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ABSTRACT 

Image denoising is a fundamental problem in both image processing and computer vision with numerous 

applications. It can be formulated as an inverse problem. Variational methods are commonly used to solve noise 

removal problems. The Total Variation (TV) regularization has evolved from an image denoising method for 

images corrupted with multiplicative noise into a more general technique for inverse problems such as denoising, 

deblurring, blind deconvolution, and inpainting, which also encompasses the Impulse, Poisson, Speckle, and 

mixed noise models. Multiplicative noise removal based on TV regularization has been widely researched in 

image science. In multiplicative noise problems, original image is multiplied by a noise rather than added to the 

original image. This article proposes a novel meshless collocation technique for the solution of a model having 

multiplicative noise. This technique includes TV and local collocation along with Multiquadric Radial Basis 

Function (MQ-RBF) for the solution of associated Euler-Lagrange equation for restoring multiplicative noise 

from digital images. Numerical examples demonstrate that the proposed algorithm is able to preserve small 

image details while the noise in the homogeneous regions is removed sufficiently. As a consequence, our method 

yields better denoised results than those of the current state of the art methods with respect to the Peak-Signal 

to Noise Ratio (PSNR) values. 
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1. INTRODUCTION 
 

mage denoising is a research topic that has been 

studied by researchers from last many decades. 

Image noise removal problem is of two types, one 

is additive noise removal and the second one is the 

multiplicative noise removal problem. However 

multiplicative model noise removal is more 

challenging as compared to additive noise removal, 

therefore we focus on models for removing 

multiplicative noise, which can be stated as: g = zn                                                                       (1) 

where g: Ω⊂R2→R is the given noisy image, having 

multiplicative noise n and z is the original image. 
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Here, Ω represents a rectangular image domain.  

Multiplicative denoising is one of the most important 

and challenging task. The assignment of removing 

multiplicative noise has been proposed in many image 

processing fields, particularly, in medical sciences and 

Synthetic Aperture Radar (SAR) [1-4]. In the 

literature, various methods have been utilized for the 

numerical solution of Partial Differential Equations 

(PDEs) connected with models having multiplicative 

noise, for example, see [5-9]. 

 

The TV-based [10-12] methods have been proven one 

of the successful tools for the smooth solution of the 

associated Euler-Lagrange equation. The non-linearity 

and non-differentiability of TV-based model limits its 

I 
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factorability in terms of computational complexity and 

processing time. To avoid the complexity in 

computation of exact solution, artificial time marching 

method is usually used for approximate computation 

of Euler-Lagrange equation. The problem with 

artificial time marching method is its slow processing 

due to its strict stability constraints in the time steps. 

 

Here it can be concluded that the above mentioned 

methods struggle with the smooth solution. In this 

research study, we address meshless collocation 

scheme to minimize the above mentioned issues.  

 

Recently, an increasing attention has been given to the 

development meshless Radial Basis Function (RBF) 

collocation methods for the numerical solution of 

PDEs. Majority of PDEs results have concerned 

steady state problems with smooth solutions. More 

recently, there has been a growing interest in applying 

meshless RBF collocation methods to time-dependent 

PDE problems, again to problems with sufficiently 

smooth solutions. The meshless RBF collocation 

methods have more points of interest and have 

exhibited superior accuracy as compared with 

traditional mesh-based numerical methods such as, 

Finite Difference Method (FDM) [13], Finite Element 

Method (FEM) [14], Finite Volume Method (FVM) 

[15-16], and pseudospectral method [17]. For further 

information [18-24]. 

 

The main idea behind the energy for of RBFs 

interpolation for multidimensional scattered data are 

investigated in [25]. In late decades, collocation 

techniques have been displayed to deal engineering 

and sciences issues. The PDE techniques based on the 

meshless strategies have superior and extremely 

helpful. In recent times meshless methods based on 

RBFs have observed more fruitful techniques for 

scattered data interpolation. RBF techniques are not 

fixed to a grid and hence come under the umbrella of 

class called meshless methods. These methods are 

smooth and conditionally positive definite [26-28]. 

