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Abstract. This paper is devoted to Newton-Steffensen—type method for
approximating the unique solution of perturbed nonsmooth subanalytic
variational inclusion in finite—dimensional spaces. We use a combina-
tion of Newton’s method studied by Bolte et al. [14] for locally Lip-
schitz subanalytic function in order to solve nonlinear equations, with
Steffensen’s method [1, 2, 3, 9, 19]. Using the Lipschitz—like concept of
set—valued mappings, the subanalyticity hypothesis on the involved func-
tion and some condition on divided difference operator, the superlinear
convergence is established. We also present a finer convergence analysis
using some ideas introduced by us in [4, 7, 8] for nonlinear equations. Fi-
nally, we present some new regula—falsi—type method for set—valued map.
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1. INTRODUCTION

This work was intented as an attempt to motivate the approximation of solution for
variational inclusions in finite—dimensional spaces. For illustration example, we consider
a variational inequality problem, who consists of seekifgn K such that

For eachk € K, (II(k*),k—Fk*) > 0 (1.1)
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where/C is a convex set ilR™, IT is a function from/ to R™ and(., .) is the usual scalar
product onR™. LetZx be a convex indicator function & andd denotes the subdifferen-
tial operator. Then (1.1) is equivalent to the following problem

0 € TI(k*) + R(k*) 1.2)

with R = 0Zx. The variational inequality problem (1.1) is equivalent to (1.3) which is a
generalized equation introduced by Robinson [21]:

0€ F(z)+ G(x). (1.3)

whereF is a function fromX” into ) andG is a set-valued map frodr to the subsets of
YandX, ) are two Banach spaces.

In this study we are concerned with the problem of approximating a locally unique
solutionz* of the inexact variational inclusion

0€ F(z)+ H(z) + G(z), (1.4)

whereF is a nonsmooth subanalytic function from an open subset X = R™ into X,
H is a continuous function frorf? into X andG is a set—valued map froii to the subsets
of X with closed graph.
A large number of problems in applied mathematics and engineering are solved by
finding the solutions of generalized equation (1.4). In the particular €ase 0 and
G = {0}, (1.4) is a nonlinear equation in the form

F(z) = 0. (1.5)

For example, dynamic systems are mathematically modeled by differential or difference
equations and their solutions usually represent the states of the systems, which are deter-
mined by solving equation (1.5).

When F' is Frechet—differentiable in a neighborhood of the solutionof equation
(1.4), most of the numerical approximation methods require the expensive computation of
the Féchet—derivative"’ (x) and the first order divided difference of operatétand H
at each step respectively, for example Newton—Steffensen—type method [9, 19] for given
ro € Dandk > 1:

0 P+ Ho0) + (VP00 + (o), gaton) H] ) (on —a0) + Glonrn), (19
whereg; : D — X (i = 1,2) is a continuous mapping afd, y; H] € L(X) is a divided
difference of order one satisfying

[z,y; H] (x —y) = H(x) — H(y) for all z,y € X with x # y. a.7)

Note that ifH is Frechet—differentiable at then|z, z; H| = VH(x) (see [5, 7]). A super-
linear convergence analysis is presented in [18] for iterative method (1.6) in the particular
caseg; (zx) = 8z + (1 — B) zx—1, for some fixed parametet in [0, 1], using some
Holder—type conditions:

| [z, y; H] = [w,0; H || < v (e —w [P+ [y =0 ), (1.8)
for all z,y,u,v € D, p€[0,1] and v > 0,
and

| VF(z) - VF(@y) ||<o ||lz—y |, forz, yinD, pe0,1] and 0 >0. (1.9)
We relax the assumptions (1.8) and (1.9) in [9] by udiagu)—conditions:

I [z,y; H] = [u,v; H] ||[< w(|| . —u ||,y — v ||), for z, y, w and vin D (1.10)
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and
| VF(z) = VF(y) < p(l| 2=y ), forz, yin D, (1.11)

wherew : Ry x Ry — R, is a continuous nondecreasing function in both arguments,
andu : R, — R, is a continuous nondecreasing function.

