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Abstract  13 

Spatial interpolation is commonly used to generate water quality surfaces but different spatial 14 

interpolation methods yield different surfaces from the same data. The water quality map produced 15 
using one model of spatial interpolation method may be significantly different from the map 16 
produced using another model of the same spatial interpolation method. The purpose of this study 17 

was to evaluate the performance of different spatial interpolation methods to correctly depict the 18 
water quality of Lahore. The water samples (n = 73) were collected from tube wells and tested for 19 

physicochemical parameters (pH, turbidity, hardness, total dissolved solids, alkalinity, calcium 20 

and chlorides). The data exploration was performed using SPSS software. The inter-comparison 21 

of different powers of inverse distance weighting (IDW) and different functions of radial basis 22 
functions (RBF) was completed using geostatistical analyst extension in ArcGIS 10.3. Moreover, 23 

these deterministic interpolation methods (IDW and RBF) were compared with geostatistical 24 
interpolation methods (ordinary kriging and ordinary co-kriging) based on cross-validation 25 
statistics, root means square error (RMSE). The analysis showed that ordinary co-kriging 26 
performed much better than ordinary kriging, RBF and IDW, for water quality assessment of 27 

Lahore. Hence, ordinary co-kriging with appropriate auxiliary variable and the best-fitted semi-28 
variogram model was used to generate the spatial distribution map for each water quality 29 
parameter. The water quality index (WQI) was computed using the tested physicochemical 30 
parameters and the results showed that 98% of the tube wells were providing ‘excellent’ to ‘good’ 31 
water quality in Lahore city. However, there were few areas of City and Anarkali subdivisions 32 

where it indicated poor to very poor water quality. The procedure used in this study is valuable for 33 
the water management authorities to better understand and monitor the groundwater quality.  34 

Keywords: Water Quality Index; Spatial Interpolation; Inverse Distance Weighting (IDW); 35 
Radial Basis Functions (RBF); kriging; co-kriging 36 
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Introduction 39 
About one-third of the world’s population rely on groundwater for drinking purposes. The scenario 40 
is not much different in Pakistan as groundwater is the major source of drinking water for most 41 
Pakistanis. Lack of safe drinking water is a major problem in rural as well as urban parts of 42 

Pakistan [1]. The organic substances and minerals present in drinking water can disturb human 43 
health so water should be treated before drinking. The safe and sustainable use of groundwater 44 
require a regular evaluation of its quality. The Water Quality Index (WQI) is considered as an 45 
effective tool to convey the information about overall water quality in a comprehensible and useful 46 
manner [2]. An important advantage of WQI is that it combines the data related to all the tested 47 

physicochemical parameters for a specific location to produce a single value that makes it very 48 
easy to understand the overall quality of water at that location [3]. 49 

As water sampling cannot be done at every location, the use of procedures that reflect trustworthy 50 

estimates of groundwater quality have become indispensable for monitoring this valuable resource 51 
[4]. Nowadays the usage of geospatial technologies has smartly reduced the complexities involved 52 

in the evaluation of natural resources and their related environmental concerns. Geographic 53 

information systems can support in providing a better solution to a wide range of problems 54 
associated with water resources, water availability and water quality assessment at a regional or 55 
local level.  56 

The use of spatial interpolation methods to generate water quality surfaces for a region, based on 57 

data collected from sampling, is a common practice worldwide.  The spatial interpolation methods 58 
mostly used in GIS software include Radial Basis Functions (RBF), Inverse Distance Weighting 59 
(IDW), kriging and co-kriging. The RBF use mathematical functions that represent the variable 60 

behavior with a continuous surface [5]. Scientists have applied these functions to generate raster 61 
data for the estimation of groundwater quality. The IDW interpolation makes predictions using a 62 

linear weighted combination based on the inverse of the distance between the points. It has been 63 
used in water quality index zonation [6] and in the production of spatial distribution maps of water 64 

quality parameters [7]. Kriging method uses spatial autocorrelation values among the sampled 65 
locations to estimate values at unsampled locations. Kriging has also been widely used to identify 66 

groundwater facies, water vulnerability zones [8] and spatial variability of water quality 67 
parameters. Cokriging can be considered as an extension of traditional kriging interpolation to 68 
better predict the less intensively sampled primary variable of interest using intensively sampled 69 

auxiliary variables. The literature shows that cokriging has been used for the prediction and 70 
estimation of groundwater quality parameters [9]. 71 
The use of different spatial interpolation methods yields different surfaces from the same data. 72 

