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Abstract. We extend the applicability of an inexact Newton method in or-
der to approximate a locally unique solution of a nonlinear equation in a
Banach space setting. The recurrent relations method is used to prove the
existence-convergence theorem. Our error bounds are tighter and the in-
formation on the location of the solution at least as precise under the same
information as before. Our results compare favorably with earlier studies
in[1,2,3,5,6,7,8,9,10, 12, 13, 14, 15, 16, 17, 18, 19, 20]. A numerical
example involving a nonlinear integral equation of a Chandrasekhar type
is also presented in this study.
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1. INTRODUCTION

Let X andY be Banach spaces, |&tbe a nonempty open convex subsefofind let
F: D —— Y be a continuous function that iséahet differentiable on D. In this study we
are concerned with the problem of approximating a locally unique solutiaf equation

F(z) = 0. (1.1

Computational sciences have received substantial and significant interest of researchers in
recent years in several areas such as engineering sciences, economic equilibrium theory and
mathematics. These sciences can solve various problems by passing first through mathe-
matical modelling and then later looking for the solution iteratively [4, 5]. For example,
finding a local minimum of function is connected to solving a set of nonlinear equations
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(1.1). So, numerical methods are crucial and necessary for solving of these nonlinear equa-
tions. Note that similar equations than (1.1) are used in the case of discrete systems. The
unknowns of engineering equations can be functions (difference, differential and integral
equations), vectors (systems of linear or nonlinear algebraic equations), or real or com-
plex numbers (single algebraic equations with single unknowns). Except in special cases,
the most commonly used solution methods are iterative—when starting from one or several
initial approximations a sequence is constructed that converges to a solution of the equa-
tion. Iteration methods are also applied for solving control and optimization problems. In
such cases, the iteration sequences converge to an optimal solution of the problem at hand.
Since all of these methods have the same recursive structure, they can be introduced and
discussed in a general framework. Finally, note that in computational sciences, the prac-
tice of numerical analysis for finding such solutions is essentially connected to variants of
Newton’s method.

In [2, 3, 4], Argyros introduced the inexact Newton method INM as

Yn = Tn — F/(:Cn)_lF(ajn)a
Tni4l = Yn — Zn, n:O,l,...

(1.2)

in order to approximate the solutiart of (1.1). Herexy € D andz, is a sequence in
X depending orx,,, y, and earlier iterates. lf,, = 0, we obtain Newton's method and
if 2z, = F'(y,) ' F(y,) we obtain the standard two-step Newton method. Several other
choices ofz,, and analyses of the resulting iterative schemes can be found in [2, 3, 4].

In a previous paper [6], Argyros and Hilout used a Kantorovich-type approach to prove
the semilocal convergence of INM. In the present paper we will use recurrent relations
to provide the semilocal convergence analysis of INM under different Kantorovich-type
convergence conditions. The results obtained here can be extended to a version of INM
involving outer or generalized inverses along the lines of Chen and Nashed [12] and Argy-
ros and Hilout [7]. Other Newton-type iterative methods for equation (1.1) can be found in
[13, 14, 15, 16, 17, 18, 19, 20].

This paper is organized as follows. In Section 2 we provide the semilocal convergence
analysis of INM and present comparisons of our results with earlier studies in the litera-
ture. Section 3 contains special cases of our main results. Finally, we present a numerical
example involving a nonlinear integral equation of a Chandrasekhar type appearing in the
study of radiative heat transfer.

2. SEMILOCAL CONVERGENCE ANALYSIS OFINM

Let U(zo,7) andU (xo, 7) be, respectively, the open and closed balKirwith center
xo and radiusr > 0. Let L(Y, X) be the space of bounded linear operators firimto
X. Our main result in this section is the following semilocal convergence result for INM.

Theorem 1. Let F: D C X — Y be a Fiéchet differentiable operator on a nonempty
open convex subset of a Banach spacwiith values in a Banach spadé. Suppose that
Jo = F'(x9)~! € L(Y, X) for somez, € D and that the following conditions hold:

[Joll < 8, (2.1)
|1F' (o) || <, (2.2)
|F'(x) — F'(y)|| < L||lz —y|| forallz,y € D, (2.3)

|F'(z)]| <c¢ forallz € D. (2.4)
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Suppose further that the sequenges chosen so that
b
lznll < 51 nlllyn — 2l (2.5)

for someb > 0 andJ,, = F’(z,,) . Let

b | L

Let f(t) = 5——= andg(t) = t(1+t*) and letr, ~ 0.334375061169603 be the smallest
positive zero of the scalar equatigid(t)g(t) — 1 = 0. Suppose further that

ag = BynB < 1o, (2.7)
U(zo,7) €D (2.8)

wherer = %. Then, the sequence INM (1.2) is well defined, remaib& iy, 7)
and converges to a solutian* of equation (1.1) in the ball/(z, 7). This solution is

unique inU (zo, 75 — 7) N D if 7 < 2/(LB).

