
 

 

 

INTRODUCTION 

 

Climate plays an important role in the agriculture production 

system as an abiotic factor. The vulnerability in climatic 

conditions increase in the duration, frequency, and intensity 

of temperature (Abid et al., 2016; Abbas et al., 2017). The 

projections show high risk to agriculture in warmer 

environmental conditions; while, the temperate region may 

take benefits from this climate change (Fahad and Wang, 

2018). In the agriculture sector, the crop yield varies 

annually due to the dependence of the agriculture system to 

climate. The climatic projection based on previous data 

shows that the crop production increase in northern areas 

and decreases in southern region (Ongoma and Chen, 2017). 

The increasing CO2 concentration in the atmosphere due to 

anthropogenic activities on the earth plays an important role 

in global warming that affects crop production and global 

food supply in all over the world (Nasim et al., 2016). The 

increasing atmospheric temperature affects significantly 

achene filling duration and achene weight due to early 

maturity in sunflower (Li et al., 2014). The quantity and 

quality of sunflower oil are affected by variability in 

temperature and moisture (Kaleem and Ahmad, 2011). The 

plant phenology and yield significantly affected by this 

changing climate. The different management and adaptation 

strategies reduce the impact of climate change on crops 

(Ahmad et al., 2020). 

Sunflower is an oilseed crop widely cultivated under varied 

climatic conditions in the world (Canavar et al., 2010). Its 

higher adaption capacity provides better growth and yield as 

compared to other non-conventional oilseed crops. It is 

mainly cultivated for human food and livestock feed as oil 

and seed cake respectively (Agele, 2003). Its oil production 

ranks in 4th position at world level (Govt. of Pakistan, 2017; 

Amin et al., 2017; Nasim et al., 2018). Its growth may 

significantly be affected by different management factors 

like irrigation, plant time, fertilizer rate, plant population 

(Awais et al., 2015). The phenological period and 

development might be affected due to global warming. The 

climate change reduces the phenological period of various 

species (Jing et al., 2016; Nasim et al., 2017). The increase 

in observed temperature has accelerated phenological stages 

in which reduced the length of growing season of crop (Abid 

et al., 2016). 
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Sunflower is one of the most cultivated oil seed crop in the world. Hence, the adaptation strategies for sunflower production 

and food security are crucial for mitigating the negative impacts of climate change. The experiments were conducted for two 

years to assess the climate change impacts and developing suitable adaptation strategies for sunflower in the arid 

environment. The CROPGRO and APSIM-Sunflower models were calibrated and evaluated with an observed experimental 

data among the best sowing dates at1st January with nitrogen @ 240 kg ha-1. Where root mean square error (RMSE) between 

observed and simulated achene yield was 121.16 and 167.91 respectively. The future climate projections under the 

Representative Concentration Pathway (RCP)-8.5 for years 2040-2069 were obtained from the Global Climate Model 

(GCMs). The increase in maximum and minimum temperature by 3.5oC and 4oC with 30% less precipitation was observed 

under hotdry climate conditions. The simulations with these projected temperatures decreased achene yield 6 to 24% with the 

CROPGRO model and 8 to 28% with the APSIM-sunflower model with current agricultural practices in mid-century (2040-

2069). The models simulate more achene yield 20% by CROPGRO and 18% by APSIM-Sunflower with the adaptations 

measured on current agricultural practices to mitigate the impact of climate change. For all GCMs, 11-20% achene yield 

would be increased with these adaptation measures in mid-century. Therefore, the improved crop genetic (phenology) and 

agronomic practices for sunflower as an adaptation strategy could mitigate the impacts of climate change. 
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Pakistan is one of the most vulnerable countries to climate 

change due to the semi-arid and arid climate, so projection 

shows temperature increase sharply in Pakistan as compare 

to other countries (Ahmad et al., 2017a, b). The average 

temperature will increase from 1.4 to 5.8°C till 2099 (IPCC, 

2014). The historic studies of data from 1961 to 1990 

showed that the rate of precipitation increase +3.0 to +4.5% 

and temperature enhanced 0.3 to 0.6o C which shows that the 

increasing concentration of temperature, timing, frequency 

and intensity of precipitation which are a key factor of 

climate change (Challinor et al., 2009; IPCC, 2014). The 

climate variability significantly affects the crop yield (Fraga 

et al., 2016). Hence, the changes in phenology and a plant's 

adaptive responses over time indicate the impact of climate 

change (Wang et al., 2017). 