Each of these interpolation methods includes different models with slight variations to predict the 73 
surfaces but their accuracy also differs greatly. It means that the water quality map produced using 74 

one model of spatial interpolation method may be significantly different from the map produced 75 
using another model of the same spatial interpolation method. Therefore, it is important to have 76 
the knowledge of the most suitable interpolation method and the model of that interpolation 77 
method for production of a map that correctly depicts the water quality of the study area. 78 
The comparison of different models of geostatistical methods should be based on mean absolute 79 

error closer to zero and root mean square error (RMSE) as small as possible [10]. The values of 80 
mean absolute error should be used to determine the best method only when the RMSE of two 81 
methods are equal [11]. As the deterministic interpolation methods IDW and RBF provide 82 
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information about the RMSE, it is appropriate to compare deterministic techniques with 83 

geostatistical techniques based on least RMSE [12]. The cross-validation statistics RMSE is 84 
calculated using the formula: 85 

                                 𝑅𝑀𝑆𝐸 =  √ 
[ ∑ {𝑍(𝑥𝑖)−𝑧(𝑥𝑖)}

2𝑛
𝑖=1  ]

𝑛
                                                                              (1)    86 

Where: 87 
 Z(xi) is the predicted value and z(xi) is the observed value at respective spatial 88 

 locations x1, x2,…, xn.  89 
The RMSE is a widely used statistic to measure the error of the prediction surface. Its least value 90 
specifies the most accurate predictions [13]. The literature shows that researchers have kept 91 
smallest RMSE a criterion to choose the most suitable interpolation method among different 92 

kriging types and variogram models [14], besides using it for the comparison of different 93 
deterministic and geostatistical methods [15]. Hence, each spatial distribution map should be 94 

produced using the model that shows least RMSE among all the models of all the spatial 95 
interpolation methods for that particular water quality parameter. 96 
In the recent years, a number of studies have been published that involve the comparison of spatial 97 

interpolation methods but they usually either compare few spatial interpolation methods [16-17] 98 
for water quality evaluation or compare different components of a particular spatial interpolation 99 

method [18-19]. This paper does not only involve the evaluation of deterministic and geostatistical 100 
spatial interpolation methods in detail, but it also compares their associated powers, functions and 101 
models. In order to evaluate the most suitable spatial interpolation method for the groundwater 102 

quality assessment of Lahore city, a comprehensive geostatistical analysis was required. 103 
Furthermore, analysis of groundwater quality of Lahore city using WQI was also an important 104 

issue.  105 
 106 
Materials and Methods 107 
 108 
Study area 109 

 110 
Lahore is the second largest metropolitan of Pakistan. It lies at the eastern border of Pakistan with 111 

India. It is surrounded by Sheikhupura District in the north-west and Kasur District in the south. 112 
The climate here is semi-arid. It is the responsibility of the Water and Sanitation Agency (WASA) 113 
to provide water to the residents of Lahore. It manages the water supply from groundwater using 114 

more than 480 tube wells. The WASA has divided its jurisdiction into 27 subdivisions covering 115 
an area of 245 km2. The study area and the sampling locations are shown in figure-1. 116 

