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Abstract 

In the present study, we evaluated the effects of surface application and plowing of phosphogypsum and turkey 

litter to a depth of 20 cm on the erodibility of clay-illuvial agrochernozem (Luvic Chernozems (Aric, Pachic)) in the 

Southern Cis-Urals (Republic of Bashkortostan, Russia). Under laboratory conditions, 1°, 3°, and 7° slopes were 

modeled. Soil loss, runoff onset time, and turbidity were measured with a rainfall simulator. Particle size 

distribution and total organic carbon were measured. Under simulated heavy rainfall (360‒420 mm h−1) for 30 min, 

the untreated control had the highest soil loss (28.9 t ha−1). Separate and combined introductions of phosphogypsum 

and turkey litter significantly increased soil resistance to water erosion. Co-introduction of the amendments 

strengthened this effect especially when the phosphogypsum to turkey litter ratio increased from 1:10 to 1:2 at the 

higher dose (60 t ha−1). The turbidity of the runoff from a 1° slope reached a small peak within the first 3 min then 

gradually decreased thereafter. At 3°, the turbidity remained nearly constant over time and was uniformly 

distributed. At 7°, the turbidity sharply increased then gradually decreased and its distribution was a deformed bell. 

Washed-out (trapped) sediments from all treatments and slopes had relatively more very fine sand, silt, and clay and 

a slightly higher total organic carbon content than the original soil. Phosphogypsum and turkey litter wastes may be 

effective anti-erosion amendments and potential fertilizers because they increase flocculation, improve the structure, 

and enrich the organic matter and nutrient content of the soil. 
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Introduction 

Erosion is a major type of soil degradation which 

occurs worldwide (Ali et al., 2006; Khan et al., 2013; Addis 

and Klik, 2015; Golmohammadi et al., 2017). In Russia, 

erosion is also common (Golosov et al., 2011; Krasilnikov 

et al., 2013; Litvin et al., 2017; Golosov et al., 2018; 

Gusarov et al., 2018) especially in the central regions such 

as the Republic of Bashkortostan (RB) (Sobol et al., 2015). 

The RB is located between the Volga River and the Ural 

Mountains and active soil water erosion occurs there. About 

64% of the agricultural land in the RB is already eroded. 

The high organizational, economic, agrotechnical, forestry, 

and hydrotechnical costs of reclamation in this region are 

incentives to seek alternative erosion remediation methods. 

Pork manure (Barbosa et al., 2015), sheep manure 

(Gholami et al., 2016), and turkey litter (TL) (Costa et al., 

2008) have been used to reduce top soil erosion and increase 

crop yield (Adeli et al., 2017). Certain polymers and 

structure-building amendments such as polyacrylamide 

(PAM) (Tang et al., 2006; Abu-Hamdeh et al., 2018) and 

gypsum or phosphogypsum (PG) (Cochrane et al., 2005; 

Mamedov et al., 2010) also increase soil resistance to 

erosion. PG is calcium sulfate hydrate, a by-product of 

fertilizer production from phosphate rock. It consists mainly 

of gypsum (CaSO4·2H2O). In central Russia (Saratov 

Oblast; near RB), PG is used to reduce deflation and water 

erosion (Belobrov et al., 2018). In Brazil, the introduction 

of TL (1,200–4,800 kg ha−1) into red ferralitic soil 

(Dystrophic Red Latosols (Oxisols)) improved aggregation 

and increased aggregate water resistance especially in the 0–

20 cm layer (Costa et al., 2008). 

The use of PAM during irrigation improves aggregate 

water resistance and soil infiltration capacity (Sepaskhah 

and Shahabizad, 2010). When PAM was added to irrigation 

water at the rate of 1 kg 100 m-3 ha−1, runoff and soil loss 

decreased by 70-75% compared with the control (Aase et 

al., 1998). When PAM was added to furrows, the surface 

runoff decreased by 94% relative to the untreated one (Sojka 

et al., 1998). 

Gypsum and PG amendments reduce surface runoff 

because they flocculate soil particles during rainfall or 

irrigation. The anti-erosion effect of gypsum is related to its 
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ability to flocculate dispersed soil colloids, and it is stronger 

in PG than gypsum. The former dissolves faster and 

produces higher calcium concentrations in the soil solution 

than the latter during rainfall or irrigation (Keren and 

Shainberg, 1981). In the southern steppe of the Ukraine, the 

introduction of PG into dark chestnut soil (Haplic 

Kastanozems) reduced its density, lowered its silt content, 

promoted aggregation, and increased its humic content 

(Martynenko, 2014). 

