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Abstract

In this paper, the homotopy analysis method is applied to non-linear reaction diffusion system of Lotka-Volterra type subject
of extensive numerical and analytical studies. The comparisons of the other analytical techniques are presented in tables to
show the accuracy of this method. The results show that the homotopy analysis method is more reliable than the other available
techniques giving the advantage of the choice of some quantities such as initial guess, auxiliary function, auxiliary parameter
that play an important role in the convergence of the series solution.
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Introduction

In the recent years, for solving a wide range of mathematical,
engineering and physical problems, linear and nonlinear, many
more of the numerical methods are used. The homotopy
analysis method (HAM), proposed first by Liao in 1992, for
solving differential and integral equations, linear and nonlinear,
are applied to non-linear reaction diffusion system of Lotka-
Volterra type subject of extensive numerical and analytical
studies. The proposed method has been applied successfully on
many non-linear problems giving promising results [6].

The Lotka-Volterra model is a system which is constructed as
the form of the system of first order non-linear differential
equations. This system of equations is also called the predator-
prey equations. Moreover, the interactions between two animals
or species in which one of them performs as a predator that kills
and eats up the other species, and the species that it eaten by the
predator is called its prey. In this situation, when the growth rate
of one population is decreasing and the other is increasing then
the populations are said to be in predator-prey conditions.

The Lotka-Volterra predator-prey models were firstly presented
by Alfred J. Lotka in his theory of chemical reactions of auto-
catalystin 1910 [3].In 1926, Vito Volterra[5], investigated the
equations autonomously and prepared a statistical analysis of
catching fishes in the Adriatic Sea.VitoVolterra applied these
equations to predator prey relations involving a pair of first
order autonomous system of equations. Ever since that time, the
Lotka-Voltera model has been successfully applied to problems
in chemical kinetics, population biology, epidemiology and
neural systems.

As given by Volterra if the prey population is and the predator
is with respect to time then the Volterra’s model is [4]:

X =x(e- fy), 1)
y =y(gx—h). 2
Where

» represents the population of preys (such as, tiger);
»  represents the population of predator (such as, deer);

* and denote the rates of growth of the two populations
respectively with respect to time ;

*  represents the time;

«  arethe parameters representing the two species interactions;

So the above pair of equations (1) and (2) is known as the

Lotka—Volterra model.

Nonlinear Reaction Diffusion System of
Lotka-Volterra Type

Consider the following system of nonlinear Lotka-Volterra type
of partial differential equations [4]:

u, = (uu,), +u(a+bu)+h +cv, ?)

v, =(W,), +v(d +ev)+h, + fu. 4)

The initial conditionsare given as:

u(x,0)=f(x), v(x,0)=g(x).

Where a,b,e, f,g,k, p,q all are the arbitrary constants with
the conditions ef #0, gk=0 . The given system of

equations also contains quadratic nonlinear terms and the
equations are coupled.

The General Solution

An exact periodic solution of this system was obtained in[2]:

u(x,t) = [(p0 ) i[% + @, (t)}cos[\/gx Fc|t ﬂD

(5)
voor) = @ (t)+£+H[(p @ +2S |sin \/gxi\c\t—ﬂ

, b+ | @@+ 2 ,
(6)
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(7)

Here b,c,e,h, f,h,, B,sall are the arbitrary constants with the
condition b=e=g >0,

_ 2

d=a—6c, f =—c,h = 28=6C) | _ m%(ac—a).
Lysis of the Problem by Using Homotopy
Analysis Method (Ham)
The approximate solution of the nonlinear reaction diffusion
system of Lotka-Volterratypeis established here
by HAM, first by choosing the linear operator as | — ﬁy and as

ot
its inverse will be defined as |+ _ j'(.)dt.