 117 
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 118 

Fig-1: Study area and the sampling locations in Lahore City 119 

 120 

Data collection and data preparation 121 

 122 
A field survey was conducted to collect the water samples from the study area. The water samples 123 

were collected in such a way that they cover the entire area without any clustering. The study 124 
involved samples from 73 tube wells. They were tested for pH, turbidity and total dissolved solids 125 
using digital meters, whereas, titration method was adopted to test chlorides, alkalinity, hardness 126 

and calcium. The geographic coordinates of the tube wells and the boundary of WASA’s 127 
administrative units (sub-divisions) were acquired from WASA Lahore. The descriptive statistics 128 

of the data collected from water testing was analyzed in SPSS version 20 software. It was very 129 
useful in terms of outlier identification. The attribute data containing information about the 130 
physicochemical parameters was joined with the geographic coordinates of the respective 131 
sampling points. A geodatabase was created in ArcCatalog to keep the data integrated. 132 
 133 

Geostatistical analysis 134 
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The first step in the geostatistical analysis is the exploratory spatial data analysis (ESDA). The 135 

purpose of ESDA is to understand the data quantitatively and notice the spatial patterns that 136 
eventually help in better decision making for the construction of interpolation models. There are 137 
several interpolation methods available in ArcGIS software. In this study, the deterministic 138 

interpolation methods (IDW and RBF) and geostatistical interpolation methods (ordinary kriging 139 
and ordinary co-kriging) were performed on 73 sampling points with the help of geostatistical 140 
analyst extension in ArcGIS 10.3. The IDW method is simple and requires very few inputs for the 141 
interpolation. IDW interpolation was executed on the data set using its powers 1-4 and the optimal 142 
power as well. The power at which the prediction surface has smallest RMSE is termed as the 143 

optimal power. RBF interpolation is an exact interpolator and passes through the measured points. 144 
It makes predictions using kernel functions and can predict beyond the maximum and minimum 145 
values of the variable. The kernel functions used for performing RBF involved Completely 146 
Regularized Spline, Spline with Tension and Thin Plate Spline. Although every RBF kernel is 147 

computed using its own equation for interpolation yet there exists very little differences among 148 
them [20].  In order to perform kriging and co-kriging interpolations, the data was first analyzed 149 

with ESDA tools including histograms, normal QQ plots, trend analysis tool and semi-variogram 150 
clouds. Other than exposing the outliers in the data, the normal QQ plot and histogram tool help 151 

in identifying whether data is normally  distributed or not. The trend analysis tool shows the trends 152 
in the data with respect to different directions. The semi-variogram cloud shows the 153 
autocorrelation in the dataset. The models are fitted to the semi-variogram based on functions. 154 

There model functions available to fit the empirical semi-variogram include Rational Quadratic, 155 
Circular, Gaussian, Hole Effect, Spherical, Tetraspherical, Pentaspherical, J-Bessel, Exponential, 156 

K-Bessel and Stable. Each of the spatial interpolation methods was performed using its different 157 
powers, functions and models to analyze their accuracy in terms of RMSE. The best model for a 158 
particular parameter showing least RMSE was used to make the spatial distribution map of that 159 

water quality parameter. 160 

 161 
Water quality index 162 

 163 
The model builder utility and spatial analyst extension in ArcGIS 10.3 software were used to 164 
computing the WQI. The WQI was based on seven parameters (pH, turbidity, chlorides, total 165 

dissolved solids, alkalinity, hardness and calcium). These physicochemical parameters were used 166 
to calculate the relative weights for each parameter. Then the WQI was computed at all the 167 

seventy-three sampling points using the following formula [21]:  168 

𝑊𝑄𝐼 = 𝐴𝑛𝑡𝑖𝑙𝑜𝑔 [∑ 𝑊 𝑙𝑜𝑔𝑛
𝑛=𝑖 10 𝑞ni]                                                      (2) 169 

Where: 170 
Weightage factor (W) was calculated by the following equation, 171 

 Wn=
K

Sn

                                                                                                                                 (3) 172 

and K, Proportionality constant was derived from, 173 

𝐾 =  
1

(∑
1

  𝑆i

n

n=i
)
                                                                                                                      (4) 174 