Recently, the practice of applying fertilizers consisting 

of agroindustrial and woodworking waste (Gabbasova et al., 

2007; Amin, 2018) and PG has become widespread (Hentati 

et al., 2015; Kammoun et al., 2017; Rakhimova et al., 

2017). The use of PG alone or in combination with organic 

additives improves the physical and hydrological properties 

of the soil, delays runoff generation, and reduces the 

severity of water erosion. 

To the best of our knowledge, this study is the first to test 

the efficacy of the PG-organic waste combination on water 

erosion mitigation in the RB. There are several reasons why 

this region is suitable for this particular research: 1) The RB 

region is characterized by a highly heterogeneous topography. 

Most of its agricultural land is situated on slopes of varying 

steepness (Gabbasova et al., 2016) and the soil can be easily 

washed out during water erosion, 2) The climate of the region 

is continental with severe, snowy winters, deep soil freezing, 

and frequent onset of soil erosion during spring thaw 

(Komissarov and Gabbasova, 2014), 3) Up to 37.3% of the 

annual precipitation in the southern Urals contributes to soil 

erosion (Sobol et al., 2015), 4) Slopes irrigated by sprinkler in 

this region are susceptible to erosion. Sprinkling is the most 

common type of irrigation in the RB (Komissarov and 

Gabbasova, 2017), 5) In Russia and the RB, poultry farming 

is intensifying and generating thousands of tons of 

underutilized litter every year (Rusakova and Eskov, 2015), 

6) In Russia and the RB, mineral fertilizer factories producing 

various chemicals based on apatite and sulfur pyrite generate 

~500,000 tons of PG annually. Currently, > 10,000,000 tons 

of PG have been dumped in the RB. PG was traditionally 

used in the region to reclaim saline soils, solonets, and 

technogenic saline lands (Gabbasova and Suleimanov, 2007; 

Gabbasova et al., 2013), 7) There are large, readily accessible 

turkey farms and PG dumps in the Meleuz district of RB. 

Whereas field research is usually long-term, 

simulations may accelerate data acquisition. For example, 

rainfall simulators have already proven to be effective in 

soil erosion studies (Aziz and Liatim, 2018; Polykov et al., 

2018; Mhaske et al., 2019). The purposes of this study were 

to evaluate the resistance of agrochernozems to water 

erosion and determine the stabilization efficacy of PG and 

TL and their combination on model slopes of varying 

steepness using a small laboratory-scale rainfall simulator. 

In view of climate change and increasing erosion in the 

RB (Sobol et al., 2015), our approach may establish the 

feasibility of using the abundant, cheap, underutilized local 

farm and mining wastes as soil anti-erosion amendments 

there. This practice has multiple benefits: it can (a) reduce 

the amount of industrial waste from factories; (b) help 

decrease soil erosion; (с) improve soil fertility and crop 

productivity; (d) prolong the useful life and improve the 

quality of existing arable land; and (e) help ensure and 

maintain food security. 

Materials and Methods 

The field study was conducted in the Ufimsky district of 

the RB (54° 50′ 23′′ N, 55° 44′ 55′′ E; 170 m a.s.l.). The 

arable horizon (0–20 cm) of a clay-illuvial, medium-eroded 

agrochernozem (Luvic Chernozems (Aric, Pachic)) formed 

on alluvial-diluvial carbonate parent material was studied. 

This soil type is the most common in the Southern Cis-Ural 

region and > 70% of it lies on slopes of 1–7° (Gabbasova et 

al., 2016). 

The PG and TL were brought to the study area from the 

factories of the Meleuz district of the RB. According to 

laboratory analyses, PG contained ~87% gypsum. TL was 

disinfected with “PX-Ornikill” (Killgerm Chemicals Ltd., 

Ossett, UK), and PG and TL were mixed in a tank. Then 

these ameliorants were added to surface of the soil on a 

gently inclined (3–5°) slope with a northern exposure 

according to the following scheme: 