Crop models are used to assess the effect of agronomic 

practices and interaction with the environment. These 

models are the most powerful tool for assessing the impact 

of spatial and climatic variability studies to reach 

conclusions (Jalota et al., 2006). The CROPGRO and 

APSIM-sunflower model used the Representative 

Concentration Pathway (RCP) scenarios to assess the 

climate change impacts (Sun et al., 2016; Jin et al., 2017). 

The latest attention of crop modeling is the combined 

assessment of climate change risks by Global Circulation 

Models (GCMs) to simulate future climate data (Amin et al., 

2017, Amin et al., 2018). The statistical downscaling of 

GCMs is used to assess the climatic risk for decision making 

at a regional scale (Bentsen et al., 2013). The impacts of 

climate change are assessed by multiple GCMs and crop 

growth models used to assess because the response of 

climate and crop models varies widely (Corbeels et al., 

2018; Fronzek et al., 2018). The different reports have 

showed that the different crop models and climatic scenarios 

were used to evaluate the climate change impacts on 

sunflower (Perez et al., 2014; Wang et al., 2017). 

However, in this study we assessed the climate change 

impacts with and without adaptation on sunflower in mid-

century (2040-2069). This experiment aimed to develop 

effective adaptation measures to mitigate the negative 

climatic impacts on sunflower. The novelty of this study can 

assist policymakers in the decision making process for 

sunflower production in arid environment of Punjab-

Pakistan. Hence, the objectives achieved were (1) to assess 

the climate change impacts on sunflower achene yield under 

RCPs 8.5 in mid-century (2) development of adaptation 

measures in the future to mitigate the negative impacts of 

climate change on sunflower achene yield. 

 

MATERIALS AND METHODS 

 

Experimental Site: The field experiments were conducted 

during 2018 and 2019 consecutively at COMSATS 

University Vehari Campus, Pakistan (North 30o 03" East 72o 

31" 136 m alt.). Each year before the sowing of the crop, the 

composite soil sample to the depth of 30 cm were obtained 

from the experimental sites with a soil auger. The samples 

were analyzed for their further physio-chemical properties 

(Table 1). The climatic condition was arid having annual 

rainfall less than 125 mm. The meteorological data were 

gathered from the nearest Meteorological Observatory in 

Vehari are presented in Fig. 1. 

Table 1. Soil physical, hydraulic and chemical properties 

of the experimental site. 

Soil properties 2018 2019 

Soil type Sandy Loam  

Sand (%) 60.10 60.10 

Silt (%) 26.10 26.00 

Clay (%) 13.80 13.90 

Saturation (%) 37.08 38.54 

Field Capacity (%) 18.54 19.27 

OM (%) 1.15 1.17 

Soil pH 8.10 8.20 

EC (d Sm-1) 2.91 2.99 

Nitrogen (%) 0.052 0.054 

Available Phosphorus (mg kg-1) 7.58 7.61 

Available Potassium (mg kg-1) 163.74 167.29 

 

 
Figure 1. Monthly meteorological data of the experi-

mental site 

 

Models calibration, Evaluation, and Statistics: The 

experiment comprised of four sowing dates (1stJanuary, 16th 

January, 31st January, and 15th February) and three nitrogen 

levels (160 kg ha-1, 200 kg ha-1, 240 kg ha-1). The crop sown 

on 1st January at 240 kg ha-1 was used to calibrate the 

simulation models due to the best comparative growth. After 

the simulation, the combination of newly developed genetic 

coefficients for phonology, growth, and yield were evaluated 

by different statistical indices as described by Hunt and 

Boote (1998). 