In this study, we are interested in numerical method for solving generalized equation
(1.4) when the involved functiof' is nonsmooth and subanalytic. We proceed by replacing
in method (1.6) the tern” (x,,) by AF(z,), whereAF (z) € 0°F(z), 9°F(x) denotes
the Clarke Jacobian of" at the pointx € D. For approximatings*, we consider an
iterative method#, € D) and fork > 1:

0 € Flay)+ Hizy) + (AF(m)Hgmxw,gz(xk); H}) (tipr —a3) + Clappn), (112)

In the nonlinear equations case (i.&,= 0 andG = {0} in (1.4)), the method (1.12)
becomes

0= F(x,) + AF(xy) (Tpe1 —xyn), (2o €D), (n>0), (1.13)

which is considered in the elegant work by Bolte, Daniilidis and Lewis [14] for globally
subanalytic mappings.

In the casef = 0 andG # {0}, a superlinear convergence is given in [12] under the
following conditions:

There exists K > 0, such that Vo € D, VAF(z) € 0°F(x), || AF(z) ||[< K

(1.14)
and

For all AF(z*) € 0°F(z*), (G + AF(z*) (. — 2*))~! is M — pseudo — Lipschitz
around (—F(z*),z*) with M >0, and2 M K < 1.
(1.15)
A finer convergence analysis than [12] is obtained in [10] under assumption (1.15) without
the second part conditioR: M K < 1 and the center—type condition:

There exists K* > 0, such that || AF(x) — AF(z*) |[<K K* ||z —2* ||,
for all AF(z) € 0°F(z) and AF(xz*) € 0°F(z*).

Here, we are motivated by the works in [14, 10]. Usingt@dér—type conditions [5, 7], we
extend the applicability of Newton—Steffensen—type method [9, 18, 19] to nonsmooth sub-
analytic variational inequalities. Using the Lipschitz—like concept of set—valued mappings,
the subanalyticity hypothesis on the involved function, and some condition on divided dif-
ference operator, we prove that the iterative method (1.12) converges superlinearly.

The paper is organized as follows: In section 2, we collect some definitions and we
recall the fixed point theorem [17]. The main results of existence and convergence for
Newton-Steffensen—type algorithm (1.12) are developed in section 3. In section 4, we
provide a finer convergence analysis using some ideas introduced by us in [4, 7, 8] for
nonlinear equations. Finally, we present a new regula—falsi—-type method for set-valued
maps and some remarks.

(1.16)

2. BACKGROUND MATERIAL

In order to make the paper as self-contained as possible we reintroduce some definitions
and some results on fixed point theorems [7, 8, 23]. Let us begin with some notations that
will used throughout this papely’ = R™ is equiped with the euclidian north. ||. We
denote byB,.(x) the closed ball centered atwith radiusr. The distance from a point
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x to a setA in X is defined bydist (z, 4) = in£1 | = —y |, with the convention
ye

dist (z,9) = +oo (according to the general conventior ) = +o00). Given a subsef’ of
X, we denote by (C, A) the Hausdorff-Pompeiu excess@®@finto A, defined by

e(C,A) = sup dist (z, A),
zeC
with the conventions((), A) = 0 ande(C, ) = +oo whenevelC' # (). For a set-mapping

I': X = X, we denote byph I the set{(z,y) € X x X, y € I'(z)} andl'~!(y) the set
{r € X, y € I'(x)}. For eactm € N, we definer,, : R” — R" by

Tn(x1, T2, (2.1)

n) = ( 1 o Tn, )
T \/1—&—33%7\/1—1—33%’ 7\/1—|—x% -
We also need to define the pseudo-Lipschitzian concept of set—valued maps, introduced by
Aubin [11] and also known as Lipschitz—like property [20]:

Definition 1. A set-valued" is pseudo-Lipschitz arour{d, 3) € gph I" with modulusM
if there exist constants andb such that
sup dist (2, T(y")) < M ||y —y" ||, forally andy” in By(z). (2.2)
z€L(y')NBa (7)
In the term of excess, we have an equivalent definition of pseudo—Lipschitzian property
replacing the inequality (2.2) by

eT(y)NBa(m),T(y") <M |y —y" ||, forally andy” in B,(T). (2.3)

Pseudo-Lipschitzian property play a crucial role in many aspects of variational analysis
and applications [20, 23]. Let us note that the Lipschitz—lik& if equivalent to the met-
ric regularity of'—! which is a basic well-posedness property in optimization problems.
Other characterization is by Mordukhovich [20] via the concept of coderivative of set—
valued maps. For some characterizations and applications of the Lipschitz—like property
the reader could be referred to [11, 17, 20, 22, 23] and the references given there.