1. Control (no PG or TL (C); 

2. PG, 5 t ha−1 (PG-5); 

3. PG, 10 t ha−1 (PG-10); 

4. PG, 20 t ha−1 (PG-20); 

5. PG+TL, 1:10, 40 t ha−1 (PG+TL-40 (1:10)); 

6. PG+TL, 1:10, 60 t ha−1 (PG+TL-60 (1:10)); 

7. PG+TL, 1:5, 40 t ha−1 (PG+TL-40 (1:5)); 

8. PG+TL, 1:5, 60 t ha−1 (PG+TL-60 (1:5)); 

9. PG+TL, 1:2, 40 t ha−1 (PG+TL-40 (1:2)); 

10. PG+TL, 1:2, 60 t ha−1 (PG+TL-60 (1:2)); 

11. TL, 40 t ha−1 (TL-40); 

12. TL, 60 t ha−1 (TL-60). 
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To ensure uniform mixing of PG and TL, the soil was 

plowed to a depth of 20 cm with a two-wheel tractor. One 

year after moldboard-plowing and PG and TL 

supplementation, the undisturbed soil monoliths were 

accurately excavated, and placed in polypropylene trays (L 

= 1.0 m, W = 0.2 m, H = 0.15 m) for the subsequent 

laboratory experiments. The soil in the trays was air-dried 

(to hygroscopic water at 10% moisture by weight) and used 

to assess the effects of artificial sprinkling on the induction 

of water erosion using a rainfall simulator (Figure 1). 

Technical details of the simulator and procedure are 

described in Sobol et al. (2017). Irrigation was performed at 

a rain intensity of 360‒420 mm h−1 which is considered 

heavy (> 2.0 mm min-1) according to Kiryushin (1996). The 

total irrigation time was 33‒45 min depending on the onset 

of runoff. The intensity and duration of sprinkling used in 

this study enabled monitoring of the dynamics of erosion 

development over time (Znamenskaya et al., 2018). Soil 

trays were irrigated on slopes of 1°, 3°, and 7° because these 

are the most common inclinations in the region (gentle, 

declivous, and aslant-steep, respectively). 

The time of appearance of surface runoff after the start 

of irrigation was evaluated in this experiment. Fluid samples 

were taken at 0, 3, 5, 8, 15, and 30 min after the onset of 

runoff to measure the amount of suspended sediment in the 

flow (turbidity). The runoff samples (trapped sediments) 

during irrigation were transported to a special reservoir 

fitted with absorbent paper. The sediments on the filters 

were air-dried to constant mass and weighed, and total soil 

losses were calculated (Surmach, 1976). Particle size 

distributions in the original soil and sediment samples were 

measured by gravitational sedimentation (pipette method). 

Total organic carbon (TOC) was determined by 

thermochemical oxidation with K2Cr2O7. 

 
Figure 1: Sprinkler installation diagram 
(1) frame; (2) reservoir; (3) filter; (4) water supply and valve; (5) flow meter; (6) height adjustment holes (0.5, 1.0, and 1.5 m); (7) base 

for flume with soil; (8) slope adjustment holes (0–15); (9) anti-splash screen; (10) irrigated soil; (11) plastic flume (length 100 cm, 

width 20 cm, height 12 cm); (12) switch with float sensor; (13) submersible pump; (14) runoff reservoir; (15) water discharge hole; (16) 

drainage hose; (17) collection tray with filter; (18) filter; (19) discharge trough; (20) water discharge hose; (21) drain valve; (22) 

sprinkler frame; (23) float valve; (24) water supply intake hose (Sobol et al., 2017)
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Field soil sampling, rainfall experiments, and laboratory 

analyses were conducted in triplicate. The data were 

averaged and reported in tables and graphs. All data were 

processed in MS Excel 2007 (v. 12.0) (Microsoft Corp., 

Redmond, WA, USA). Significance of the differences 

between means was estimated by a t-test. 

Table 1. TOC and particle size distribution of original soil (0–20 cm depth) and sediment (depending on the tray 

tilt angle) 

Variant TOC 

% 

Fraction size (mm) and name 

1–0.25 

(coarse 

sand) 

0.25–0.05 

(fine 

sand) 

0.05–0.01 

(very fine 

sand) 

0.01–0.005 

(medium 

silt) 

0.005–0.001 

(very fine 

silt) 

< 0.001 

(clay) 

  Content% 

Original slope soil 3.6 ± 0.1 7.5 ± 0.4 12.8 ± 0.8 16.9 ± 0.7 9.9 ± 0.6 23.8 ± 1.4 29.1 ± 1.8 