After calibration, the CROPGRO model and APSIM-

Sunflower model were evaluated with other treatments in 

2018 and 2019 at both locations. The different statistical 

indices were used to assess the accuracy and reliability of 

these models. The root mean square error (RMSE) and mean 
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percent difference (MPD) as described by Loague and Green 

(1991) were commonly used to calculate the deviation 

during calibration and evaluation of the model. It was used 

to compare the variable having the same units. The 

normalized root mean square error as described by Willmott 

(1981) used to calculate the deviation between observed and 

simulated data. Many researchers recommended this 

equation to compare the observed and simulated data 

(Moriasi et al., 2007). The index of agreement (d) (Willmott 

et al., 1985) was used to measure the performance of 

models. If the value of “d” closer to 1, it means the model's 

results are reliable. In all the equations, the “n” shows 

number of variables, Pi and Oi is the simulated and 

measured observation. 

R M S E = [∑ ( P i − O i ) 2
 n

 i = 1
/ n ]

0 .5
          (1) 

N R M S E = [
R M S E

O i m a x  − O i m i n
]                         (2) 

MPD = [∑ {
|Oi−Pi|

Oi
}  ×  100 

n

i = 1
]

0 .5

/ n         (3) 

Error (%) = (
(P − O)

O
)  × 100                          (4) 

d = 1 − [
∑ (Pi− Oi)2n

i=1

∑ (|Pi|+| Oi|)2n
i=1

]                                  (5) 

Climate change projection and adaptation: The climate 

change impacts on sunflower growth and yield were 

assessed by using CROPGRO and APSIM-Sunflower 

model. The baseline period consisted of 30-year weather 

data and 360 ppm CO2in the atmosphere. The observed 

meteorological data was available for Vehari for a baseline 

period from (1980-2010). 

The climate scenarios for the study sites generated by 

selecting the suitable GCMs from the CMIP5 under RCP 8.5 

were calculated for future climate (2040-2069) to the current 

climate (1980-2010) and 936 ppm CO2 concentration was 

used (Taylor et al., 2012). The uncertainty in projected 

temperature and rainfall based climate characteristics such as 

hot/wet, hot/dry cool/wet, cool/dry and middle were 

presented by using five selected GCMs (Table 2). The 

change in monthly mean temperature and rainfall were 

calculated and compared with the 30-year future with 

baseline climate to generate mean and variable scenarios. 

Table 2. Selected GCMs for mid-century under RCP8.5 

for Vehari-Punjab-Pakistan. 
Sr. Climatic 

characteristic 

GCMs References 

1 Hot/wet IPSL-CM5A-MR Wen et al., 2016 

2 Hot/dry CMCC-CM Perez et al., 2014 

3 Cool/wet CESM1-BGC Jinet al., 2017 

4 Cool/dry inmcm4 Volodin et al., 2010 

5 Middle NorESM1-M Bentsen et al., 2013 

 

The monthly change and standard deviation data of baseline 

were also compared with future climate. The stretch 

distribution approach was used to applying the calculated 

monthly changes to baseline (Ruane et al., 2015). While the 

solar radiations, wind speed were considered to remain the 

same. Finally, the climate scenarios were generated from the 

experimental sites for the mid-century under RCPs 8.5 by 

using selected GCMs. The different management measures 

and virtual genotype were developed by altering the genetic 

coefficients as adaptive measures which could possibly 

counterpoise the impacts of climate change (Table 3). The 

detail methodological framework for the calibration, 

evaluation, climate change impact and adaptation for 

sunflower are shown in Figure 2. 

Table 3. The adaptation package used for climate change 

impact assessment on sunflower. 