0

Thus as stated by HAM, we make the construction of a
homotopy and extract the zero order deformation equation, and
the higher order deformation equation as,

(1-p)L[E(xt p)-u, |= PHH (X )N[&(x.t;p)]. (8)

For the given system of equations becomes, we may have,

L{w, (%t p)=U, |- pL v4 (%t p) =ty | = PRH(X,)N[ w; (x,t; p) ],
)

L|:l//2(X,t; p)_vo:|_ pL[q/z(x,t; p)_Vo]: th(X:t)N[‘/’z(X:t; p):|
(10)

By using p= Oand P=1in equation (9) and (10) respectively,
then we have vi(xt p)"’:° % and V2 (xEp)] o =¥ they

becomes the initial approximations for the given problem,
whereas

X, t; =u(x,t), X, t; =Vv(Xx,t).
v(tp),=uld. () =veed.

exact solutions. Then the solution of the given system of
equations takes the following form,

v () =, () + S pu, (x.1),

L (11)
and 1,(X,t) =V, (X,t) + > p'v, (x.1), (12)
n=1
Where
"w, (%1 ! 4
b= Lt 1w, (xtp)
n! op" n! op”

are calculated at exist for , and also converges at . Then the

solution of the system of equations under study become, are

47

calculated at p =0, exist for n>1, and also converges at

p=1. Then the solution of the system of equations under
study become,

u(x,t) =u, (X, t) +u, (X, t) +u,(x,t) +..., (13)

V(X 1) =V, (X, 1) + v, (X, 1) + v, (X, 1) +..., (14)

Now according to the Homotopy Analysis Method (HAM), the
higher order deformation equation for the given system of

equations becomes as,

L[u,]=4L[u,]+hH (X DR, (u,), (15)

L[V, ]= =4[V, ]+ hH (X DR, (v, ). (16)

Applying the inverse operator, we may extract the nth order

deformation equations solutions as follows,

t t

U =0, +h[HR (U, )it V, = A+ HR (v, )t

n-n-1 nn-1
0 0

(17)

Now for we get the following sets of equations:

u = th.Rl(@)dt,
’ (18)
v, =h[H.R (vp)dt.
0
t
U, =u, +h[H.R, (u,)dt,
: (19)
v, =v, +h[H.R,(v,)dt.
0
t
Uy = U, +h| H.Ry(u,)dt,
! (20)
v =V, +h| H.Ry(v,)dt.
0
t
U = Uy +h[ H.R, (uj)dt,
! (21)
v, =Vs+h[H.R, (v;)dt.
0
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t
U = U, +h| H (xR (u,)dt,
0
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Now putting in (23), we havethe following forms of the above

quantities,

22) and _
F — #2) Rl(uo) = Uy, _u0x2 — U, —aUy —bU02 —CVy— hl (24)
Vg =V, +h[ H (R (v, )t
° In the same manner we get,
so on. Since R (V,) =V, — —VVy, — AV, —evo2 —fu,—h,. (25
n-1 . —
- 0 [N [u (X’t’ p)]]‘ Now putting n=2, in (23), we get
Rn(un_l) n1 R(i)=u.-2 _ u —2b _
(n 1) 10p ‘  (0) = Uy — 2Ug, Uy, — Uy, — Uy Uy —aU, UgU, —CV.
i (23) (26)
) Gn—l':N [V(X,t; p)ﬂ Similarly
Rn ( n—l) = (n _1) 'apn—l R (V ) Vlt VOxle _V1V0xx - 1><x dV 2eVOVI - ful'
' p=0 (27)
For N=3, (23) becomes,
— 2 2
Rs(uz) =Uy — 2u0xu2x ~UpyUy =Uyy = Uyl — Uy Upy, —8U, — 2bu0u2 _bul —Cv. (28)
Similarly
2 2
Re(Vz) Var = VoxVax —VouxV2 =Vix —ViVix —VarVox —dV2 - 26V0V2 —ev, — fuz- (29)
For =% (23) becomes,
R4 (Ua) = Uy — 2u0xu3x - 2ulxu2x ~UgyUs —UpUpy, — Uy Uy —Ug, Uy —aU; — 2b(uouz + ulu2) —CV;. (30)
In the same manner we get,
R, (V3) = Vg — 2V, Va, — 2V, Vo, — Voo Vg — VoV — Voo Vg — Vg Vo — AV, — 28 (V,V; +V,v,) — fu,. 31)
putting" = 5 (23) becomes:
RS (U4) = U — 2uOxu4>< - 2u1xu3x UgsxUy —UoUg, — Uy Ug — Uy, U — U Ug,,
— Ulp — (U2x)2 au, — buz - 2b(uou4 + ulu3) —CV,, (32)
Similarly we get the second component,
I:25 (\74) = V3 — 2VOxV4x - 2lev ~VoxxVa = VoV = VaVo = Vi Vs = ViVax
2
— VoV — (sz) - dV4 - e(Vz) - 2€(V0V4 + V1V3) — fu
(33)
Using all these calculated values in (18),(19),(20),(21) and (22) respectively,
We get,
t
2 2
u, = h_.- H (X, 1)(Ug, —Up,” —UgUo,, —au, —bu,™ —cv,)dt,
0]
t
2 2
v, = h_f H (X, t)(Vo; — Vo™ — VoVou — dVv, —ev,” — fu,)dt.
© (34)
t
u,=u, + hJ' H (x,t)(u, —2u,,u,, —uu,,, —Uu, U, —au, —2bu,u, —cv,)dt
0
1
V, =V, + hj. H (X, 1) (Vy, — 2V, Vi, — ViVo, — ViVo — AV, — 2ev,v, — fu,)dt.
0