Proof. It is easy to verify that, = [(143 4 61/906)'/3 — 23(143 + 61/906)1/3) —
1]/6 =~ 0.4192238370 is the smallest positive zero of the scalar equafigng(t) —1 = 0.
Sinceay < 7 < 71 < 1/2, we must havef(ag)g(ap) < 1 and f%(ap)g(ao) < 1 and
ao(1+ ag) = 3(ap +1)* — § < 1. It follows from (2.5), (2.6), (2.8) and (2.7) that

b b
21 = yoll = llz0ll < §||J0H||yo — x| < 5@7”2/0 — 0|
< %ﬂnIIyo — x|l = %Hyo — zo|
and

|21 — zoll < llz1 —yoll + llyo — 2ol < (1 + ao/2)llyo — 2ol
< (I4ao/2)n =7[1 = f(ao)g(ao)] <.
Using (2.6) and (2.8) we see that

[ JollIIF' (z1) = F'(x0)]l| < LB|lx1 — @0l < BL(1 + ao/2)lyo — ol
<1+ ao/2) = ao(l +ap/2) <1

It follows from the Banach Lemma on invertible operators [18] thaéxists and|.J; || <

% = f(ao)||Jo||. Thereforey; € D is well defined and

F(a1) = [F(z1) = F(yo) — F'(yo) (=1 — yo)] + [F(yo) + F'(y0) (x1 — %0)]

1
= /o [F"(yo + 0(x1 — yo0)) — F'(yo)] dO(x1 — yo) + [F(y0) + F'(yo)(x1 — yo)]
N /o [F'(yo + 0(x1 — o)) — F'(y0)] dO(x1 — o)

1
+ /0 [F (0 + 830 — 20)) — F(20)] dB(yo — 20) + F'(0) (&1 — w10).
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Using (2.3)-(2.6) and the above expressions, we see that

L L
1E (@0l < S llzx = oll* + 5 llyo — zol* + ellz1 = woll

L.b L cbl|Ji

< ZC1oltzo — w0l + Sty — ol + Ly g2
Lb252 2 L+cb

< |HE 4 R

b L
— 5T+ (085 ) + Wl — ol

< A[(mB87)* + llyo — wol* < yn(1 + a)llyo — ol-

Therefore
lyr — 21l < ([Tl F (2]
< [Jollf (ao)yn(1 + ad)llyo — ol
< Byn(1+ad)fao)llyo — zol|
= ao(1+ad)f(ao)llyo — zoll = fao)g(ao)llyo — zoll,
L[ Jillyr — 21|l < BLf*(ao)g(ao)llyo — ol
< Bynf*(ao)g(ao) = aof?(ao)g(ao),
b 2
lze — 1l < %||J1||||Z/1 — 21|
< <ol f*(ao)g(ao)llyo — zollllyr — 21
< P (a0)g(ao)lyr —
|z —z1]] < |lwo — il + [l — 21|
a
< 1+ % P agtan) |l - o
ag .o
< of(aolgtan) |1+ Fagtan)]|
< nf(ao)g(ao)(l+ ao/2),
22 — 0| 2o — 21| + [Jw1 — 0|

(1+ao/2)(1 + f(ao)g(ao))n = 7[1 — f(ao)g(ao)][l + f(ao)g(ao)]

INININ

We conclude that, € D. Moreover, sincd J1 ||| F’(z2) — F'(z1)]| < aof*(ao)g(ao)[1+
2 f2(ag)g(ao)] < 1, we see thafl, exists, by the Banach Lemma on invertible operators
and||Jz|| < f(aof(ao)?g(ao))||J1||- Therefore we can deduce that z2, x3 € D in an
analogous way.

If we seta; = ag f?(ag)g(ao) then a straightforward induction argument shows that the
sequence

nt1 = an f?(an)g(an) (2.9)
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is increasing and satisfies the condition(a,, + a,,/2) < 1 for all n > 0. Furthermore, if
Yn» Zn, Tny1 € D, another induction argument shows thigt= F’(z,,) ! exists and
[Jnll < flan—1)[|Jn—1l
[yn — nll < flan-1)g(an—1)|yn-1 — Tn-1|
< (f(ao)g(a0))" lyo — woll <,
Ll Tnllllyn — nll < an,

a
[Zn+1 = ynl < ?n”yn — znl,
a
[Zn41 —znll < (1 + %)llyn — Znl,

an 1 — (f(ag)g(ag))™t*
e =0l = )™ Fan)glao)
o (rao/2y
1 — f(ao)g(ao)
These recurrence relations show that the defining sequence (1.2) of INM is well defined. It
follows that

%0 — 2ol

lyn — an < f(an—l)g(an—l)Hyn—l — Tp_1|

n—1
< < (I flang(a)liyo — ol
=0

< (f(ao)g(ao))" lyo — zoll,
n+m—1
lZnt1 — zn| < Z |2j+1 — 2]
nj-;—l s
< Z (1+ é)”xj — -1
" a n+m—1 j—1
<+ %) 3 ([T f@data) o — ol
j=n i=0
< 1+ P flanlglan) TN, (210)

By lettingn = 0in (2.10), we get

. ap, 1 — (f(ao)g(ao))™
lem = 2ol < (14 ) =0 Vg an)

Thereforex,,, € U(xq,7) for all m > 1. Similarly, Y, zm € U(zo, 7) forall m > 0. It
follows thatx,,, Ym, zm € D form > 1.