Adaptations Specific Practices Increase 

Agronomic 

adaptation 

Soil fertility 10 % 

Early Sowing  15 days 

Plant Population m-2 10 % 

Organic matter  10 % 

Virtual Genetics 

(Cultivar) 

Achene Weight  10 % 

Heat/Temperature Tolerance 2oC 

Radiation Use Efficiency  10 % 

CO2 Response Curve  15 % 

 
Figure 2. Methodological framework for climate change 

impact and development of adaptation for 

sunflower.  

 

RESULTS AND DISCUSSION 

 

Model Calibration and Evaluation: The CROPGRO and 

APSIM-Sunflower models were calibrated and evaluated 

with an observed experimental data among the best sowing 

dates @ 1st January with N @ 240 kg ha-1. The data 
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presented in Figure 3 show the difference between the 

calibration and evaluation between the simulated and days to 

anthesis and maturity. In calibration, the CROPGRO model 

predicted the same days to anthesis (70) and maturity (108); 

while, the APSIM-Sunflower model predicts fewer days to 

anthesis (69) and maturity (106). The models evaluated 

results showed the accuracy of the calibration. It was noted 

that the CROPGRO model observed RMSE 0.705, 0.50 for 

days to anthesis and 1.155, 1.041 for maturity. While the 

RMSE observed by APSIM-Sunflower model for days to 

anthesis was 0.645, 0.764 and for maturity was 1.041, 1.354 

during year 2018 and 2019. 

Similar results were observed previously (Sun et al., 2016; 

Tung et al., 2018; Urban et al., 2018) who found a good 

accuracy in simulations. The difference between simulated 

and observed value by CROPGRO model and APSIM-

Sunflower model was due to change in weather parameters, 

growing season, planting dates, simulation function of crop 

model and time to time variation (atmospheric temperature 

and crop temperature). The performance of the model to 

quantify the effect of the factors affected due to these large 

uncertainties (Asseng et al., 2015; Wang et al., 2017). Two 

days difference was observed between simulated and 

observed days to anthesis and maturity (Nasim et al., 2016; 

Nasim et al., 2017). The different climatic conditions and 

growing seasons showed different results at different sowing 

dates but overall results showed similar trends (Maiorano et 

al., 2017; Fronzek et al., 2018). These models simulate 

under or over results compared to observe value might be 

due to the sensitivity to field management practices or 

environmental conditions (Jalota et al., 2006; Amin et al., 

2018). 

The results showed that the models over simulated the LAI 

(Fig. 4). The CROPGRO model simulates 1.58 % and 

APSIM-Sunflower simulate 2.48 % more LAI during the 

calibration. The evaluation of models for LAI was also good. 

The observed RMSE between observed and simulated LAI 

were (0.196 and 0.142) and d-value (0.91 and 0.95) by 

CROPGROW model and (0.258 and 0.1666) and d-value 

(0.87 and 0.94) by APSIM-Sunflower model. The minimum 

RMSE showed that models well-calibrated (Sun et al., 

2016). Nasim et al. (2016) also reported that the models 

have good RMSE in simulating LAI. The estimation of LAI 

by multi-model is a good approach rather than single for 

 
Figure 3. Performance of CROPGRO Model (A) and APSIM-Sunflower Model (B) for days to anthesis and 

CROPGRO Model (C) and APSIM-Sunflower Model (D) for days to maturity during both years (2018 

and 2019). 
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better results (Tung et al., 2018). The good agreement 

between simulated and observed value showed that the 

CROPGRO and APSIM-Sunflower are helpful devices to 

assess the impact of climate change (Singh et al., 2016; 

Zeng et al., 2016; Malik et al., 2018). The Battisti et al. 

(2017) reported R2 > 0.60 and d > 0.82 for soybean by using 

CROPGRO and APSIM-Sunflower model. 

Similarly, the models calibrate well the achene yield and 

biological yield (Fig. 5). The results showed that the 

CROPGRO model simulates 3.35% more achene yield and 

5.31% biological yield. While, the APSIM-Sunflower model 

simulates the 4.55% more achene yield and 7.33 % 

 
Figure 4. Performance of CROPGRO Model (A) and APSIM-Sunflower Model (B) for leaf area index (LAI) 

during both years (2018 and 2019). 