We recall the following definition of semianalytic subsets and subanalytic functions
[16, 24, 13, 14].

Definition 2. (1) A subset4 of R™ is called semianalytic if each point &" admits
a neighborhoo@ for which .4 NV assumes the following form:

1=p1=q

U ﬂ{x cV: f”<$) =0, gij(x) > O}, (24)

1=11i=1
where the functions;;, g;; : V — R are real-analytic for all < ¢ < p,
I<j<q

(2) A subsetA of R™ is called subanalytic if each point & admits a neighborhood
V such that:
ANV ={zeR" : (z,y) € B}, (2.5)

whereB5 is a bounded semianalytic subsefsf x R™ for somem > 1.

(3) Asubsetd of R™ is called globally subanalytic if its image by, defined by (2.1)
is a subanalytic subset &f".

(4) F : R* — R" is called subanalytic, if its graph is a subanalytic subset of
R™ x R™,

(5) F : R — R" is called globally subanalytic, if its graph is a globally subana-
lytic subset ofR™ x R™.
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We need also the following fixed point theorem [17].

Lemma 3. Let ¢ be a set—valued map froAi into the closed subsets 4f. We suppose
that forng € X', > 0and0 < X < 1 the following properties hold

(1) dist (10, ¢(no)) <r (1 —A).

(2) e(o(y) B (10),¢(2)) <A ly =2l Vy,z € Br(m).
Theng has a fixed point ifB,.(1o). That is, there exists € B,.(1y) such thate € ¢(z). If
¢ is single—valued, then is the unique fixed point @f in B,.(1o).

Finally, we recall a definition concerning directional differentiability and Clarke’s Jaco-
bian in finite dimensional spaces.

Definition 4. (1) AmappingF : D C R®* — R™ is said to be directionally differ-
entiable atz € D along direction if the following limit

Flz+td) — F(x)

' e — 13
F'(z;d) = ltlilgl ; (2.6)
exists.
Note that every definable locally Lipschitz mappifigadmits directional deriv-
atives.

(2) For F : D C R® — R™ alocally Lipschitz continuous function, the limiting
Jacobian off" atx € D is defined by

OF(z) = {M e L(R™",R") : 34" €D, lim F'(u*)=M]}. 2.7)

li
k— 00
(3) Let I : D C R"™ — R"™ be a locally Lipschitz continuous function. Clarke’s

Jacobian off" atx € D is defined by

8°F(z) = @ OF (x), (2.8)

whereco A is the closed convex envelope 4fC R™.

3. LOCAL CONVERGENCE OF METHOD(1.12)

Before presenting our main result of convergence of method (1.12), we give a variant of
the result for subanalytic mappings established by Bolte, Daniilidis and Lewis [14, Lemma
3.3

Lemma 5. Let ¥ : D C R®™ — R™ be a locally Lipschitz subanalytic function and
x € D. Then, there exists a positive rational numbeand a constant’,, > 0, such that:

| F(y) = F(z) = Aly) (y—2) IS C [y —a |'T7 3.1)
whereA(y) is any element af° F'(y).
In particular case, there exists a positive rational numbérand a constanC,- > 0,
such that:
| Fy) = F(a") = A) (y = a*) 1< Cor 1y —a* [+ (3:2)
whereA(y) is any element af° F'(y).
The main result of local convergence of algorithm (1.12) is as follows. We will be

concerned with the existence and the convergence of the sequence defined by (1.12) to the
solutionz* of (1.4). The main result of this study is as follows.
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Theorem 6. Let FF : D C X — X be a locally Lipschitz subanalytic function. Let
H : D C X — X be an operator such that for every distinct pointandy in D, there
exists a first order divided difference Hf [x, y; H] at these pointsG is a set-valued map
from X to the subsets ot with closed graph and* is a solution of (1.4).