(35)
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t
2 2
U; =U, + h_[ H (X’t)(UZt - 2u0xu2x ~UgUp = Uy, ™ — Ul — Uy Ug, — AU, — 2bu0u2 _bul —CVZ)dt,
0
t
2 2
Vs =V, + hj H (Xit)(VZt - 2V0xV2x VouVa Vi T ViV VaVox de - ZeVoVZ —evp - fuz)dt-
0
(36)
t
U, =U; + h_[ H (X, t) Uy, — 2U,,U,, — 2uy,U,,
0
— Ug Uz — UpUy o — Uy Uy —Ugy Uy
—au, —2b(u,u; +u,u,) —cv,)dt,
t
Vy=Vy + h_[ H (X, ) (Va, — 2V, Vg — 2V,,V,,
0
~VoVs = VoV = VoV — VoV
—dv, —2e(v,v, +Vv,v,) — fu,)dt. 37)
t
Us =U, + hJ. H(x, t)(u4t - 2u0xu4x - 2u1xu3x T UguxUs —UgUgye = Ugyldp = Uy Us
0
2 2
~UyUgy = Uplp — (u2x) —au, — buz - 2b(U0U4 + ulus) - CV4)dt’
t
Vo=V, + hI H (X't)(v4t - 2V0xv4x - 2V1><V3>< ~VouxVa ~VoVax T VaxVo = ViV
0
2 2
—V\Vao, = VoVyp — (V,, )" — v, —€(Vv,)" —2e(V,v, +V,V,) — fu,)dt.
(38)
and so on. (3766] [37&)
For the purpose of the solution of (5) and (6), we consider the 4, = 1\s L 1ls L2 (COS(_EX\/EJrﬁ]]y
two possible cases here [1]. 3 g 3 9 2
Choice of Base Functions
We observe that the equations (16) and (17) are in generalized (39)
form. One can use different base functions to express the [ 2 _ch (3_6CJ
solution of a nonlinear problem in order to start the analysis of | s )| e f1ls ) 2 (Sin(*lx\/E*ﬂD-
the problem for different cases of interest. In the famous book 8 9 g9 |8 9 ¢ 2

by Liao, (Beyond perturbation: An Introduction to Homotopy

Analysis Method), he gave a detailed idea of choosing different (40)

base functions, the range value of the auxiliary parameter, the Now we have to calculate U, , from equation (34) we have,
linear operator and the initial guess. The solution expressions 1 1 2
discussed by him include the polynomial functions, fractional 2 2+2°°s(§ﬁﬁxfﬁj 2 2+2“’S[§ﬁ@x*5j

functions, exponential functions etc. R P o B
It has been shown by him that if we choose the value of the

auxiliary parameter as -1, the value of the auxiliary function as COS(; N @X_ﬁ)

1, then the solution expressions are same as provided by 22,2 \2

homotopy perturbation method. That is, HAM contains HPM Sin(lﬁﬁx_ﬁj 3gs g 3 gs

logically. We use the same strategy here, but the difference -c 3—3;?2 2 " t—ht+ =

remains that of the different initial approximation.
Here we discuss two cases to present our analysis;

