
)(f(a0)g(a0))n 1− (f(a0)g(a0))m

1− f(a0)g(a0)
η. (2.10)

By lettingn = 0 in (2.10), we get

‖xm − x0‖ ≤ (1 +
a0

2
)
1− (f(a0)g(a0))m

1− f(a0)g(a0)
η ≤ τ.

Thereforexm ∈ U(x0, τ) for all m ≥ 1. Similarly, ym, zm ∈ U(x0, τ) for all m ≥ 0. It
follows thatxm, ym, zm ∈ D for m ≥ 1.

Sincexn is a Cauchy sequence – because of (2.10) – it converges to somex∗ ∈
Ū(x0, τ). Moreover, since‖JnF (xn)‖ 7→ 0 and‖F (xn)‖ ≤ ‖F ′(xn)‖‖JnF (xn)‖ ≤
c‖JnF (xn)‖ 7→ 0, we conclude thatF (x∗) = 0.

Finally, we suppose that there exists another solutiony∗ of (1.1) inU(x0,
2

Lβ − τ)∩D.
Then

0 = J0[F (y∗)− F (x∗)] =
∫ 1

0

J0F
′(x∗ + t(y∗ − x∗)) dt(y∗ − x∗).
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But since

‖I − T‖ ≤ ‖J0‖
∫ 1

0

‖F ′(x∗ + t(y∗ − x∗))− F ′(x0)‖ dt

≤ Lβ

∫ 1

0

[t‖y∗ − x0‖+ (1− t)‖x∗ − x0‖] dt

=
1
2
Lβ[‖y∗ − x0‖+ ‖x∗ − x0‖] < 1,

whereT = J0

∫ 1

0
F ′(x∗ + t(y∗ − x∗)) dt, we see thatT is invertible and hence that

y∗ = x∗. That completes the proof of the theorem. ¤
Remark2. In view of the Lipschitz condition in (2.3), there existsL0 ≤ L such that

‖F ′(x)− F ′(x0)‖ ≤ L0‖x− x0‖
for all x ∈ D. It follows from the arguments in the proof of the uniqueness assertion
in Theorem 1 that ifτ < 2/L0β the solutionx∗ of equation (1.1) is unique in the ball
U(x0,

2
Lβ − τ)∩D . If L = L0, the uniqueness balls coincide, but whenL0 < L, the ball

U(x0,
2

Lβ − τ) ∩D is larger than the corresponding ball in Theorem 1.

Remark3. Condition (2.4) can be dropped provided that givenL, b, η, β, the inequality

Lτ + ‖F ′(x0)‖ ≤ t (2.11)

has a positive solution denoted byc. Note that in this case,τ is a function oft only when
t replacesc in the definition ofτ given in (2.8). Indeed, in this case, it would follow from
(2.3) that:

‖F ′(x)‖ = ‖[F ′(x)− F ′(x)] + F ′(x0)‖
≤ ‖F ′(x)− F ′(x)‖+ ‖F ′(x0)‖
≤ L‖x− x0‖+ ‖F ′(x0)‖ = c

for all x ∈ Ū(x0, τ).

Remark4. According to the proof of Theorem 1, the sequencezn does not have to be
included inD or Ū(x0, τ). An interesting choice ofzn seems to be

zn = ε(yn − xn), ε ≥ 0.

3. SPECIAL CASES AND APPLICATIONS

We provide numerical examples and special cases.

Example 5. Casezn 6= 0.
LetX = Y = C[0, 1], D = U(1, 1) and define operatorP onD by

P(x)(s) = λx(s)
∫ 1

0

K(s, t) x(t) dt− x(s) + y(s). (3.1)

Note that every zero ofP satisfies the equation

x(s) = y(s) + λ x(s)
∫ 1

0

K(s, t)x(t) dt. (3.2)

Nonlinear integral equations of the form (3.2) are considered Chandrasekhar–type
equations[3, 5, 8, 10]and they arise in the theories of radiative transfer, neutron transport
and in the kinetic theory of gases[3, 5]. Hereλ is a real number called the ”albedo” for
scattering and the kernelK(s, t) is a continuous function in two variabless, t such that
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(i) 0 < K(s, t) < 1,
(ii) K(s, t) +K(t, s) = 1

for all (s, t) ∈ [0, 1]2.
The spaceX is equipped with the max-norm:

‖x‖ = max
0≤s≤1

|x(s)|.