Where: 175 
 Sn and Si are the WHO standard values of the water quality parameter.  176 
Quality rating (q) is calculated using the formula,  177 
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𝑞ni =  
(𝑉actual−𝑉ideal)

(𝑉standard−𝑉ideal)
∗ 100                                                                                                     (5) 178 

Where: 179 
 qni = Quality rating of ith parameter for a total of n water quality parameters.  180 
Vactual = Value of the water quality parameter obtained from laboratory analysis.  181 

Videal = Value of that water quality parameter can be obtained from the standard 182 
tables. 183 
Videal for pH = 7 and for other parameters it is equal to zero. 184 
Vstandard = WHO standard of the water quality parameter. 185 

The point values obtained as a result of computed WQI at each sampling point were interpolated 186 
using ordinary kriging to get the scenario for the whole study area. As per derived values of WQI, 187 
the ground water quality was then rated as ‘excellent’ for values 0-25, ‘good’ for values 26-50, 188 
‘poor’ for values 51-75, ‘very poor’ for values 76-100 and ‘unfit for drinking’ for values greater 189 

than 100. 190 
 191 

Results and Discussion 192 
 193 

The descriptive statistics (Table-1) for physicochemical parameters showed that pH, TDS, calcium 194 
and chlorides values were well within the permissible limits. There was only one sample that 195 

showed turbidity beyond the threshold value of 5 Nephelometric turbidity units (NTU) so it was 196 
not acceptable. Similarly, the hardness value of one sample exceeded the 500 (mg/L) limit. The 197 
alkalinity values for all the samples were above 120 (mg/L). 198 

 199 

Table-1: Descriptive statistics for physicochemical parameters 200 

 201 

Inverse Distance Weighting 202 

 203 
The IDW uses power function to predict the surfaces. It assumes that the local variations have an 204 
important role in the phenomenon being modelled. Therefore, the number of closest neighboring 205 
samples affect the precision of IDW surface [22]. The greater the power used for IDW prediction, 206 
lesser the weightage of the farther points in prediction. The results showed that the optimal power 207 

using IDW for turbidity was 3.356, reflecting the fact that the farther points had lesser weightage 208 

Parameter Samples Minimum Maximum Mean Std. Deviation Desirable Limit 

pH 73 6.41 8.06 7.35 0.33 6.5 -8.5 

Turbidity 73 0.10 9.00 0.60 1.13 < 5 NTU 

TDS 73 134.00 884.00 311.26 148.72 < 1000 (mg/L) 

Hardness 73 33.33 523.33 150.23 82.70 < 500 (mg/L) 

Ca 73 12.00 112.00 40.49 17.82 < 200 (mg/L) 

Cl 73 1.00 148.22 22.72 26.75 < 250 (mg/L) 

Alkalinity 73 128.10 558.60 260.34 96.73 < 120 (mg/L) 
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in the interpolation process. The range for turbidity values was large, i.e. 0.1 to 9 NTU (Table-1) 209 

having a mean value of turbidity 0.6, yet the resulting surfaces (Figure-2) using IDW interpolation 210 
resulted in such a way that the area indicating turbidity values more than 5 NTU expanded as the 211 
power used for IDW surface increased. This clearly showed that the maximum value 9NTU has a 212 

significant effect in the nearest areas due to the limited influence of farther points, using greater 213 
powers of IDW. On the other hand, if simply the IDW power 1 would have been selected in making 214 
predictions about turbidity then the area influenced by the maximum value of turbidity would have 215 
been smaller due to relatively more weightage of lower values of turbidity, even being farther. On 216 
the contrary, the variation between the pH values was very low, i.e. 6.41 to 8.06, thus its optimal 217 

power also lied between 1 and 2, i.e., 1.232. Similarly, the optimal powers of other water quality 218 
parameters could be seen in Table-2 to understand the influence of values in predicting the 219 
estimates of their surroundings. 220 