The RBF approach is an important tool for defining 

smooth functions in important geometries due to 

meshless applications and spectral accuracy [29]. This 

paper proposes a collocation technique for image 

denoising which has not been reported in the existing 

literature to the best of our knowledge. In this work, 

we show the RBF mesh-less collocation technique 

(Kansa strategy) for the nonlinear PDE arising in this 

model, where the RBF is used for the approximation 

of the solution of PDE. Kansa method is a domain type 

strategy, which has numerous features like the finite 

element approach for the approximation of the 

solution of PDE. For information about RBF 

strategies, see [24, 30, 31]. 

 

The rest of the paper is organized as follows: Section 

2, contains the details of RBFs and its applications in 

solving PDEs. Sections 3 discusses AA model [5]. 

Section 4 provides the detail discussion of numerical 

methods including mesh-based method and meshless 

method. Section 5 discusses and compares 

experimental results on various real and artificial 

images for image restoration. This section also 

includes to analyzes the shape parameter and 

sensitivity analysis of parameters for image 

restoration. Section 6 concludes the proposed work. 

Finally, the detail discussion for the derivative for the 

new meshless approach is given in an appendix. 

 

2. RADIAL BASIS FUNCTION                         
 

Let us describe the RBF method now. The RBF is a 

function φ(x) with respect to the origin, ϕ�x� =ϕ�r� ∈ R, or on the distance a point from the given 

data set �
�� with ϕ�x − x�� = ϕ�r�� ∈ R  and ϕ�x� =ϕ�‖
‖�� is known as radial function. Table1 shows 

some commonly used RBFs, such as Multiquadric 

(MQ), Inverse Multiquadric (IMQ), Genetic 

Algorithm (GA), and TPS. The RBF method is used to 

interpolate a smooth function f(x), x∈Ω⊆Rn, where 

Ω   is the bounded domain. For given N interpolating 

values �y������ ϵR  and �x������ ϵΩ ⊆ R   data centers, the 

RBF approximation is defined as f�x� = ∑ γ�ϕ���� $%x − x�%�& ,     x ∈ Ω                     (2)                                                                                  

where γj are unknown weights. To find γj, the 

collocation RBF method is y� = f�x�� = ∑ γ����) ϕ $%x − x�%�&,  i,j =1,2,⋯ , N (3)                                   

which results in N×N linear system of equations which 

is given as follows. Aα = B  

where α = �α�, α�, ⋯ , α��/ is the N×1 unknown 

vector and to be defined, b = �y�, y�, ⋯ , y��/, is the 
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N×1 vector, and A = 1Φ��3 = 4ϕ $%x� − x�%�&5�6�,�6� 

with Φ�� = Φ��, is called N×N interpolation matrix. 

 

To ensure the invariability of the interpolation matrix 

A.  he polynomial term is augmented to RBF equation.  

 

In this case Equation (2) can be re-written as f�x� = ∑ γ�ϕ���� $%x − x�%�& + ∑ γ�8�p��x�:���       (4) 

with constraints ∑ γ�p��x��,:���    i = 1,2, ⋯ , M                                   (5) 

 

With p� ∈  �?@�, i = 1,2, ⋯ , M, where ∏m  shows the 

polynomial space in which the polynomials is m  in N 

variables [26] are the total degree polynomials, which 

is given as: $N + m − 1m − 1 &  

The interpolated solution of Equations (4-5) results in 

given matrix system (M+N)×(M+N) equations. 4 A PP/ O5 4γ05=4b05, 

in which A�,� = 1Φ��3 = 4ϕ $%x� − x�%�&5�6�,�6�  

represents the elements of  matrix A, P�,� =p�1x�3�6�6�,�6�6: are the elements of matrix P, and O 

is M×M matrix. 

The RBFs with shape parameter c, RBFs with positive 

definiteness (PD), and RBFs conditionality positive 

definiteness (CPD) are discussed in [27] and listed in 

Table 1. 

 

List of RBFs , where m shows the m-order CPD [27], EkG ≤ k, N is natural number. Shape parameter in RBF 

is represented by c. 