Inclination 1° 

1. C 4.0 ± 0.2 0.4 ± 0.1 3.1 ± 0.2 24.6 ± 1.0 7.0 ± 0.6 18.0 ± 1.2 46.9 ± 2.5 

2. PG-5 4.1 ± 0.2 1.9 ± 0.1 10.0 ± 0.6 20.1 ± 0.7 7.6 ± 0.5 12.4 ± 0.6 48.1 ± 2.4 

3. PG-10 4.0 ± 0.1 0.7 ± 0.2 9.6 ± 0.4 18.7 ± 0.8 9.1 ± 0.7 13.9 ± 0.9 47.9 ± 2.4 

4. PG-20 4.1 ± 0.1 1.1 ± 0.1 7.5 ± 0.5 20.1 ± 1.1 10.4 ± 0.9 12.2 ± 0.8 48.8 ± 3.1 

5. PG+TL-40 (1:10) 4.3 ± 0.3 0.5 ± 0.1 7.8 ± 0.3 22.3 ± 0.6 10.8 ± 1.0 13.3 ± 0.8 45.2 ± 2.7 

6. PG+TL-60 (1:10) 4.4 ± 0.2 0.7 ± 0.1 7.8 ± 0.3 18.7 ± 0.5 10.5 ± 0.8 13.5 ± 0.9 48.9 ± 2.6 

7. PG+TL-40 (1:5) 4.2 ± 0.2 0.3 ± 0.1 7.3 ± 0.3 20.2 ± 0.9 10.4 ± 0.9 13.7 ± 1.1 48.0 ± 2.9 

8. PG+TL-60 (1:5) 4.2 ± 0.3 0.5 ± 0.1 8.7 ± 0.4 21.5 ± 0.9 8.7 ± 0.8 15.1 ± 1.1 45.6 ± 3.0 

9. PG+TL-40 (1:2) 4.3 ± 0.1 1.1 ± 0.1 6.6 ± 0.4 20.6 ± 0.9 9.5 ± 0.7 12.8 ± 1.0 49.5 ± 3.2 

10. PG+TL-60 (1:2) 4.4 ± 0.2 1.5 ± 0.2 7.6 ± 0.2 20.3 ± 0.7 9.7 ± 0.8 14.5 ± 1.2 46.4 ± 2.8 

11. TL-40 4.4 ± 0.3 1.2 ± 0.1 6.6 ± 0.3 18.3 ± 0.7 10.7 ± 0.8 14.3 ± 0.9 48.8 ± 2.3 

12. TL-60 4.2 ± 0.1 1.3 ± 0.1 5.3 ± 0.3 18.9 ± 0.5 11.3 ± 10.6 13.6 ± 1.0 49.6 ± 2.6 

Inclination 3° 

1. C 4.0 ± 0.2 0.6 ± 0.2 4.8 ± 0.4 22.5 ± 0.8 7.8 ± 0.4 18.5 ± 1.2 46.2 ± 1.9 

2. PG-5 3.9 ± 0.2 1.4 ± 0.2 9.4 ± 0.3 19.1 ± 0.8 9.2 ± 0.5 13.3 ± 1.1 47.7 ± 2.7 

3. PG-10 4.0 ± 0.1 0.7 ± 0.2 7.0 ± 0.1 21.3 ± 0.9 11.6 ± 0.8 11.1 ± 0.8 48.3 ± 2.9 

4. PG-20 4.0 ± 0.1 0.4 ± 0.1 7.1 ± 0.2 20.8 ± 0.8 9.3 ± 0.8 11.5 ± 1.2 47.9 ± 3.0 

5. PG+TL-40 (1:10) 4.2 ± 0.1 0.5 ± 0.1 9.3 ± 0.2 20.0 ± 0.6 8.7 ± 0.5 13.6 ± 1.0 47.9 ± 2.9 

6. PG+TL-60 (1:10) 4.1 ± 0.2 0.9 ± 0.1 7.9 ± 0.5 20.1 ± 0.7 9.9 ± 0.5 14.3 ± 0.8 47.0 ± 2.6 

7. PG+TL-40 (1:5) 4.2 ± 0.1 0.4 ± 0.1 9.3 ± 0.6 20.4 ± 0.5 8.2 ± 0.6 15.7 ± 0.9 46.0 ± 2.5 

8. PG+TL-60 (1:5) 4.2 ± 0.2 0.3 ± 0.1 10.1 ± 0.8 19.5 ± 0.6 8.4 ± 0.7 15.4 ± 1.3 46.3 ± 2.8 

9. PG+TL-40 (1:2) 4.2 ± 0.2 0.4 ± 0.1 9.1 ± 0.5 20.3 ± 0.9 8.9 ± 0.6 15.4 ± 1.1 46.0 ± 2.7 

10. PG+TL-60 (1:2) 4.1 ± 0.3 1.0 ± 0.1 9.0 ± 1.0 19.0 ± 0.7 10.4 ± 0.7 15.3 ± 1.0 45.3 ± 3.0 

11. TL-40 4.0 ± 0.3 0.8 ± 0.2 7.0 ± 0.6 19.8 ± 0.9 11.4 ± 0.7 13.6 ± 0.8 47.5 ± 2.7 

12. TL-60 4.2 ± 0.2 0.9 ± 0.1 4.5 ± 0.5 18.5 ± 0.7 11.8 ± 1.0 14.9 ± 1.0 48.4 ± 2.5 

Inclination 7° 

1. C 3.9 ± 0.3 0.4 ± 0.1 3.6 ± 0.3 20.7 ± 0.7 10.2 ± 0.6 17.8 ± 1.2 47.3 ± 2.9 

