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1. INTRODUCTION

Letf: ® #£ I C R — R be a function defined on the intervabf real numbers. Then
f is called convex, if

fQz+1=Ny) <Af(z)+ 1 =A)f(y),
forall z,y € I andX € [0,1]. Geometrically, this means that if P, Q and R are three
distinct points on graph of with Q between P and R, then Q is on or below chord PR.
There are many results associated with convex functions in the area of inequalities.
The notion of quasi-convex functions generalized the notion of convex functions. More
precisely, a functiorf : [a,b] — R is said to be quasi-convex da, b], if

fOr+ (1 =Ny) <max{f(z),f(y)}, Vr,yelab]

Any convex function is a quasi-convex function but the converse is not true. Because there
exist quasi-convex functions which is not convex, (see [2]). For example, the function
f: R™ — R, defined byf (z) = Inz, =« € RT is quasi-convex. Howevef is not a
convex function.
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There are many results associated with convex functions in the area of inequalities, but one
of those is the classical Hermite Hadamard inequality. This inequality is defined as: Let
f I C R — Rbeaconvex function defined on the interyaf real numbers witl, b € T

anda < b. Then f satisfies the following well-known Hermite Hadamard inequality

fora,b e I,witha < b.

For several recent results concerning the above inequality (1.1) we refer the interested
reader to [1, 4, 8, 9, 10, 11, 12].

Recently, D. A. lon [14] obtained the following two inequalities of the right hand side of
Hermite-Hadamard’s type functions whose derivatives in absolute values are quasi-convex.

Theorem 1. Let f : I C R — R be a differentiable function o’ with a,b € I° and
a < b. If |f'] is a quasi-convex function dn, b], then we have:

fla) + f(b
2

b
= bia/f(a:)dx < bjTamafo’ (@), If ®)]. 1. 2)

Theorem 2. Let f : I C R — R be a differentiable function o’ with a,b € I° and
a < b. If | f'|” is a quasi-convex function dn, b] for some fixeg > 1, then we have:

b b
MO [ ywyan - 1 [ g @) ds

a

b- - IR,
m [max{|f’ (a)|p/(p 2 ! (b)|p/(p 1)” P (1. 3)

In [2], Alomari, Draus and Kirmaci established the following Hermite-Hadamard in-
equalities for quasi-convex functions which give refinements of above Theorems 1 and 2.

Theorem 3. Let f : I° C R — R be a differentiable function o’ with a,b € I° and
a < b. If |f'| is quasi-convex ofu, b], then we have

f(a);rf(b)_bla/bf(x)dx < 22 (i .

,(a+b
(%)

()

ol s

+ max{
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Theorem 4. Let f : I° C R — R be a differentiable function o’ with a,b € I° and
a < b. If | f'|? is quasi-convex ofu, b] andp > 1, then we have

b
fla)+f(b) 1
| —bia/f(ac)dx

2

[ (G5 T
+ (rnax{ r(57) ﬁl,lf’(bﬂp“})p;l] 5)

Theorem 5. Let f : I° C R — R be a differentiable function o’ with a,b € I° and
a < b. If |f'(z)| is quasi-convex ofu, b], then we have

b 1
P2 MO [ pw| < 220 Hmw'(a)q7|f’<a§b>q>}“

a+b

v {max<|f'<2>|q,|f'<b>|Q>}“] 6)

Alomari, Darus and Dragomir in [3] introduced the following theorems for twice dif-

ferentiable quasi-convex functions.

Theorem 6. Let f : I C R — R be a differentiable function o’ with a,b € I° and
a < b. If |f”] is quasi-convex ofu, b], then we have

b
fla) + f(b) 1
5 —b_a/f(x)dx

Theorem 7. Let f : I C R — R be a differentiable function of® with a,b € I° and
a < b. If | f"|? is quasi-convex ofu, b] andq > 1, then we have

b
fla) + f(b) 1
5 —b_a/f(x)dm

In [13], R. Gorenflo, F. Mainardi defined the Riemann-Liouville fractional integrals as:
Let f € Ly [a,b]. The Riemann-Liouville fractional integralg®, f and.J; f of order
a > 0 with o > 0 are defined by

S @ =i [ @t @ @ <a),

1
T (a)
respectively. Her&' (a) = Te_“ua_ldu andJ?, f (z)=J) f(z) = f ().

(b*a)Q " "
< =g max{|f7 (@), If O} @7

(b—a)*
12

(max { |/ (@)|%, |f" B} (L. 8)

<

and

b
JE f(z) = / (t—2)* ' f () dt, (z<b),

0
Note that ifa = 1, the fractional integral reduces to the classical integral.
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In this paper, we establish some new integral inequalities of Hermite Hadamard type for
twice differentiable functions through quasi convexity by using Riemann-Liouville frac-
tional integrals. Applications to special means of real numbers are also given.

2. MAIN RESULTS

In order to prove our main results, we use the following Lemma of [17].