  
Table 1:  List of RBFs, where k shows the k-order CPD [27], 

[k] < k, n is natural number. shape parameter in RBF is 

represented by  c 

Name of RBF Definition CPD 

Multiquadric 

(MQ) 
∅�r, c� = �r� + c��K if 

k>0,  k ∉ N 

[k]+1 

Inverse 

Muliquadric 

(IMQ) 

∅�r, c� = �r� + c��@K if 

k>0,  k ∉ N 

0 

Gaussian (GA) ϕ�r, c� = exp N−r�c� O 
0 

Polyharmonic 

Spline (PS) 
ϕ�r� = P QRST

QRSTUVWX �Q�   if 
k∈N 

k/2 +1 

Time plate splines 

(TPS) 
ϕ�r� = r�ln �r� 0 

3. AA MODEL 
 

Aubert et al. [5] proposed a non-convex Bayesian type 

of variational model for image denoising from given 

degraded image having multiplicative noise which 

includes the TV as the regularizer. The minimization 

functional of Equation (1) by [5] is formulated as: 

 inf minZ∈[�\� J�z� +  λ �\ $log�z� + XZ& dxdy,             (6) 

where ( ) | | ,J z z dxdy
Ω

= ∇�  and

( ) { ( ), 0}.S z BV zΩ = ∈ Ω >  

 

In Equation (6) the first term is the TV regularization 

of z and λ is the regularization parameter and the 

second term is called data fitting term respectively. 

The regularization parameter λ is utilized to adjust the 

restoration and smoothness of the restored image 

which is usually depends on upon the noise level. 

Here, g>0 in L∞(Ω) shows the known information in 

the model. The minimization functional (6) then leads 

to the following Euler-Lagrange equation. 

 −∇. 4 ∇Z|∇Z|R8d5 + λ $ Z@X�Z8d�R& = 0 in Ω,                         (7) 

or 

eef g hi
jhiR8hkRl + ðen g hk

jhiR8hkRl + o $h@phR & = 0                (8) 

 

The time dependent Euler-Lagrange Equation (8) is 

given as under. 

 

 
eheq =  

eef g hi
jhiR8rkRl + ðen g hk

jhiR8hkRl + o $h@phR &          (9) 

 

for the given 
1

( , , 0) .
| |

z x y g
Ω

=
Ω �  For further 

information, the readers are refer to [5]. 

 

4. NUMERICAL TECHNIQUES  

 

Now we present numerical schemes for solving non-

linear PDE Equation (9) associated with the 

minimization functional (6). 
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4.1 Traditional Mesh-Based Technique (M1) 

 

Aubert et. al used the mesh-based technique to solve 

the non-linear PDE (9). The PDE (9) is; 

 

eheq =  
eef g hi

jhiR8hkRl + ðen g hk
jhiR8hkRl + o $h@phR &        (10) 

 

The explicit scheme is utilized to solve the above 

Equation (10) which is given as follow. 

h�stU�@h�s�
uq =  

eef g  hi�s�
j�hiR��s�8�hkR��s�l +

ðen g hk�s�
j�hiR��s�8�hkR��s�l + o $h�s�@p�v�

�hR��s� &                      (11) 

 

For further details, see in [5]. 

 

4.2 Proposed Meshless Technique (M2) 

 

In this section, we present a new methodology by 

utilizing TV regularization alongside with RBFs to re-

establish the clean image z from degraded image g in 

the model given in Equation (1). Assume �x������  is the 

N distant evaluation points in Ω ⊆ w� where Ω is a 

closed domain. Every RBF satisfy the following 

equation ϕ�r� = ‖r‖� in R2 i.e r = (x,y).  For �xc������x
, 

given Nc centers, the RBF interpolation without 

polynomial term is defined as s�x� = ∑ ρ�ϕ $%x − xc�%�&�x���                                 (12) 

coefficients of  ρ�  in above Equation (12) is resolved 

by means of upholding the interpolation condition  

s(xj) = g 

A collection of points that correspond to the centers 

Nc. The RBF interpolation at Nc centers is given as  Aρ = g  

which gives a Nc×Nc linear system of equations and 

is solved for the coefficients ρ, where { =�ρ�, ρ�, ⋯ , ρ�x�/ and z = �z�, z�, ⋯ , z�x�/ are Nc×1  

matrices. In the above equation A is called the system 

or interpolation matrix and is defined as under. 