2. PG-5 3.9 ± 0.2 1.1 ± 0.3 7.3 ± 0.3 20.6 ± 1.2 10.8 ± 0.6 15.2 ± 1.2 45.1 ± 3.1 

3. PG-10 4.0 ± 0.2 0.4 ± 0.1 8.5 ± 0.3 17.9 ± 0.8 12.7 ± 0.8 16.0 ± 1.2 44.8 ± 3.1 

4. PG-20 4.0 ± 0.2 0.3 ± 0.1 6.0 ± 0.2 18.4 ± 0.7 11.8 ± 0.8 12.8 ± 0.9 46.8 ± 3.0 

5. PG+TL-40 (1:10) 4.2 ± 0.1 0.2 ± 0.1 4.3 ± 0.2 20.9 ± 0.8 11.5 ± 0.7 15.6 ± 1.0 47.4 ± 2.7 

6. PG+TL-60 (1:10) 4.2 ± 0.3 0.2 ± 0.1 5.1 ± 0.3 20.8 ± 0.8 10.6 ± 0.4 16.7 ± 1.0 46.7 ± 2.8 

7. PG+TL-40 (1:5) 4.0 ± 0.2 0.4 ± 0.2 7.1 ± 0.5 20.2 ± 0.8 11.1 ± 0.5 16.5 ± 0.8 46.7 ± 3.0 

8. PG+TL-60 (1:5) 4.0 ± 0.1 0.3 ± 0.1 4.8 ± 0.4 20.4 ± 0.8 10.0 ± 0.5 17.6 ± 0.8 46.9 ± 3.3 

9. PG+TL-40 (1:2) 4.1 ± 0.2 0.8 ± 0.1 7.9 ± 0.5 19.0 ± 0.7 13.5 ± 0.9 14.7 ± 0.8 44.2 ± 2.9 

10. PG+TL-60 (1:2) 4.1 ± 0.4 0.7 ± 0.1 7.9 ± 0.7 20.7 ± 0.7 9.8 ± 0.8 17.9 ± 0.9 44.2 ± 3.1 

11. TL-40 4.1 ± 0.2 0.2 ± 0.1 7.3 ± 0.5 19.9 ± 0.6 10.5 ± 0.7 16.5 ± 0.8 45.7 ± 3.1 

12. TL-60 4.1 ± 0.3 0.9 ± 0.1 5.2 ± 0.5 20.3 ± 0.7 11.3 ± 0.6 17.1 ± 0.8 47.1 ± 3.2 
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Results and Discussion 

Arable agrochernozems have an average TOC content 

of ~3.6%, weak-acid pH, and 50‒60 cmol (eq) kg-1 absorbed 

bases of which calcium predominates. Nutrient availability 

is generally high. These soils have an optimal density range 

of 1.1‒1.2 kg m-3 and a silty-clay-loam texture (Komissarov 

and Gabbasova, 2017) (Table 1). 

The most important indicators of the resistance of soils 

to water erosion are the onset time of runoff and total soil 

loss. Figure 2 shows that surface runoff first occurred in the 

control at all slopes. At 3° and 7°, runoff started ~1 min and 

~2 min earlier than it did at 1°. The introduction of 

ameliorants delayed the onset of runoff by 65–186% at 1°, 

33–98% at 3°, and 5–67% at 7°. Therefore, the onset time of 

runoff decreased with increasing slope. Higher anti-erosion 

resistance at all slopes was determined for the variants 

PG+TL-40 (1:2) and (1:5), and PG+TL-60 (1:5) and (1:10). 

Turbidity depends on the number of suspended particles 

in the soil and can be used to elucidate the dynamics of 

rainfall erosion. Maximum stream turbidity was observed 

from the onset of runoff for 3 min on all 1° slope variants. 