Since z,, is a Cauchy sequence — because of (2.10) — it converges to sbne
U(zo, 7). Moreover, since|J, F(x,)|| — 0 and||F(z,)|| < [|F'(zo)|[||JnF (z0)]] <
c||JnF (zy)]| — 0, we conclude that'(z*) = 0.

Finally, we suppose that there exists another solujioof (1.1) inU (x, L% —7)ND.
Then

n< T

0= Jo[F(y*) — F(z")] = /0 JoF' (2" +t(y" — 27)) di(y” — z¥).



30 loannis K. Argyros, Livinus U. Uko

But since
1
II=T| < IIJoH/0 [F' (2" +t(y" —a")) — F'(zo)| dt
1
<26 [ 1t = ol + (1~ )" — ool
0
1 * *
= 5 LBllly" = @oll + [l2* — zofl] <1,
whereT = Jy fol F'(x* 4+ t(y* — x*)) dt, we see thafl’ is invertible and hence that
y* = x*. That completes the proof of the theorem. |

Remark2. In view of the Lipschitz condition in (2.3), there exidtg < L such that
[1F" () = F' (o)l < Loz — o

for all z € D. It follows from the arguments in the proof of the uniqueness assertion
in Theorem 1 that ifr < 2/Lyf the solutionz* of equation (1.1) is unique in the ball
U (xo, L% —7)ND.If L =Ly, the uniqueness balls coincide, but when< L, the ball

U (xo, L% — 1) N D is larger than the corresponding ball in Theorem 1.
Remark3. Condition (2.4) can be dropped provided that giver, n, 3, the inequality
LT+ ||F'(zo)|| <t (2.11)

has a positive solution denoted byNote that in this case; is a function oft only when
t replaces: in the definition ofr given in (2.8). Indeed, in this case, it would follow from
(2.3) that:

[F' (@) || = I[F'(z) = F'(2)] + F'(xo)]|
< F'(2) = F'(@)]| + [|1F' (o)
< Lz — 2ol + | F'(zo)ll = ¢
forall x € U(xo, 7).

Remark4. According to the proof of Theorem 1, the sequengedoes not have to be
included inD or U(xzg, 7). An interesting choice of,, seems to be

2n =€(Yn — Tpn), € >0.
3. SPECIAL CASES AND APPLICATIONS

We provide numerical examples and special cases.

Example 5. Casez,, # 0.
LetX =Y =CJ[0,1], D = U(1, 1) and define operatoP on D by

P(z)(s) = Ax(s / K(s,t) z(t) dt — z(s) + y(s). (3.1)

Note that every zero @ satisfies the equation

2(s) = y(s) + Aa(s) /0 K(s,t) 2(¢) dt. (3.2)

Nonlinear integral equations of the form (3.2) are considered Chandrasekhar—type
equationd3, 5, 8, 10]and they arise in the theories of radiative transfer, neutron transport
and in the kinetic theory of gas¢3, 5]. Here \ is a real number called the "albedo” for
scattering and the kernd((s, t) is a continuous function in two variablest such that



Convergence analysis of an inexact Newton method 31

() 0< K(s,t) <1,
(i) K(s,t)+K(t,s) =1
forall (s,t) € [0,1]%.
The spaceX is equipped with the max-norm:

o]l = max, [o(s)l.

Let us assume for simplicity that
K(s,t) = SLH for all (s, t) € [0,1]%. (3.3)

Note that the functiofC satisfies conditions (i) and (ii).
Choosery(s) = y(s) = 1forall s € [0, 1], A = .25, and
F"(x0) (Yn — zn)zv (3.4)

Zn

~ 100
where F”’ is the second Fchet derivative of operatét [3]. Then, using (2.1)—(2.6), we
see that

Lo=L=2|) Jnax
pSEAS

1
/ 5 dt‘ — 0.346573589
0o S+t

[P’ (z0(s)) ™Y < 1.530394215 = (3,

P (z0(s)) " P(z0(s))]| < B|A] In2 = 0.265197107 = n

and
4|A|In2
b= =0. 147.
100 0.00693147
Choose = 1.4 and D = U(zo, 7). Then a computation shows that
L+ cBb

BL = 0.811712235,

b L
—1/ = 001539163574 = L = 0.811712235
o\ T+ b , Y=p8 ;

ao = 0.3294383769 < 1o = 0.334375061169603,

= 0.1807123116,

g(ag) = 0.3651922067,  f(ag) = 1.622594825,

7 =0.7580978534 and 7T =2/(LB)— 7= 3.012682334.

Since condition(2.7) holds, it follows from Theorem 1 that (NM) converges to a unique
solution of problem (1.1) i&/ (zo, 7).

CONCLUSION

Using our new concept of recurrent functions and Lipschitz condition, we provided new
convergence results for INM. Our semilocal convergence and our error bounds are more
precise than earlierones [1, 2, 3,5, 6, 7, 8,9, 10,12, 13, 14, 15, 16, 17, 18, 19, 20]. Special
cases and numerical example are also provided in this study.
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