 A = 1Φ��3 = 4ϕ $%xc� − xc�%�&5�6�,�6�x  

 

The matrix A in the above system is Nc×Nc square 

matrix which is invertible because it is always positive 

definite [15,20]. Thus  ρ = A@�g                                                                 (13) 

with ρ is a matrix of  Nc×1 order. In similar way, by 

using Equation (12) the RBF interpolation at N 

evaluation points �x������    results in N×Nc matrix B 

which is defined as follow. 

 B = 1Φ��3 = 4ϕ $%x� − xc�%�&5  for i=1,2,…,N, 

j=1,2,..,Nc 

 

At N data points the interpolation condition is 

evaluated by using the matrix-vector product to 

produce z which is defined as under. | = Bρ                                                                     (14) 

 

From Equations (13-14) the following equation is 

obtained. z = BA@�g                                                                 

or | = Hg  where H = BA@�                                       (15) 

which results in the approximate solution of N×1  

matrix z at any point in Ω. Since equation (11) is 

 

Combining Equations (15-16) result in new restoration 

PDE, which is given as nonlinear system of equations. 

 L�z�� �z� 8�� = L�z�� �z� � + dt 4z��� � + z��� � +
L�z� λ $Z���@X�v�

�ZR���� &5                                                 (17)                            

where  L�z� = jz�� + z��,   z� = H�g,   z� = H�g,  
z�� = H��g, z�� = H��g,  and g�)� = g. 
 

As RBF collocation method is not required to satisfy 

the resultant PDE Equation (17), and have free choice 

to select RBF. The well-known RBF in collocation 

scheme is the MQ [25], which usually shows good 

results if suitable value for shape parameter is selected. 

The value of c  used in proposed meshless method M2 

plays an important role for the smooth solution. For 

the best selected value of c M2 results in good accurate 

and smooth outcome. The best experimental value of  

used in the proposed M2 results in smooth solution in 

image denoising. For the suitable value of c, M2 gives 

more accurate and smooth results in image denoising 
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having multiplicative noise. In M2, c and λ depend 

upon the size and noise in the tested image. 

 

Algorithm for Collocation Scheme M2: 

RBF: 

1. Select N = Nc, n number of points which are 

called pixel points. 

2. Find the ρ according to (13) by MQ-RBF. 

3. Find z according to (15) by MQ-RBF. 

 

Total Variation (TV) Filtering: 

1. Select the initial values for λ, ò, c, dt and g.  

2. Select n number of Nc points called centers 

i.e. xc� ≤ xc� ≤ ⋯ xc , select n=0.  

3. Inset z as MQ-RBF in (17) from (15). 

4. Select n = n+1. For the selection of each 

center point xci,  for i = 1,2,3, …, n, calculate 

z(n+1) from (17) by collocation method M2, 

where  g(0) = g. 

5. 
%Z��tU�@Z���%%Z���% ≤ ò = 10@� (Stopping criteria), 

go to step (10). 

6. Repeat step (7). 

7. end. 

8. Output z = z(n+1)  

 

 

5. EXPERIMENTAL RESULTS  
 

This section is dedicated to an examination of some 

numerically computed examples to show the 

execution of proposed strategy M2 over methods M1 

on two types of multiplicative noises, to be specific 

multiplicative noise (Gamma distribution, mean 1and 

variance L1) and speckle noise (Gamma distribution, 

mean 1 and variance L2). In order to get quantitative 

comparison, five original real and artificial images 

called, “Lena”, “House”, “SynImage1”, “SynImage2” 

and “SynImage3” are used as test images which are 

appeared in Fig. 1(a-e). 

 

In this work, it is supposed for proposed method M2 

to select N = Nc, which denotes the size of the image 

for comparison with method M1. MQ-RBF is selected 

as basis function in M2. The indicator, PSNR is used 

to quantify the resultant denoised image. The PSNR is 

computed by the given equation. 

 PSNR = 10 × log�) 4?× ?���Z��R
‖Z�@Z‖R 5                          (18)  

 
Fig. 1: Original Images for Our Experiments; (a) Lena; (b) 
House; (c) Synimage1; (d) Synimage2; (e) Synimage3. 