Assume:

(P0) Fori=1,2; g, is a;—Lipschitz fromD into D, «; € [0,1) andg;(z*) = z*;
(P1) There existy > 0 such that for allz, y,w andv in D (x # y andu # v)

Izoys H] = [w, v Hl [<v (|2 —w|” + [y —o ")

where~ is given in Lemma 5 by (3.1).

(P2) Forall AF(z*) € §°F(z*), the set-valued ma@\F(z*) (. —2*) + H + G)~1
is pseudo—Lipschitz around-F'(z*), *) with constants\/, a andb (These con-
stants are given in Definition 1);

(P3) There existe > 0, such that for allz andy in D

| AF(zx) — AF(y) [< o ||z —y | forall (AF(x), AF(y)) € °F(z) x O°F(y).
Then, for every constaudt such that

C>Co=M (Cz* +v (o] +(1+ ozg)“*))7 (3.3)

whereC',« is given in (3.2), there exists> 0 satisfying
5 < 8 = : . l i ) (3 4)
0 = IMin § a; MC’ \(20, 1 .

b

e (cm* Y2u ((L4a)r+(1+ az)v)>

where

01 =

such that for every starting pointy in Bs(x*) (with g # x*), sequencéz;) defined by
(1.12) converges to* and satisfies the following inequality fér> 0

| 2p41 —a* | C ||z —a* ' (3.5)
wherev is given by (3.2).

We need to introduce some standard notations [8, 9]. First, define the set—valued map
Q:DCX=Xby

Q(z) = F(a*)+ H(z) + AF(2*) (x — z*) + G(z). (3.6)
Fork € N* andz;, defined in (1.12), we consider the mapping
Zp(x) = F(z*)+ H(x) + AF(2*) (x — 2*) — F(xy) — H(xg)—

(AF(xk) + [g1(zk), g2(zk); H]) (x — x1). (3.7)

Finally, define the set-valued madp : D C X = X by
Yr(r) = Q H(Zp(z)). (3.8)

Remark?7. Hypothesis P2) is equivalent taQ ! is pseudo-Lipschitz aroun@,x*). In-
deed, simply use [17, Corollary 2, p. 486] by identifyihgand f in this corollary toG
and the constant functioR(z*) respectively.
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The proof of theorem 6 is given by induction énWe first state a result involving the
starting pointzy. Let us note that the point, is a fixed point ofy if and only if

0 € F(xo) + H(zo) + (AF(wo) + [91(20), g2(z0); H]) (x1 —x0) + G(x1).

Oncezx;, is computed, we show that the functign has a fixed pointy; in X'. This
process is useful to prove the existence of a sequengesatisfying (1.12).

Remark8. The results of this paper seem also true for a general assumiiamd H
are defined in a neighborhodd of the solutionz* included inX = R™ with values in
Y = R™ with n # m andG is a set-valued map frot’ to its subsets o} with closed
graph.

Proposition 9. Under the assumptions of Theorem 6 and for every distinct starting points
xo in Bs(z*) (with zp # x*), the set—valued map, has a fixed pointz; in Bs(z*)
satisfying

a1 —a* |SC || zg —a* |+ (3.9)
whereC' andé are given by Theorem 6.
Proof. By hypothesisP2) we have

Q1Y) NBa(x™), QW) <M |y —y" |, ¥y, € By(0). (3.10)
The main idea of the proof of Proposition 9 is to show that both assertions (1) and (2) of
Lemma 3 hold, wherg, := z*, ¢ is the functiony, defined by (3.8) and whereand \
are numbers to be set.
According to the definition of the excesswe have

dist (x*,¢o(z*)) < e(Q_l(O) N Bg(:ﬂ*),wo(x*)). (3.11)

Note that forz € Bs(z*) using (P0) we can have foi = 1,2
I gi(z) — 2" ||I=ll gi(2) — gi(2") IS ai [| 2 — 2™ |[<[| & — 27 [[< 4,
which impliesg;(z) € Bs(z*) C D.
For all pointzg in Bs(z*) (xo # «*) we have
| Zo(z*) | = || F(z*) + H(z*) — F(xo) — H(zo)—
(AFG0) + 1000, 2to0)s 1) (a* = ) |