 221 

 222 

Table-2: Inverse Distance Weighting powers and their root mean square error (RMSE) 223 

 224 

 225 

Radial Basis Functions 226 
 227 

The RBFs are like a rubber sheet fitted to the sampled points. Figure-2b shows that the predicted 228 
area having turbidity levels more than 5 NTU varied with the RBF kernel used. The said area had 229 
an expanding trend with spline with tension, completely regularized spline and thin plate spline, 230 
respectively. The results were obtained using the optimal kernel parameter for each kernel. The 231 

thin plate spline is like fitting a rubber sheet to the sampled points with the formation of nice curves 232 
whereas the spline with tension is like pulling the fitted rubber sheet on the edges, hence lessening 233 
the curves. In the case of turbidity surfaces, the area showing values more than 5 NTU was almost 234 

equal for completely regularized spline kernel and spline with tension kernel and their RMSE, as 235 
described in Table-3, were also smaller than the RMSE of thin plate spline kernel. It might be 236 
inferences from the results as the sampling points had small distances in between and they belong 237 
to the same aquifer, hence, there were very few fluctuations in the data. So, the spline with tension 238 

mostly produced smaller RMSE instead of curvy thin plate spline that showed highest RMSE for 239 
all the water quality parameters among RBF kernels.  240 

 241 

Parameter IDW (1) IDW (2) IDW (3) IDW (4) IDW (optimal) 

Turbidity 1.1472 1.1309 1.1237 1.1246 (3.356)     1.1232 

pH 0.3339 0.3353 0.3422 0.3528 (1.228)     0.3338 

Alkalinity 75.5822 73.8884 73.1605 73.3204 (3.27)     73.1289 

Calcium 16.4144 16.1575 16.1029 16.2500 (2.73)     16.0950 

Chlorides 24.1155 23.9875 24.4682 25.3233 (1.70)     23.9582 

Hardness 79.5177 78.1324 78.3067 79.6523 (2.37)     78.0225 

TDS 132.9962 131.1209 131.1964 132.8053 (2.45)     130.918 
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 242 

Table-3: Radial Basis Function kernels and their RMSE 243 

Parameter Completely Regularized Spline Spline with Tension Thin Plate Spline 

Turbidity 1.110 1.110 1.227 

pH 0.335 0.333 0.375 

Alkalinity 74.136 73.841 90.679 

Calcium 15.736 15.757 16.995 

Chlorides 23.776 23.601 28.348 

Hardness 76.935 76.935 89.765 

TDS 129.752 129.552 153.311 

 244 
 245 
 246 
 247 

 248 
Fig-2: Showing variation in the results (area having Turbidity >5NTU) obtained using different a 249 

powers of IDW and b kernels of RBF 250 
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SWT Spline with Tension; CRS Completely Regularized Spline; TPS Thin Plate Spline 251 

 252 

 253 

Kriging 254 

 255 
Instead of making predictions based on the inverse of the distance between the points as performed 256 
in the deterministic methods, geostatistical methods make predictions based on spatial 257 
autocorrelation among the data values. They assume that the data must be from a normal 258 

distribution. As the data of turbidity and pH was close to a normal distribution, it did not require 259 
the transformation, whereas the data of other parameters was not normally distributed so the 260 
logarithmic transformation was applied to the data before making predictions. The semi-variogram 261 
vary along different angles, the directional influences were also incorporated considering the 262 

anisotropy. It can be inferenced from the results in Table-4 that no semi-variogram model alone 263 
most accurately capture the spatial dependence of all the water quality parameters because of the 264 

fact that semivariogram models are merely mathematical models that are fitted to read the spatial 265 
autocorrelation for a particular parameter in the area of interest. Due to the substantial spatial 266 

variability of different water quality parameters in Lahore city, a single semi-variogram model did 267 
not fit all water quality parameters equally good. The models showing lowest RMSE among all 268 
the kriging models for each water quality parameter are given in Table 4. 269 