 

where z� indicates the true image, z is the denoised 

image, and m×n represents the image size. The 

stopping criteria for iterations in the proposed scheme 

is given by the following condition. %Z��tU�@Z���%%Z���% ≤ ò                                                       (19) 

where ò indicates the allowed permissible error and is 

selected as 10-3. At any point (xi, yj), the formula for 

MQ-RBF is given as 

∅��x, y� = jc� + r�� = jc� + $�x − x��� + �y − y���&  

where r�=j�x − x��� + �y − y���
 

 

Figs. 2-3 present the first experiment on real images 

“Lena” and “House”. The original and noisy images 

with noise levels are shown in Fig. 2(a-b)-3(a-b), 

respectively. The denoised images by meshless 

approach M2 and mesh-based approach M1 are given 

in subfigures Figs. 2(c-d)-3(c-d), respectively.  

Subfigures Fig. 2(c-d)-3(c-d), respectively in this 

experiment for the two real images indicate that the 

image denoising performance of proposed colocation 

technique M2 is efficient than technique M1 due to the 

meshless applications of MQ-RBF applied in M2. The 

shape parameter c is an important parameter in image 

denoising in proposed meshless method M2 which 

affect the image restoration quality. In our case, the 

better choice of c  for two real images are set in1.71 ≤� ≤ 1.75. Furthermore, Table 2  indicates, the quality 

of image restoration for the two procedures M1 and 

M2. The denoising performance is measured by the 

greater value of PSNR.  So the listed values of PSNR 

of M2 two real images “Lena” and “House” are larger 

than M1 which represents the successful restoration 
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performance of M2 due to MQ-RBF applications over 

M1. Table 2, also shows the list of total computation 

time and iterative numbers required for convergence 

for algorithms M1 and M2. In Table 2, the total 

computation time and iterative numbers of M2 are 

smaller than M1 which indicates the fast restoration 

performance of M2 over M1 because of its meshless 

application. Hence, it can be concluded from the 

results given in Table 2 for real images “Lena” and 

“House” that the performance of proposed technique 

M2 is superior to technique M1. 

 

 
Fig. 2: Reconstructed results on Lena Image; (a) True Image; 
(b) Lena with multiplicative noise l1= 0.09; (c) Obtained Result 

by Method M1 (λ = 443); (d) Obtained result by Method M2 (λ 
= 354, c = 1.74)  

 

 
Fig. 3: Obtained Results on House Image; (a) True Image; (c) 
House Corrupted with Multiplicative Noise L1 = 0.09; (c) 

Reconstructed Image Using  M1 (λ = 437); (d) Reconstructed 

Image Using M2  (λ =  346, c = 1.72)  
 

Figs. 4-5 show that the behavior of our technique M2 

with complicated geometrical artificial images 

“SynImage1”, “SynImage2”. Again the original and 

noisy images with noise levels (L2=0.01,0.01) are 

shown in subfigures Fig. 4(a-b)-5(a-b), respectively.  

This example shows that the result of image denoising 

by collocation method M2 is better than mesh-based 

approach M1 due to the MQ-RBF applications used in 

M2. These resultant images can be seen from the 

subfigures Fig. 4(c-d) - 5(c-d), respectively. Since 

speckle noise is more complicated noise as compared 

to multiplicative noise. But still, the proposed 

methodology M2 produces good restoration results 

compared with the method M1. Again, the range for 

the best-selected values of c for the two tested images 

are set in 1.80 ≤ � ≤ 1.84. The PSNR values, the total 

time of computation and iterative numbers selected for 

the tested images are listed in Table 2.  Moreover, the 

PSNRs of the restored images by M2 is greater than 

M1, and also the total time of computation and 

iterative numbers of M2 are smaller than M1, which 

demonstrate the efficiency of collocation method M1 

on mesh-based method M1. These results are listed in 

Table 2. 

 

 
Fig. 4: Restoration Performance by two different methods on 
Synimage 1: (a) True Image (b) Noisy Image with Speckle 

Noise L2 = 0.1  (c) Obtained Results by M1 (λ = 33); (d) 

Obtained Results by M2 (λ = 26, c = 1.83). 
 