 
Figure 5. Performance of CROPGRO Model (A) and APSIM-Sunflower Model (B) for achene yield (kg/ha) and 

CROPGRO Model (C) and APSIM-Sunflower Model (D) for biological yield during both years (2018 and 

2019) 
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biological yield. The model evaluation results show the 

accuracy of the calibrated model. The high RMSE and 

NRMSE were observed in 2018 compared to 2019. The 

coefficient of determination (R2) between observed and 

simulated achene yield by the CROPGRO model and 

APSIM-Sunflower model were (0.99 and 0.97) and (0.97 

and 0.94) respectively. The results showed that the 

CROPGRO model performed better compared to the 

APSIM-Sunflower model. The CROPGRO model and 

APSIM-Sunflower model can predict the biological yield 

and achene yield (Bao et al., 2015; Jing et al., 2016). The 

minimum gap between observed yield and simulated yield 

showed the accuracy of models (Abid et al., 2016). The 

RMSE of estimated crop yield was 548 by the CROPGRO 

model and 550 by the AMSIP model and the performance of 

these models were assessed by the low value of RMSE 

(Battisti et al., 2017). Bao et al. (2015) found a similar trend 

to simulate the biological yield and the highly accurate 

simulation for yield was also found. Amin et al. (2018) 

reported that the CROPGRO model was used at a regional 

scale for climate change impact assessment. 

Future Climate Projections: The change in climate 

projections under RCP8.5 for sunflower is given in Table 4. 

The results showed that the positive increase in the 

maximum and minimum temperature and the strong 

fluctuation in precipitation were observed in the selected 

region as a global trend. Under hot drying conditions, the 

highest maximum and minimum change temperatures were 

recorded (3.5 and 4oC). Although the minimum change in 

the maximum and minimum temperature (1.9 and 2.9oC) 

was recorded under the Middle conditions of RCP8.5. The 

results showed that the maximum reduction in precipitation 

(150 mm) was observed in the cool wet and increased (160 

mm) in hot wet conditions in RCP8.5. The increasing 

concentration of CO2 is one of the main reason for the 

increasing temperature in the future. Ahmad et al. (2020) 

showed a similar trend for Faisalabad from 1951 to 2000, up 

to 1oC increase in the annual mean temperature was 

observed (Perez et al., 2014; Ongoma and Chen, 2017). A 

non-significant change in rainfall and the maximum 

projected increase in temperature was 4.8oC reported 

previously (Iqbal and Zahid, 2014). More rainfall in hot wet 

conditions might be due to the warmer air temperature 

carrying more moisture (Ruane et al., 2015). 

Effect of Climate Change and Adaptation: The impact of 

the evolution of climatic scenarios on sunflower productivity 

is illustrated in Figure 6. The simulated achene yield by 

models with baseline (1980-2010) compared to the future 

climate change scenarios for mid-century (2040-2069) under 

RCP8.5 showed different trends. All GCMs have shown a 

reduction in achene yield. The results of the CROPGRO 

model and APSIM-Sunflower model showed that the 

maximum reduction was observed in achene yield were 

(24% and 28%) under hot drying conditions (Table 5). The 

cool wet climate scenarios showed the maximum reduction 

(16% and 17%) in cool climatic conditions. a similar trend 

was shown by other GCMs. While, the GCM Middle shows 

a minimal reduction in (6% and 8%) compared to baseline, 

respectively. While, virtual cultivar and agronomic 

adaptation increased achene yield up to 20% compared to 

current cultivation practices (Fig. 6). The results showed that 

the CROPGRO model and APSIM-Sunflower model 

increased (20 and 18%) achene yield with GCM Middle and 

the minimum increase (12 and 11%) were observed in cool 

dry climate. 

Table 5. Yield change with adaptation compared to 

without adaptations in mid-century (2040-2069). 