 270 

 271 

Table-4: Details of kriging method with lowest RMSE 272 

Parameter Transformation applied Anisotropy Model RMSE 

Turbidity No True J-Bessel 0.9727 

pH No True Rational Quadratic 0.3220 

Alkalinity Log True J-Bessel 67.8567 

Calcium Log True Hole Effect 15.8498 

Chlorides Log True Rational Quadratic 22.2581 

Hardness Log True Exponential 75.5510 

TDS Log True Exponential 124.961 

 273 

Co-kriging 274 

 275 
The co-kriging method is like kriging model that has an additional characteristic of involving an 276 

auxiliary variable based on which the values of the target variable are predicted. Usually, the 277 
variable showing highest correlation with the target variable is selected as an auxiliary variable. 278 
Table-5 revealed that the auxiliary variables that showed lowest RMSE for the prediction of pH, 279 
turbidity, chlorides, total dissolved solids, alkalinity, hardness and calcium were calcium, TDS, 280 
TDS, Alkalinity, chlorides, TDS and hardness, respectively. Similar to the kriging results, no semi-281 

variogram model alone presented best results using co-kriging interpolation for all the water 282 
quality parameters. The smallest RMSE for the prediction of pH, turbidity, chlorides, total 283 
dissolved solids, alkalinity, hardness and calcium were 0.3072, 0.8136, 10.2958, 63.4487, 284 
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55.8167, 39.8010 and 12.865 using co-kriging models Exponential, J-Bessel, Rational Quadratic, 285 

K-Bessel, Rational Quadratic, Rational Quadratic and J-Bessel, respectively. After examining the 286 
results described in Tables 2-5, it clearly indicated that the RMSE using co-kriging method were 287 
quite lower than the other three spatial interpolation methods used in this study. The reason for 288 

such a lower RMSE was the use of highly appropriate auxiliary variables. For instance, the RMSE 289 
for the prediction of chlorides using TDS as an auxiliary variable was much lower than using 290 
turbidity. It could be justified as chlorides were also a component of TDS concentrations in water. 291 
Similarly, the lowest RMSE for the prediction of calcium was obtained using hardness as an 292 
auxiliary variable. Shahid, et al. [12] and Khosravi, et al. [15] also compared different deterministic 293 

and geostatistical techniques and found co-kriging is the best method for modeling spatial 294 
distribution of groundwater quality. 295 
 296 

Table-5: Showing lowest RMSE obtained from best-fitted semi-variogram model using 297 

cokriging method for the estimation of each water quality parameter 298 

 Auxiliary variable 

Turbidity pH Alkalinity Calcium Chlorides Hardness TDS 

W
a

te
r
 q

u
a

li
ty

 p
a

ra
m

et
er

 

Turbidity 

 

 0.968     0.831 1.0374     0.9541     0.9872   0.8136 

JB JB PS JB PS JB 

pH    0.3365  0.3386 0.3072 0.3364 0.3229 0.3346 

SP SP EX GA & ST CR CR 

Alkalinity 64.1056 70.8117  71.6795 55.8167 56.0207 55.8905 

PS CR JB RQ JB EX 

Calcium 14.0301 15.7428 16.8432  16.3083 12.865 13.4551 

HE RQ GA & ST RQ JB HE 

Chlorides 20.5508 22.3661 18.0544 22.2841  17.1778 10.2958 

GA RQ RQ RQ RQ RQ 

Hardness 61.2895 72.2095 48.9595 60.9037 53.1465  39.8010 

CR CR PS ST RQ RQ 

TDS 105.9405 116.071 63.4487 118.6024 84.0342 86.4202  

PS JB KB CR RQ SP 

JB J-Bessel; PS Penta Spherical; SP Spherical; EX Exponential; GA Gaussian; ST Stable; CR 299 
Circular; RQ Rational Quadratic; HE Hole Effect; KB K-Bessel 300 