Case 1: When a=3c.Here h, =h, =0. We start with the
initial approximations as,

sin(%«/ﬁﬁx—ﬁ)zt

5 (41)
gs

cos[%\/f\/gx—ﬁjt

©oIN

In the same manner we get Vl as:
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(1 (1 ’
sm(E«/E gx—[}j 5 o 2s1n[§\/5\/§x—[3)

v,=h|-d 2.2,2 t—e| 242422 Ut
3gs g 3 gs 3gs g 3 gs
1 1 :
cos(f\/f gx—Bj cos(—\/f\/gx—[})t
2 2 2 2 2 2
-fl——t - ————— L t-ht—— >
3gs g 3 gs 9 gs
sin(lx/f gx—Bj
112 2 2 2 (1
t—|o—-t—+t3 sin| =~24Jgx-B |t |. 42
3s{3gs g 3 gs (2\/_\/5 Bjj “2)

For %2  from (35) we have, and putting & = 3b=2c=1d=-3e=21=-1; (35), we get:

2
u, = h(—3(—E+icos(x—3)jt—4(—E+icos(x—3)j t—(§+isin(x—3)jt
12 12 12 12 12 12

+%[—%+$cos(x—3)jcos(x—3)t—7—125in(x—3)2t+(—%+§cos(x—3)+
2
6(—E+icos(x—3)J —1[—1—1+icos(x—3)jcos(x—3)+isin(x—S)2
12 12 4\ 12 12 48
2
—4(—E+icos(x—3)j +(§—lcos(x—3)—2(—E+icos(x—S)j
12 12 3 4 12 12
1 . 1( 11 1 1 . 2
—Esm(x—3)+ﬁ(—ﬁ+Ecos(x—S))cos(x—3)—msm(x—3) )
2
2(E+isin(x—3)j —i[E+isin(x—3)Jsin(x—3)+icos(x—S)z—
12 12 12112 12 144
1 1/ 11 1 1 . 1 2
(Zcos(x—3)+Z(—E+Ecos(x—3)jcos(x—3)+ES|n(x—3)—4—8cos(x—3) j
11 1 1. 1. 111 1
——+-—c0s(X-3) [+=sin(x=3)(=sin(x-3)+—| ——+—C0S(X—3
(1212 ( )jes ( )(4 ( )4[1212 ( )J

. 1 1 .
sm(x—3)—Ecos(x—B)—Esm(x—3)cos(x—3))

1 5 1 1 1 1
+Ecos(x—3)(§—Zcos(x—3)—2(—ﬁ+Ecos(x—3)} —Esm(x—B)

+$(—%+$cos(x—3)]cos(x—3)—ﬁsin(x—3)z))

5 1 1 .
tP+=t-= -3)t-— -3)t). 43
*3 4cos(x ) 12sm(x ) (43)

Now for the second component V2 , from (35) we have,
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2
v, = h(10(13+1sin(x—3)Jt—8(13+1sin(x—3)J t—2(—11+lcos(x—3)}t+1(13+lsin(x—3))sin(x—3)t
12 12 12 12 12 12 12

3112
2
—1cos(x—3)zt—4(13+lsin(x—S))(B(l?’+lsin(x—3))t—2(13+lsin(x—3)) t+[—ll+lcos(x—3)jt+
36 12 12 12 12 12 12 12 12
1(13 1 . . 1 2 11 1 21011 1
E(EJrEsm(x—3)jsm(x—3)t—mcos(x—3) t)—4(—12+lzcos(x—3)j +6[_12+1ZCOS(X_3)JCOS(X_3)t
1. 2. 7 1. 13 1 . | 1(13 1 . .
—ism(x—3) t+§+zsm(x—3)—2(E+Esm(x—3)j +Ecos(x—3)+E(E+Esm(x—3)jsm(x—3)—
écos(x—3)t—%sin(x—s)z{gwt%sin(x—S)J—%cos(x—B) (%cos(x—?»)t—%(g+ésin(x—3)jtcos(x—3)

1. 1 . 1. 13 1 . 13 1 . :
= —3)t+— - - += - = _ ) il -
lzsm(x 3)t cos(x—3)sin(x—3)t) 12SIn(X 3)(3(12 12SIn(X 3)jt (l 125|n(x 3)} t