When the runoff started, the finest and loosest soil particles 

were detached and washed out first. Other researchers 

reported similar results for tray-based soil erosion 

experiments in which the first wave of the runoff was the 

most turbid (Grigor'ev et al., 2008; Larionov et al., 2016). 

Runoff turbidity then gradually decreased over the next 

5‒30 min (Table 2). For the 3° and 7° slope variants, the 

maximum water flow turbidity was measured at 3‒5 min 

after the onset of runoff. At that time, the effect of the 

arrival of slope runoff is observed and it gradually decreases 

thereafter. 

The turbidity of the runoff was 2‒4.5× greater at a 3° 

slope than it was at 1° and the values remained nearly 

constant throughout the irrigation period. The turbidity 

dynamics gradually assumed a deformed bell distribution 

with increasing steepness up to 7°. The average turbidity 

during irrigation on all variants at 7° slope was 9× and ~2× 

greater than it was at 1° and 3°, respectively. The 

introduction of PG and TL into the soil at 3° and 7° slope 

decreased the level of stream turbidity, but it was nearly 

identical to that of the control. Thus, these amendments had 

only weak influences on the turbidity. In summary, the 

turbidity of the runoff from agrochernozem subjected to 

simulated heavy rain tended to increase with slope. 

The soil loss was 2.3 t ha-1 for the control at a slope of 

1° (Figure 3). When the slope was increased to 3°, the soil 

loss increased by 4× and at 7° it had increased by 10×. The 

introduction of ameliorants reduced the sediment mass by 

5–25% for all slopes. The lowest sediment mass during 

irrigation at 1° slope was measured for PG+TL-60 (1:5) and 

PG+TL-40 (1:2). However, the value for the latter variant 

was only slightly higher than that of the former. Very fine 

and medium silt particles (0.005–0.001 mm and 0.05–0.01 

mm, respectively) were washed out in these variants and the 

TOC in their sediments was ~10% higher than that which 

was washed out of the control. The lowest soil losses at 3° 

and 7° slope were measured for PG+TL-60 (1:2) and 

PG+TL-40 (1:2). The mud fraction comprised the smallest 

proportion of the sediments in these variants. 

 

 
Figure 2: Time of appearance of surface runoff depending on angle of inclination and doses of FG and TL 
Note: 1. C; 2. PG-5; 3. PG-10; 4. PG-20; 5. PG+TL-40 (1:10); 6. PG+TL-60 (1:10); 7. PG+TL-40 (1:5); 8. PG+TL-60 (1:5); 9. PG+TL-

40 (1:2); 10. PG+TL-60 (1:2); 11. TL-40; 12. TL-60
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At 3° and 7°, most of the particles washed out 

containing of very fine sand fractions. The TOC in the 

sediments washed out at 3° was lower than that in the 

sediments washed out at 1° because the flow rate and the 

movement of the humus- and nutrient-poor sand fraction 

increased with slope. Therefore, the lowest TOC was 

observed in sediments from the 7° slope variants. 

Relative to the control, in the sediments from all PG 

variants, the proportions of very fine silt and very fine sand 

decreased and increased, respectively, because of 

flocculation induced by PG. Compared with the control, the 

sand, silt, and clay content did not significantly change in 

the washed-out material fertilized with TL. Even in 

sediments, however, a slight increase in clay content is 

Table 2. Changes in turbidity (g L-1) of runoff during heavy rains at different slopes 