 
Fig 5: De-Noised Synimage2 Image with two different 
algorithms (a) True Image (b) Noisy Image L2 = 0.1 (c) De-

Noised Image By M1 (λ=28) (d) De-Noised Result By M2 (λ 
=23, c = 1.81). 

 
Table 2: The PSNR values, computational time, and iterative numbers of M2 are compared with M1. The computational time is 

taken in seconds. 

Image Size 

Model M1 Model M2 

PSNR 
Iteration 

numbers 
Time (sec) PSNR 

Iteration 

numbers 
Time (sec) 

Lena 3002 25.04 172 28.45 25.81 129 19.27 

House 3002 23.26 156 26.19 23.91 118 17.30 

Syn Image1 3002 25.61 198 36.20 26.07 150 24.98 

Syn Image2 3002 27.88 170 31.32 28.58 135 22.38 

I 
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In this paragraph, we discuss the homogeneity of the 

two algorithms M1 and M2 on an artificial image 

“SynImage1”. We also check the preservation or loss 

of M1 and M2 on the same “SynImage1”.  For this 

purpose, a line of the true image is compared with the 

same lines of noisy and restored images that are given 

in Fig. 6.  It can be seen from subfigure Fig. 6(c) that 

the line obtained by proposed meshless technique M2 

is better than the line obtained by the technique M1 

which is shown in subfigure Fig. 6(b). 

 

 
Fig. 6: The 110th Line of True Image “Synimage1” Comparison 

with 110th  line of noisy image, restored by M1, and restored 

by M2 Images, respectively. (a) True and noisy images lines; 

(b) True and obtained images lines by M1; (C) True and 

obtained images lines by method M2.  where the blue and The 

red lines show the true and restored images. 

 

In this paragraph, we have tested real image “house” 

for three different sizes i.e., 2562,  3202 and 4002 for 

the same multiplicative noise L1= 0.09 to see the effect 

of shape parameters c and F.  In Fig. 7, subfigures (a), 

(d), and (g), respectively show the noisy images of 

sizes 2562, 3202 and  with the same noise level  L2= 

0.09.  Subfigures (b), (e), (i) and (c), (f), (j) represent 

the restored images by methods M1 and M2, 

respectively. We can clearly see the image size effect 

the shape parameter c and f that are shown in in 

caption of Fig. 7. The performance of the two schemes 

M1 and M2 regarding image restoration (PSNR 

values) can be seen in Table 3.  

 
Table 3:  The Comparison of PSNR values for different 

sizes of House Image. 

Image Size 
M1 M2 

PSNR PSNR 

House 

2562 

3202 

4002 

22.05 

23.12 

24.09 

22.39 

23.57 

24.53 

 

5.1 Shape Parameter Analysis 

This section discusses the role of the shape parameter 

c regarding the image restoration used in the proposed 

collocation technique. We have applied and tested 

different values of  c on “SynImage3” and noticed that 

these different values of c affect the image denoising 

quality (PSNR values), which are shown in Fig. 8 and 

Table 4. 

 

 
Fig. 7: Reconstructed Results nn House Image; (A) Noisy 
image with L1 = 0.09    of size 2562; (b) Obtained result by 

method M2 (λ = 367, c =1.71) (c) Obtained result By method 

M1 (λ = 482);  (D) Noisy image with L1 = 0.09 of size 3202; (e) 

Obtained result by Method M2 (λ =  350, c = 1.75); (f) 

Obtained result by Method M1 (λ = 467);  (g) Noisy image with 

L1=0.09  of size 4002; (H) Obtained result by Method M2 (λ 

=343, c=1.78); (I) Obtained result by method M1 (λ = 433).  
 

 
Fig. 8: Reconstructed image By M2 for artificial image 
Synimage3; (a) True Image (b) Degrade  image with  L1 = 
0.05; (c) Restored by optimal value c = 180; (d) Restored By 
c = 1.87; (e) Restored  By c = 1.72. 