Using definitions (1.7) and (3.7) we obtain the following
I Zo(@*) | < || F(a*) = F(zo) — AF(20) (z* — o) || +
I H(z*) = H(zo) — [91(x0), 92(x0); H] (2% —x0) ||
| F(zo) — F(a*) = AF(x0) (w0 —2*) || +
| [2%, wo; H] (2% = 20) — [91(20), g2(w0); H] (2% — o) || -
(3.12)

By (P0), (P1) and (3.1), (3.12) becomes
I Zo(a*) | < Cor [la* —ao |* +

(1 = anloo) 17+ o = anlon) 17 ) 1ot =0 | g5
< (Cm* +v(a] +(1+ Oz2>’y)> | xo —* [P

Then (3.4) yieldsZ(z*) € B, (0).
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Moreover, by (2.3) and (3.11) we obtain
dist (z*, (%)) < Co || 2o —a* |7 (3.14)
SinceC' > C, there exists\ € [0, 1] such thatC' (1 — \) > Cj and
dist (z*,0(2*)) < C (1= A) || 2o —a* |7

Settingr :=ro = C' || mp — 2* ||"*1, we can deduce the first assertion of Lemma 3.
By (3.4) we havery < 6 < a. Moreover forz € Bs(z*) and by some intermediate
estimations we have the following inequality

| Zo(a) | = || Fa™) + H(z) + AF@*)(x — 2%) — F(ao) — Hxo)~
AF(z0) + [g1(20), galxo); H}) (& —0) |

< | F(z*) + AF(x*)(x — x*) — F(z9) — AF(x0)(x — 2% + 2* —x0) || +
| H(x) — H(zo) — [g1(20), 92(x0); H]| (x — o) ||
< || Fzo) — F(2*) — AF(z9) (z0 — 2%) || +

| AF(z*) = AF(zo) || | z — 2" || +
| [z, z0; H] = [91(%0), g2(w0); H] || [| 2 — w0 || -
(3.15)
By assumption$P0), (P1), (P3), and (3.1), we can estimate (3.15)

I Zo(2) | < Co lla* =20 "™ +o 2" a0l |z —a" || +

v ( & — g1(x0) [ + || @0 — ga(x0) ||V) o=zl (316

IN

(e +20 (@ ra +0+a) 5 40 52

Then by (3.4) we deduce that for alle Bs(z*) we haveZ,(z) € B, (0). Then it follows
that for allz’, 2" € B, (z*) we have
e(o(2') N By (2%),¢0(2")) < M || Zo(2') — Zo(2") ||
= M |H(2') — H(z") + AF(z") (' — 2")+

(AF(l'o) + [gl(xo),gg(xo); H]) (LL'” _ {L‘/) ”

< M ( | (AF(z0) — AF(2*)) (2 —a") || +
I [, 2" H] = [g1(w0), g2 (wo); H] || || (2" = 2") || ).
(3.17)
By (P1) and(P3) we deduce
e(vo(2’) N By, (%), ¥o(2")) < M O || 2" — 2 | (3.18)
where
Os=0cd+v ((14+a1)"+ (14 a2)”) 8. (3.19)

i . A "
Without loss generality, we may assume tBat < W Since both conditions of Lemma

3 are fulfilled, we can deduce the existence of a fixed peinte B,,(z*) for the map
Yo. U

Proof. (Proof of Theorem 6) Keepy = =* and fork > 1, set:
ri=rg=0C ||z* —a |'T7.

The application of Proposition 9 to the map gives the desired result. |
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Remark10. We can enlarge the radius of convergence in Theorem 6 even further as fol-
lows: using inequalities (3.16), (3.13), we can imprégiven by (3.4) by considering the

constant’:
1
§ < o) = min{a; \/ Yot 5&}

8, =max {n >0 : (Cm*—&-QV((1—}—041)7—1—(14—042)7)) Nt +on?—b<0}

whered}, is given by

Remarkll. If we replace in Theorem 6 the assumpt{@8) by the following assumption:
(P3)' There existey > 0, such that for all: andy in D
| AF(z) = AF(y) [|[< oo ||z —y [|” for all (AF(z), AF(y)) € 9°F(x) x 0°F(y),

wherey is the positive rational given by (3.1), then, it follows from the proof of Proposition
9 that constants and®;4 can be replaced by the following

- , 1 b
0 < dg= mm{a; E; . }
2 <00 +Cu+2v (1+ar)+(1+ a2)7)>
(3.20)
and
@g: (0’0+2 12 ((1—‘1-011)74—(1—"-0[2)7)) y, (321)

respectively. The estimate (3.5) of Theorem 6 seem also true.