Variant Slope, ° Turbidity of runoff 

Runoff 

start 

3 min from 

runoff onset 

5 min 8 min 15 min 30 min Average 

1. C 1 3.8 ± 0.5 2.7 ± 0.4 2.7 ± 0.3 1.3 ± 0.1 1.6 ± 0.2 1.1 ± 0.1 2.2 

3 4.8 ± 0.4 11.7 ± 0.5 7.8 ± 0.6 7.0 ± 0.4 11.2 ± 0.8 10.5 ± 1.2 8.8 

7 3.8 ± 0.2 30.8 ± 0.8 23.0 ± 1.3 21.1 ± 1.4 11.6 ± 0.7 8.8 ± 0.7 16.5 

2. PG-5 1 2.1 ± 0.2 1.3 ± 0.1 1.0 ± 0.1 0.9 ± 0.2 0.8 ± 0.2 0.7 ± 0.2 1.1 

3 4.4 ± 0.3 9.1 ± 0.6 8.5 ± 0.4 8.3 ± 0.4 9.0 ± 0.5 7.7 ± 0.9 7.9 

7 1.5 ± 0.1 26.4 ± 1.0 21.9 ± 1.4 14.2 ± 1.0 7.6 ± 0.6 9.2 ± 1.0 13.5 

3. PG-10 1 1.5 ± 0.1 1.4 ± 0.2 1.2 ± 0.1 1.1 ± 0.2 1.0 ± 0.2 1.1 ± 0.3 1.2 

3 3.5 ± 0.2 6.9 ± 0.5 8.2 ± 0.3 7.9 ± 0.5 6.9 ± 0.3 6.9 ± 0.8 6.7 

7 1.7 ± 0.2 17.8 ± 0.7 18.5 ± 1.0 13.8 ± 0.7 7.0 ± 0.6 5.5 ± 0.7 10.7 

4. PG-20 1 1.4 ± 0.1 1.5 ± 0.3 1.2 ± 0.2 1.0 ± 0.1 0.8 ± 0.1 0.8 ± 0.2 1.1 

3 2.8 ± 0.2 4.6 ± 0.5 6.5 ± 0.5 6.8 ± 0.4 5.1 ± 0.4 6.4 ± 0.6 5.4 

7 1.9 ± 0.2 12.4 ± 0.8 19.5 ± 0.8 11.9 ± 0.8 6.7 ± 0.7 6.5 ± 0.8 9.8 

5. PG+TL-

40 (1:10) 

1 1.5 ± 0.1 1.4 ± 0.2 1.2 ± 0.2 1.0 ± 0.2 0.9 ± 0.2 0.9 ± 0.2 1.2 

3 2.8 ± 0.3 7.4 ± 0.6 7.7 ± 0.6 8.4 ± 0.5 8.6 ± 0.5 7.2 ± 1.0 7.0 

7 3.0 ± 0.4 14.0 ± 0.8 14.1 ± 0.9 10.4 ± 0.6 18.4 ± 1.1 5.6 ± 0.8 10.9 

6. PG+TL-

60 (1:10) 

1 1.5 ± 0.2 1.1 ± 0.2 0.6 ± 0.1 0.7 ± 0.1 1.0 ± 0.1 1.7 ± 0.3 1.1 

3 2.6 ± 0.1 7.7 ± 0.6 8.1 ± 0.5 7.9 ± 0.9 7.5 ± 0.5 7.0 ± 0.5 6.8 

7 1.4 ± 0.1 15.9 ± 0.6 15.3 ± 1.0 8.5 ± 0.9 13.2 ± 0.9 8.6 ± 0.8 10.5 

7. PG+TL-

40 (1:5) 

1 1.7 ± 0.2 1.4 ± 0.2 1.3 ± 0.3 1.0 ± 0.2 0.9 ± 0.1 0.7 ± 0.2 1.2 

3 2.7 ± 0.2 7.8 ± 0.8 8.2 ± 0.4 8.0 ± 0.5 7.9 ± 0.9 9.8 ± 0.7 7.4 

7 1.6 ± 0.1 13.5 ± 0.9 16.4 ± 0.9 9.5 ± 0.8 9.3 ± 1.0 11.4 ± 1.3 10.3 

8. PG+TL-

60 (1:5) 

1 2.0 ± 0.1 1.0 ± 0.1 0.9 ± 0.1 1.7 ± 0.1 1.4 ± 0.2 1.2 ± 0.2 1.4 

3 5.4 ± 0.3 10.9 ± 0.3 8.8 ± 0.5 6.1 ± 0.8 11.2 ± 0.5 7.9 ± 0.6 8.4 

7 1.3 ± 0.1 12.7 ± 0.7 18.6 ± 0.9 13.5 ± 1.0 4.7 ± 0.6 4.8 ± 0.5 9.3 

9. PG+TL-

40 (1:2) 

1 1.2 ± 0.2 0.9 ± 0.2 0.9 ± 0.2 1.0 ± 0.3 0.8 ± 0.2 0.8 ± 0.2 0.9 

3 3.5 ± 0.2 4.6 ± 0.3 7.5 ± 0.7 5.9 ± 0.8 6.2 ± 0.5 5.3 ± 0.3 5.5 

7 1.3 ± 0.1 11.6 ± 0.6 13.0 ± 0.8 8.5 ± 1.0 7.2 ± 0.7 6.2 ± 0.7 8.0 

10. 