Lemma 8. Suppos¢ : [a,b] — R be a twice differentiable mapping @n, b) with a < b.
If f € L]a,b],then we have the following fractional integral inequality:

LI Tt (7o, £ (b) + T3 f (a)]

< (b a) fl 1—(1— )\()::rll_)\ +1 " (Aa+ (1 = \)b)dA.

(2.1)

Theorem 9. Suppos¢ : [a,b] — R be a differentiable mapping ofa, b) with « < b and
f"” € Ly[a,b]. If |f] is quasi-convex offu, b], for « > 0, then we have the following
fractional integral inequality:

a « o o a(b—a)?
| L) Tt (2 f () + T £ (@)]| < gritsilgy max {1/ (@), /" ()]}

(2.2)
Proof. Using Lemma 8 and quasi convexity |gf’| on[a, b] , we get
‘f(a)+f(b) 212(1)@";1) [J;)ﬁrf( ) + J;ﬁf(a)]‘
a+1 [e%
< (b pLIZUZNTT AT o (g (1— A)B)] dA
—a)? (1 y\ot1_ya+tl
< Oy EOEEEE S max (17 (@) 1S (8) YA
— 1 <Y [
= 5 max (|17 (@)] 17 (B)]} fy U205 dA
= sty max{| " (@), | (B)]} -
The proof is completed. O

Note that, If we takex = 1, in above Theorem 9 with the properties of gamma functions,
we get inequality (1.7).

Theorem 10. Supposef : [a,b] — R be a differentiable mapping ofu, b) witha < b
such thatf” € Ly [a,b]. If |f”| is quasi-convex ofu, b], andp > 1, then we have the
following fractional integral inequality:

a b « a o
| LSO _ Rt o £ (b) + g f (@)]]
b—a)? 1/p %
< 75((1_’_)1) (1 — 7}7(&_’_21)_’_1) (Inax{‘f// |q ‘f” )|¢I}) 7
1 1 _
where; +5=1

Proof. Using Lemma 8, we get

[ fO) . St [T f (b)) + T f (a)H

< (b (L AZO2NTNTE ) (g (1 A)b)] dA
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By Holders inequality and quasi convexity [gf’| on [a, b] with A € [0, 1], we have

b « «
‘f(a);rf() Do) [J(ﬁf b) + Jg ()]‘

_a e o P 1/q
< fm (o (1—a=nt = aer)d ) (S e (1= )b )

_ - a P /p 1
< 51(771)12) <f0 (1_(1_ +1 Y +1) ) max{|f” |q |f// )lq})q

_a /p 1
= él()a+)12) (1 — p(af1)+1) (max{|f” ‘q 7 ( )|Q}) 0

The proof is completed. O

Theorem 11. Supposef : [a,b] — R be a differentiable mapping ofu, b) with a < b
such thatf” € Ly [a,b]. If |f”|? is quasi-convex offu, b] and ¢ > 1, then we have the
following fractional integral inequality:

| L0 et (g f () + T f (@)

()2 (2.4)
= 2((1-1(-61)((34—2) (max {|f" (a)|*,|f" ()|"}) 7.
Proof. Using Lemma 8 and Holder’s inequality, we get
’f(a)+f(b) 2(baJ;§‘)‘ Lo f (b )JrJls,é_f(a)H

a+1 «@
< Ol f O 7 (- (1= b)) d
« o p 175 1 1/q

< ;’(’aﬂ (fo (1= = =) an) " (17 Qe+ (1= A b)dr)

Using quasi-convexity off”’| on[a, b] and € [0, 1], we get

b T
‘f(a)-i-f( ) 2(5)0'21) [Ja(fv+f( )+ I f a)]‘

(

p 1-1 1

< bai)l (fo (1 . N )\)a+1 _ )\a—f—l) d)\) (max {|f// ‘q , |f// | }) P

= grlbal s (max {| £ (a)|*, | (b)|"}) " .

The proof is completed . O

Q=

Note that, If we takex = 1, in above Theorem 11 with the properties of gamma func-
tions, we get inequality (1.8).

3. APPLICATIONS TOSOME SPECIAL MEANS

First we recall the arithmetic mean #((), logarithmic mearL. (a, b)and p-logarithmic
meanL, (a, b) for arbitrary real numbers andb as follows:

A=A(a, b= ab >0,

a, ifa=0b
L—L(a,b)—{ bea g , ab >0
I L, (a.b) a, ifa=b
= a, = p+1_ ,pt+1 . y
T ey o fa#

p € Re \{-1,0:a¢,b >0
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Now we present some new inequalities for the above means by using the results of sec-
tions 2.

The following proposition follows from Theorem 9 applied to quasi-convex mapping
fx)=2", zeNanda=1.

Proposition 12. Leta,b € R™,0 < a < b, andn € N. Then, we have

A (0", 0) = L (a,0)] < 552 (b = 0)” max {Jal "%, "7}
The following proposition follows from Theorem 11 applied to the mappfig) =
", x € Nanda = 1.

Proposition 13. Leta,b € R*,0 < a < b, andn € N. Then for allg > 1, we have
1
n(n— 2 n—2 n—2 a
A (am,b") = L3 (a,B)] < 2572 (b = a)* (max {Ja| "D o)D) "
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