Yakoubsohn [25] considers a regula—falsi algorithm for solving nonlinear equations.
An extension of this method for perturbed generalized equations is presented in [8, 18, 19]
using Holder type condition (otw—conditioned divided difference). Here, we consider
our algorithm (1.12) by fixing: (o) of the arguments of divided difference &f;, more
precisely, we associate to (1.4) the following algorithm=1,2,...)

x¢ is given as starting point in D

0 Flay) + H) + (AF(ack) T (g1 (o), ga(an): H]) (ere1 — 21) + o).

(3.22)
We deduce the following result.

Proposition 12. Suppose that the assumptions of Theorem 6 are satisfied. Then, for every
constantC' > C,, where( is given in Theorem 6, there exisfs> 0 such that, for
every starting poink, in B¢ (2*) (zo andz* distinct), the sequende;;) defined by (3.22)
converges ta:* and satisfies

[ 2rpr —a™ <O [l oy —a || max {|| 2x — 2" |7, | wo — 2™ [},

where~ is given by (3.1).
4. AN IMPROVED LOCAL CONVERGENCE

In this section, motivated by optimization considerations [5, 7] related to the resolution
on nonlinear equations, we show by using more precise estimates that under less computa-
tional cost and weaker hypotheses tif&0), (P1), and(P3): the convergence analysis of
method (1.12) is improved. We can show the following results for the local convergence
of method (1.12).
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Theorem 13. Let FF : D C X — X be a locally Lipschitz subanalytic function. Let
H : D C X — X be an operator such that for every distinct pointandy in D, there
exists a first order divided difference Bf[x, y; H| at these pointsG is a set-valued map
from X to the subsets ot with closed graph and* is a solution of (1.4).

Assume:

(PO)* Fori = 1,2; g; is a;—center—Lipschitz fror® into D, «; € [0,1) and g;(z*) =
x*. Thatis

| 9i(x) —gi(a”) |[< @@ o —a™ |, i=12 (4.1)
(P1)* There exist®; > 0 andzi > 0, such that for allx, y, z in D
I 2%, 2 H] = [g1(2), ga2(2); H] [ <710 ([ 2% = g2 (2) [|” + [ 2 = g2() [|7),  (4.2)
Iy, 2 H] = [91(2), g2(2); H] [[< 72 (Il y —ga(2) " + | 2 —g2(2) ) (4.3)
where~ is given in Lemma 5 by (3.1).
(P2) Forall AF(z*) € 9°F(z*), the set-valued ma@\F(z*) (. —2*) + H + G)~*
is pseudo—Lipschitz around-F'(z*), *) with constants\/, a andb (These con-

stants are given in Definition 1);
(P3)* There existg > 0, such that for allz in D

| AF(z) — AF(z*) |<7 ||z —a* || for all (AF(x), AF(z*)) € 0°F(x) x 9°F(x*).

Then, for every' such that
C>Co=M (Cm* + 71 (@ + (1 +ozz)”)>, (4.4)

whereC',« is given in (3.1), there exists> 0 satisfying
0 = min « a; “67 “26’ 1 :

_ b

5 =
1+~
2 (Cw +217 (1+a7)Y+(1 +a2)7)>

where

such that for every starting point, in B=(z*) (with 2o # z*), the sequencgry,) defined
by (1.12) converges te* and satisfies the following inequality fér> 0

| 2k —2* IS C || ap —a* M7, (4.6)

Remarkl4. In general; (i = 1,2), v, ando given in Theorem 6 are not easy to com-
pute. This is our motivation for introducing weaker hypothgg&®*, (P1)* and(P3)* in
Theorem 13.

Note that in general

ay < o, (4.7)
Qg < q, (4.8)
7L < v, (4.9)
7 < v (4.10)

and
7 <o, (4.112)
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holds andg, %, é é 2 can be arbitrarily large [5, 7]. It then follows from the
Q1 Qg Vi Vg O

definitions ofC, C, (3.4) and (4.5) that
Co < Cy, (4.12)

and o
8o < do. (4.13)

In practice computing parametets, v ando requires the computation of parameters
7;, anda respectively{ = 1, 2).