PG+TL-60 

(1:2) 

1 2.0 ± 0.1 1.6 ± 0.1 1.4 ± 0.1 1.0 ± 0.1 1.2 ± 0.2 1.0 ± 0.1 1.4 

3 1.7 ± 0.1 7.1 ± 0.5 8.1 ± 0.5 9.8 ± 0.6 7.1 ± 0.7 10.0 ± 0.7 7.3 

7 1.6 ± 0.1 11.8 ± 1.0 12.9 ± 0.8 8.3 ± 0.6 8.4 ± 0.9 5.6 ± 0.7 8.1 

11. TL-40 1 1.6 ± 0.1 0.6 ± 0.1 0.9 ± 0.1 1.0 ± 0.2 1.0 ± 0.1 0.7 ± 0.2 1.0 

3 3.0 ± 0.3 7.2 ± 0.4 7.8 ± 0.9 9.2 ± 0.8 8.1 ± 0.6 8.1 ± 0.9 7.2 

7 3.6 ± 0.2 10.3 ± 0.6 20.0 ± 1.3 13.9 ± 1.1 9.8 ± 1.0 4.6 ± 0.6 10.4 

12. TL-60 1 1.5 ± 0.1 1.5 ± 0.1 0.9 ± 0.2 0.8 ± 0.1 0.9 ± 0.2 0.8 ± 0.2 1.1 

3 2.0 ± 0.2 7.2 ± 0.5 8.1 ± 0.9 9.8 ± 0.7 7.9 ± 0.7 7.6 ± 0.6 7.1 

7 1.6 ± 0.1 21.6 ± 1.2 22.1 ± 1.4 21.6 ± 1.2 8.9 ± 0.9 8.0 ± 0.5 14.0 
Note: for all variants, the differences between treatments and slopes in terms of turbidity at the beginning of runoff were insignificant. 

Three- to five minutes after the onset of runoff, the turbidity increased depending on the degree of the slope. It was significantly higher 

(p˂ 0.01) on 7° (p˂ 0.01) than on 3° and significantly higher on 3° (p˂ 0.01) than on 1°. From 8 min onward, the relative differences in 

turbidity between the 3° and 7° slopes smoothed out and remained significantly higher than that for the 1° slope. 
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accompanied by a slight increase in organic matter. Erosion 

usually washes out the humus-rich silt and clay fractions 

(Sato and Kuwano, 2018; Nyawade et al., 2018). 

As stated in the Materials and Methods, we performed a 

three-year field study on the impact of PG and TL on 

agrochernozem properties and crop yields. This trial was 

conducted on the same slope as that where the monoliths 

were taken and used the same amendment variants as 

before. Previously, potatoes had been grown on the 

experimental plots. The addition of PG and TL increased 

yield by 14–120%. The highest gains were determined for 

the TL variants at 40 and 60 t ha−1. The amendments also 

affected the hydrological and agrochemical properties of the 

soil in the arable (0–20 cm) layer. Relative to the control, 

the structure of the amended soil improved. The number of 

agronomically valuable and water-resistant aggregates 

increased. Bulk density decreased while air porosity and soil 

moisture content increased. The water level rose from 150 

mm to 170 mm. The TOC content increased from 3.6% to 

4.2%, and the nitrogen, phosphorus, and potassium levels 

also increased. The pH rose from weakly acidic to neutral. 

Therefore, the introduction of PG and TL into moderately 

eroded agrochernozem in the Southern Cis-Ural increased 

crop yield, improved soil properties, and reduced water 

erosion. 

Conclusion 

When an untreated agrochernozem was subjected to a 

simulated rain intensity of 360–420 mm h−1 (heavy rain), 

maximum soil loss was observed at the 7° slope. It was 10× 

and 2.5× higher than those at 1° and 3°, respectively. 

Introduction of PG and TL separately or in combination 

significantly increased soil resistance to water erosion. All 

amendments reduced soil loss, but the lowest sediment 

weights were determined for the PG:TL variants. This effect 

increased with ratio (1:10, 1:5, 1:2) when a higher 

ameliorant dose (60 t ha−1) was used. Regardless of 

steepness, the silt and clay fractions predominated in the 

sediment and their TOC content was somewhat higher than 

that of the soil before irrigation. Increasing the doses of PG 

at 1° slope did not significantly affect runoff intensity. 

Increasing the steepness to 3° incrementally raised erosion 

resistance. At 7°, however, runoff resistance decreased with 

PG dose. PG and TL could be effective agricultural soil 

amendments which could reduce the risk of water erosion 

and increase crop productivity. 
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