 
Table 4:  Image Restoration Quality (PSNR values) for various values of   Shape Parameter c of M2 for artificial image 
Image Size Optimal c PSNR Increase c PSNR Decrease c PSNR 

Syn Image3 3002 1.80 25.30 1.87 25.09 1.72 24.96 
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 5.2 Parameter Sensitivity Analysis  
 

The selection of parameters (c, λ) values used in the 

collocation method M2 is a difficult task according to 

our experience.  Here, the image size and noise level 

are the two factors that are responsible for choosing 

the values of the parameters. The best experimental 

values of parameters are adjusted and tuned based on 

image size and noise variance. 

 

It can be seen from the experimental results that the 

range of two parameters values used for different real 

and artificial images with different noise variance (L1 

= 0.09, 0.09, L2 = 0.1, 0.1) are c ∈ E1.65, 1.85G and 

λ∈[0.0000094, 0.015]. By selecting these ranges, 

better restoration results are achieved with improved 

PSNR results. The respective results are listed in 

Tables 5-6. In these Tables, ↑ and ↓ denote percent 

increase and percent decrease respectively. 

 
Table 5: The Percentage effect on the PSNR values by the 
Percentage increase in parameters used in the proposed 
scheme M2. 

Image 
40% (↑) 70% (↑) 

c λ PSNR c λ PSNR 

Lena 2.43 495.6 2.31(↓) 2.96 601.8 3.39(↓) 

 
Table 6: The Percentage effect on The PSNR values by 
the Percentage decrease in parameters used in the 
proposed scheme M2.  

Image 
40% (↓) 70% (↓) 

c λ PSNR c λ PSNR 

Lena 1.04 212.4 
2.95 

(↓) 
0.52 106.2 

4.68 

(↓) 

 

6. CONCLUSION 
 

In this paper, a new meshless collocation technique 

that is MQ-RBF combined with TV regularization is 

proposed for multiplicative noise removal model. This 

approach is applied for the smooth solution of PDE 

associated with TV minimization functional. This 

meshless approach mathematically simple in used than 

the traditional method and hence obtain the fast and 

efficient restoration results.  

 

This approach is examined with an exacting TV-based 

approach on various real and artificial images for 

multiplicative and speckle noises. Experimental 

results demonstrate that the performance of the 

proposed collocation technique is superior to the TV-

based method regarding image restoration (PSNR 

values), total computational time, and iterative 

numbers. The shape parameter analysis and sensitivity 

analysis of parameters for better restoration 

performances have also been discussed. 
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APPENDIX 
 

The derivatives used in equation (17) in proposed 

algorithm 
2

M  are discussed below. For N evaluation 

points �x������     and Nc center points  �x������
  the RBF 

approximation is defend as under. z = ∑ ρ�ϕ $%x − xc�%�&�x���  or z = Bρ                   (20) 

which results in N×Nc evaluation matrix B i.e., B = 1Φ��3 = 4ϕ $%x� − xc�%�&5  for i = 1,2,…N, j = 

1,2,…,Nc. 

 

The first derivative from (20) is written as follow �Z��� = z�� = ∑ ρ� ��� ϕ $%x − xc�%�&�x���   or 

z�� = ���� Bρ,                                                           (21) 

where ����� =  �1���3��� = ���� 4ϕ $%x� − xc�%�&5    
for i = 1,2, …, N  j = 1,2, …, Nc. 

 

From equations (13) and (21) we get the given  

equation. 

 z�� = ���� BA@�g                                                      (22) 

 

Define  H = BA@�   the equation (22) is redefined as 

follow z�� = ���� H��g                                                                            (23) 

 

The differentiation matrix is stated as H�� = ���� BA@�                                                        (24) 

 

For second derivative, we have H���� = �R
��R BA@�                                                             (25)      

Also �RZ��R = z���� = �R
���R Hg = H����g                                  (26) 

 

As it is known that the system matrix A is invertible, 

so the differentiation matrix is well-defined.  

 

For any sufficiently differentiable RBF, [ ( )],r x the 

chain rule the first derivative is ����� = ���Q �Q���  with  
�Q��� = ��Q                                       (27) 

 

The second derivative is defined as under. �R����R = ���Q �RQð��R + �R��QR $ �Q���&�
  

with 
�RQ���R = �@� ������R

Q                                                   (28) 

 