An improvement of Proposition 12 is as follows.

Proposition 15. Suppose that the assumptions of Theorem 13 are satisfied. Then, for
every constant’ > Cj, whereCy is given in Theorem 13, there exigts> 0 such that, for
every starting point, in B(z*) (zo andz* distinct), the sequende.) defined by (3.22)
converges ta* and satisfies

l2rsr — 2™ | C [l op — 2" || max {|| z — 2™ |7, || @0 — 2™ |}

In Theorem 13 and Proposition 15, we use the constagiten by Lemma 5 (see (3.1)).
In the following results, we can improve Theorem 13 and Proposition 15 by using only the
center—estimate (3.2):

Corollary 16. Suppose that the same hypotheses of Theorem 13 by reptabiyng™ in
(P1)*, wherevy* is given by (3.2) are satisfied. Then, for every constastich that

C>Co-M (c L@+ +a2>“>), (4.14)

there exists: > 0 satisfying
) { 1 /b }
kK< Kg=minsa; %[/=; \/=—; &
C 20

= b

:1 *
14+~
2 (CT* +2 Vo ((1+OL1) * +(1+Ol‘g) *)>

where

such that, for every starting poing, in B, (z*) (with zy # z*), the sequencér;,) defined
by (1.12) converges te* and satisfies the following inequality fér> 0
| Zhs1 —2* IS C | g —a* |17 (4.15)

Corollary 17. Suppose that the assumptions of Corollary 16 are satisfied. Then, for every

constantC' > Cj, where(Cj is given in Corollary 16, there exist:;s > 0 such that, for
every starting poink; in IB%(;E*) (zo andz* distinct), the sequende;,) defined by (3.22)

converges ta:* and satisfies
l2hr1 —a* IS C ap —a* || max {|| zx — 2 |7 || 20 —a* |7},

Remark18. Remark 10 can be applied for enlarging the different radius of convergence
even further in Theorem 13, Proposition 15 and Corollaries 16, 17.



74 loannis K. Argyros, S Hilout

Remark19. There exist a real nonsmooth functions verifying the assumpti®g¥ d@r
(Ps) or (Ps)*. Note that(Ps) = (Ps)*. For example, we take the classical convex
funtion F : R — R, defined byF'(z) = |z|. We know that Clarke’s subdifferential
coincides with the subdifferential in the meaning of convex analysis:

{-1} if x<0
OF(z) =< (-1,1) if =0
{1y if z>o

It is clear thatF" is not FEéchet—differentiable dt and for allo > 0, if z = y = 0, there
existAF (z) =1 € 9°F(0) andAF(y) = —1 € 9°F(0) suchthat]| AF(z)-AF(y) ||=

1 —(=1)] =2 > olx—yl;ie., (Ps)is not satisfied. We can easily check that if- 0

andy > 0 (orx < 0 andy < 0), (Ps) is satisfied. The construction of examples of a class
of functionsF' satisfying (Ps) or (Ps)’ or (Ps)* is very difficult. The search of sufficient
(and necessary) conditions that provi@g) or (Ps)’ or (Ps)* is even more difficult. The
novelty of our work is an introduction of a new method for solving a perturbed nonsmooth
subanalytic variational inequalities. In relevant paper of Bolte et al. [15], we can find some
constructions of examples for subanalytic Lipschitz continuous functions. In a future paper
using ideas in [13, 14, 15], we will recover the numerical examples concerning our method
(1.12) in the context of nonsmooth subanalytic variational inequalities.

CONCLUSION

We provided a Newton—Steffensen—type method for approximating an unigue solution
for perturbed nonsmooth subanalytic generalized equations in finite—dimensional spaces.
Under some ideas given in [4, 7, 8] for nonlinear equations, we also provided a finer non-
smooth analysis in Sect. 4 with a finer error estimate on the dist§ncgs- z* || (n > 1)
using some center—type conditions and Lipschitz—like concept for set-valued maps. The
use of center—type conditions is very important in computational mathematics [5, 7].
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