Let us assume for simplicity that

K(s, t) =
s

s + t
for all (s, t) ∈ [0, 1]2. (3.3)

Note that the functionK satisfies conditions (i) and (ii).
Choosex0(s) = y(s) = 1 for all s ∈ [0, 1], λ = .25, and

zn =
1

100
F ′′(xn) (yn − xn)2, (3.4)

whereF ′′ is the second Fŕechet derivative of operatorF [3]. Then, using (2.1)–(2.6), we
see that

L0 = L = 2 |λ| max
0≤s≤1

∣∣∣∣
∫ 1

0

s

s + t
dt

∣∣∣∣ = 0.346573589

‖P ′(x0(s))−1‖ ≤ 1.530394215 = β,

‖P ′(x0(s))−1P(x0(s))‖ ≤ β |λ| ln 2 = 0.265197107 = η

and

b =
4|λ| ln 2

100
= 0.00693147.

Choosec = 1.4 andD = Ū(x0, τ). Then a computation shows that

βL = 0.811712235,
L + cβb

2
= 0.1807123116,

b

2

√
L

L + cβb
= .001539163574, γ = βL = 0.811712235,

a0 = 0.3294383769 < τ2 = 0.334375061169603,

g(a0) = 0.3651922067, f(a0) = 1.622594825,

τ = 0.7580978534 and τ̄ = 2/(Lβ)− τ = 3.012682334.

Since condition(2.7) holds, it follows from Theorem 1 that (NM) converges to a unique
solution of problem (1.1) in̄U(x0, τ̄).

CONCLUSION

Using our new concept of recurrent functions and Lipschitz condition, we provided new
convergence results for INM. Our semilocal convergence and our error bounds are more
precise than earlier ones [1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20]. Special
cases and numerical example are also provided in this study.



32 Ioannis K. Argyros, Livinus U. Uko

REFERENCES

[1] I.K. Argyros, On a class of nonlinear integral equations arising in neutron transport, Aequationes Math.,
36 (1988), 99–111.

[2] I.K. Argyros,A unified approach for constructing fast two–step Newton–like methods, Monatsh. Math.,119
(1995), 1–22.

[3] I.K. Argyros, A unified approach for constructing fast two–step methods in Banach space and their appli-
cations, PanAmer. Math. J.,13 (2003), 59–108.

[4] I.K. Argyros,Convergence and applications of Newton–type iterations, Springer–Verlag, 2008, New York.
[5] I.K. Argyros, S. Hilout,Efficient methods for solving equations and variational inequalities, Polimetrica

Publisher, Milano, Italy, 2009.
[6] I.K. Argyros, S. Hilout,Inexact Newton methods and recurrent functions, Appl. Math.,37 (2010), 113–126.
[7] I.K. Argyros, S. Hilout,A convergence analysis of Newton–like method for singular equations using recur-

rent functions, Numer. Funct. Anal. Optimiz.,31 (2010), 112–130.
[8] I.K. Argyros, S. Hilout,Extending the Newton–Kantorovich hypothesis for solving equations, J. Comput.

Appl. Math.,234(2010), 2993–3006.
[9] V. Candela, A. Marquina,Recurrence relations for rational cubic methods I: The Halley method, Comput-

ing, 44 (1990), 169–184.
[10] V. Candela, A. Marquina,Recurrence relations for rational cubic methods. II. The Chebyshev method,

Computing,45 (1990), 355–367.
[11] S. Chandrasekhar,Radiative transfer, Dover Publ., New York, 1960.
[12] X. Chen, M.Z. Nashed,Convergence of Newton–like methods for singular operator equations using outer

inverses, Numer. Math.,66 (1993), 235–257.
[13] J.A. Ezquerro, M.A. Herńandez, N. Romero, N., M.J. Rubio,The Newton method: from Newton to Kan-

torovich. (Spanish), Gac. R. Soc. Mat. Esp.,13 (2010), 53–76.
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[16] J.A. Ezquerro, M.A. Herńandez, N. Romero,Newton-type methods of high order and domains of semilocal

and global convergence, Appl. Math. Comput.,214(2009) 142–154.
[17] M.A. Hernández,A modification of the classical Kantorovich conditions for Newton’s method, J. Comp.

Appl. Math.,137(2001), 201-205.
[18] L.V. Kantorovich, G.P. Akilov,Functional Analysis in normed spaces, Pergamon Press, Oxford, 1982.
[19] L.M. Ortega, W.C. Rheinboldt,Iterative solution of Nonlinear Equations in Several Variables, Academic

Press, New York, 1970.
[20] P.D. Proinov,New general convergence theory for iterative processes and its applications to Newton–

Kantorovich type theorems, J. Complexity,26 (2010), 3–42.