 301 

Spatial distribution maps  302 

 303 
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The spatial distribution map of pH (Figure-3) indicated that the water being provided in the city is 304 

neither severely acidic nor extremely basic in nature. According to World Health Organization 305 
(WHO) guidelines, the pH of the water should be between 6.5 -8.5. If the water has a very low 306 
value of pH, it may be toxic and if its value is very high then it may have a bitter taste. Turbidity 307 

is mainly a result of suspended particles in water. Usually a variety of smaller particles e.g. 308 
decaying plants, clay, silt, etc. can be found in water which contributes to turbidity. The WHO 309 
standard for turbidity in drinking water is 5 NTU. The turbidity map indicated that only in the 310 
upper northern parts of the study area the turbidity values have crossed WHO standard for turbidity 311 
in drinking water, whereas, in rest of the areas it is within the desirable limits. The biological 312 

problems may arise in these areas as water turbidity is directly associated with the growth of 313 
pathogens. The chloride concentrations should be below 250 (mg/L) in drinking water. It is 314 
inferred from the chlorides map that there was no issue in the study area in terms of chlorides 315 
concentrations as it remained under 160 (mg/L) in the entire study area. The alkalinity map showed 316 

that most of the areas have alkalinity above 150 (mg/L). The south-eastern parts of the study area 317 
had even higher values of alkalinity but its concentration mostly below 500 (mg/L) was not a 318 

serious threat to the population, rather the aesthetic issues might arise due to higher alkalinity in 319 
those areas. Calcium is not only a significant component of human bones and teeth but it also 320 

assists as a signal in important physiological processes. The calcium intake through drinking water 321 
can be important for people who are deficient in it [23]. The calcium intake is inversely correlated 322 
with blood pressure [24]. The calcium concentration map in Figure-4 revealed that there was no 323 

tubewell in the study area having values even higher than 100 (mg/L). There is absolutely no issue 324 
regarding excessive calcium concentrations in the study area. As calcium is an important 325 

component of hardness in water, the hardness map showed that the areas having higher values of 326 
hardness e.g., in the central northern parts of the study area, also had relatively higher values in 327 
the calcium map. The reason for calcium and water hardness might be the presence of limestone 328 

in the alluvial deposits underlain the study area. People from different communities can have 329 

varying water hardness acceptability. Depending on the interactions, a hardness greater than 200 330 
(mg/L) together with alkalinity and pH may be a cause of scale deposition in water tanks, 331 
distribution systems, treatment plants, etc. The weight of residue left after a water sample is 332 

evaporated to dryness is denoted by the TDS in water. According to WHO guidelines, water with 333 
TDS value less than 600 (mg/L) is generally acceptable to the people in terms of its taste. The TDS 334 

map showed that the TDS concentrations were highly variable in the study area. It might be due 335 
to the presence of different solubility materials in the aquifer. The lesser concentrations were near 336 

river Ravi and they increased towards the east. There was a patch showing TDS concentrations 337 
higher than 500 (mg/L) in the central upper half of the study area i.e., Anarkali subdivision.  338 
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 339 

Fig-3: Spatial distribution maps of a pH, b turbidity, c chlorides and d alkalinity in Lahore City 340 
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 341 

Fig-4: Spatial distribution maps of a calcium, b hardness and c TDS in Lahore City 342 
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 343 

Water quality index 344 

 345 
In order to calculate the WQI, the relative weights for seven physicochemical parameters were 346 
calculated using Eqs. (3) and (4). The relative weights for pH, turbidity, chlorides, total dissolved 347 
solids, alkalinity, hardness and calcium were 0.34808, 0.59175, 0.01183, 0.00296, 0.02466, 348 
0.00592, and 0.01479, respectively. Equation (5) was used to compute the quality ratings for each 349 