Model Global Climate 

Models (GCMs) 

Crop Yield 

without 

adaptations 

Crop Yield 

with 

adaptations 

CROPGRO Middle 0.94 1.20 

Hot wet 0.79 1.13 

Hot dry 0.76 1.14 

Cool wet 0.84 1.13 

Cool dry 0.88 1.12 

APSIM-

Sunflower 

Middle 0.92 1.18 

Hot wet 0.77 1.11 

Hot dry 0.72 1.12 

Cool wet 0.83 1.12 

Cool dry 0.86 1.11 

 

Table 4. Change in annual mean in climate projections for mid-century (2040-2069)under RCP8.5. 

Scenarios Hotwet Hot dry Cool wet Cool dry Middle 

Change in Maximum Temperature 2.9 3.5 2.9 2.7 1.9 

Change in Minimum Temperature 3.9 4.0 2.9 2.7 2.9 

Change in Precipitation 1.6 -0.3 -0.5 -0.3 0.6 
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Figure 6. Climate change impact on achene yield at 

Vehari during Mid-Century 2040-2069. 

Pakistan is one of the most vulnerable country to climate 

variability. Climate variability is a potential threat to crop 

yield (Malik et al., 2012; Fahad and Wang, 2018). The Crop 

growth, development, and yield especially the reproductive 

stage are fragile to temperature (Fang et al., 2015; Dreccer et 

al., 2018). A 2oC degree increase in temperature decrease 5 

days of maturity. The phonological period decreases when 

the temperature exceeds 25oC and achene yield decreases 

when the temperature increases from 30oC (Schlenker and 

Robert, 2006). The plant phonological period decreased by 

increasing maximum and minimum temperature which plays 

an important role in crop yield (Nahar et al., 2015). The crop 

yield significantly reduces due to increasing atmospheric 

temperature. The early maturity of the crop reduces 

biological yield and less achene filling duration due to 

increasing temperature reduces the yield worldwide (Awais 

et al., 2015). The decreased water availability and increased 

atmospheric temperature decrease the crop phenological 

period (Sun et al., 2016). The reduction in achene yield due 

to less achene fill period and weight in high atmospheric 

temperature is the main reason for less achene yield (Fraga 

et al., 2016; Schauberger et al., 2017). 

Climate vulnerability can potentially be managed by proper 

adaptation measures (Wu et al., 2016). The early planting 

dates may provide longer phonological period which may be 

helpful to reduce the losses in yield due to short crop 

phonological cycle (Shimono, 2011; Shrestha et al., 

2016).The soil organic matter and soil fertility help plant 

growth by improving water holding capacity and providing 

nutrients (Jalota et al., 2006). The increasing plant 

population m-2 efficiently use nutrients from the soil and 

reduced the gap between observed and simulated yield 

(Awais et al., 2015). The increasing CO2 concentration 

increased the rate of photosynthesis in crops (Bishop et al., 

2018). The improved radiation use efficiency in the plant 

help in growth and yield (Jin et al., 2017). The reports 

showed that the development of heat-tolerant genotypes 

increased 24 % yield in the future (Chebrolu et al., 2016; 

Mondal et al., 2016; Ni et al., 2018). 

 

Conclusions: The climatic projections showed that in hot 

dry GCM the increase in maximum and minimum 

temperature by 3.5oC and 4oC, respectively. While, the 

precipitation 30% for the hot dry GCM. The APSIM-

Sunflower model simulates a more reduction in yield 

compared to the CROPGRO model. The maximum 

reduction in sunflower achene yield simulated by 

CROPGRO model 24% and APSIM-Sunflower model 28% 

in mid-century with current agricultural practices. While, the 

adaptive strategies were developed for mitigating the future 

climate change indicated that the CROPGRO model 

simulated 12 to 20% and APSIM-Sunflower model 

simulates (11 to 18%) more achene yield compared to 

current agricultural practices for all GCMs. Current 

agricultural practices negatively affect crop yield and the 

improved agronomic and technological development used as 

adaptive measures can mitigate the negative impact of 

climate change. 
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