parameter and the final results were obtained by using equation (2). Although the range of WQI 350 
varies from 1.83 to 91.93 but most of the samples, i.e., 66 out of 73, had shown WQI value less 351 
than 25 so they fall into the category of ‘excellent’ water quality. Similarly, 6 out of 73 samples 352 
were regarded as ‘good’ with WQI values ranging between 25 to 50 and only one sample having 353 
91.93 WQI value fall into ‘very poor’ category. The main reason for this high value of WQI was 354 

a high value of turbidity i.e., 9 NTU. The WASA installs a tubewell only after clearance of water 355 

quality examination. As the water from surrounding tube wells does not have such a high turbidity 356 

level, it could be inferenced as this area is densely populated and the water extraction has increased 357 
significantly, the resulting water-table drawdown exerts pressure on the surrounding areas for more 358 

water intrusion. As a result, a solid material/stone with immense water pressure may have caused 359 
a rupture in ‘fiber glass’ screen of the tubewell, which eventually increased the water turbidity. 360 

Overall the water quality index map (Figure-5) showed that the physicochemical water quality in 361 
Lahore city was acceptable. Some areas like Farrukhabad, Gulberg, City and Johar Town had good 362 
water quality. However, there were some patches in Anarkali area where the physicochemical 363 

quality of water was determined as poor to very poor. Chattergee et al. [25] applied the same WQI 364 
on surface water and shallow wells in coal mining area of Jharkand, India. He also found the 365 

majority of the area showing physicochemical WQI excellent to good but some areas were 366 
identified having poor to unfit for drinking water quality. In our study, all these tube wells are in 367 

the deep aquifer so they are safe from the contamination caused by anthropogenic activities, hence, 368 
the WQI for most of the areas is satisfactory. However, there might be issues regarding 369 
bacteriological water quality. 370 
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 371 

Fig-5: Water quality index map of Lahore City 372 
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 373 

Conclusions 374 
 375 
The spatial distribution maps and water quality index maps which nowadays play a key role in the 376 
water quality management are a product of GIS tools and spatial interpolation methods. The 377 
convenience of using readily available spatial interpolation methods pave a way to investigate 378 
more and more techniques to find the most suitable one for each water quality parameter so as to 379 

represent the true picture of existing water quality. The intercomparison of the IDW powers 380 
showed that the optimal power for variable increases as the spatial variation in the data increases. 381 
The less curvy spline with tension produced better results in the intercomparison of RBF kernels. 382 
As the data of water quality parameters did not have too many fluctuations, the RMSE values using 383 
RBF were generally lower than using IDW method. Hence, it indicates that the interpolation based 384 

on RBF is better among deterministic methods when we have minor variations in the data because 385 

it results in the smoother surfaces. However, the use of statistically strong geostatistical methods 386 

for spatial interpolation outperformed the deterministic methods in this study. The spatial 387 
distribution maps of each parameter were generated using different models of a co-kriging method 388 

that showed lowest RMSE so as to get more reliable predictions.  389 
The WQI is an appropriate tool for analyzing the water quality of a large area at an ease. The 390 

results of WQI indicated that the physicochemical water quality was mostly within the desired 391 
limits in Lahore. As this study analyzed the water samples from tube wells, it is highly 392 
recommended that the people instead of taking drinking water from house taps should get it 393 

directly from point-of-use water treatment systems or taps nearest to tube wells so as to avoid 394 
presence of harmful pathogens normally observed in the water distribution system due to leakage 395 

from sewage lines and old pipelines. 396 

As some of the water quality parameters had relatively higher concentrations in the Anarkali 397 
subdivision and nearby areas, the WASA authorities should take this issue seriously and set up 398 

filtration plants in the area. It is recommended that a further study with increased number of water 399 
samples in that area should be conducted to get a detailed information about the spatial variability 400 

of physio-chemical parameters in that region. Moreover, the procedure adopted in this study to 401 
determine a reliable prevailing scenario about water quality is valuable for the water management 402 
authorities to better understand and monitor the groundwater quality and implement a revised 403 

water quality strategy in future. 404 
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