+(—E+ écos(x —3))t+i(5+isin(x —3)jsin (x=3)t —ﬁcos(x—S)2 t)).  (44)

12 12\12 12
And so on. ' We calculate the approximate6-terms solution series given by
HAM as;
W (X, 1) = Uy (X,1) +u (X, 1) +u, (X, 1) + Uy (X, 1) +u, (X, 1) + U (X, 1), 45)
W, (X 1) =V (X, 1) + v (X, ) + v, (X, ) + V5 (X, 1) + v, (X, 1) + Vg (X, ). (46)

Table 1 and Table 2shows the comparison of numerical Using a=3b=3c=12d=-3e=2f=-12 h=Lh=1964=3 ands=4.

solutions by HAM with the exact solutions of equation (3) and Taking the initial approximations

h=-1/2, and H(x,t) =1. 1
a, :—0.6975+0.1024cos(—3+\/ng,

(4) for u and v, when
a=3b=2c=1,d=-3e=2f=-1

Where (47)
h=0h,=0s=4 andt="6 " gifferent values Vv, —0.9024—0.1024sin (3—;\/&}
X. - Eor @# 3C. (48)
of % Case 2: For Then The other components calculated by Maple are given by:
1 3c—al
6,(t) =—| |3c—a|tanh| —— (s—t) |-a—3c |,
39 2

0, = h(~0.01572864000sin (3. +1.224744782x)’ t +0.1536000000
(~0.6975000000 +0.1024000000 cos (3. +1.224744782x))
cos (3. +1.224744782x)t +0.009620000000t — 0.3072000000
c0s (3. +1.224744782x )t —3.(~0.6975000000 + 0.1024000000
cos (~3.+1.224744782x))’t —0.1228800000sin (3. + 1.224744782x)t). (49)
7, = h(-0.01572864000 cos (~3.+1.224744782x)’ t + 0.1536000000
(0.9024000000 + 0.1024000000sin (~3.+1.224744782x))sin (~3.+1.224744782x)t
+1.953080000t + 0.4300800000sin (~3.+1.224744782x)t

-3 (0.9024000000 +0.1024000000sin (3. +1.224744782X))2 t
+0.1228800000 cos (—3.+1.224744782x)t). (50)
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Table 1: For V/l(x’t)'
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x; Exact Solution HAM Solution Absolute Exrror
8 —0.8462461147 -0.8462461328 1.81x10°°
6 —0.9984988094 -0.9984988237 1.43x10°
4 —0.8773274664 -0.8773274192 4.68x10°
2 —0.8259249139 -0.8259249615 4.76x107
0 —0.9898782761 -0.9898782401 3.60x10°°
2 —0.9048234826 -0.9048234712 1.14x107%
4 —0.8116606868 -0.8116606196 6.72x107%
6 —0.9742542858 -0.9742542936 7.8x107
8 -0.9320914578 -0.9329914127 4.51x10°¢
Table 2: For w2 (X.1).

x;j Exact Solution HAM Solution Absolute Error
-8 1.178708686 1.178708640 4.6x107®
-6 1.115130077 1.115130011 6.6x107
4 1.003145131 1.003145109 2.2x107%
2 1.159928102 1.159928131 29x107%

0 1.141423573 1.141423501 7.2x10°

2 1.000041804 1.000041824 2.0x107®

4 1.136217485 1.136217419 6.6x107%
6 1.164261096 1.164261037 5.9x107°
8 1.004744895 1.004744868 2.7x10°

Table 3: For A,
t=0.001, ;g gifferent value of % whenN=—1/2, and H(x,t) =1.

x;j Exact Solution HAM Solution Absolute Error
8 —0.5978337669 -0.5978203209 1.34x107

-6 —0.7592348358 -0.7592199650 1.49x107

-4 —0.7021062252 -0.7021443070 3.81x107

2 —0.6286724457 -0.6286640010 8.44x107

0 —0.7988752317 -0.7988092213 6.60x107

2 -0.6102288109 -0.6102466101 1.78x107°

4 —0.7305059455 -0.7305309980 2.51x107

6 -0.7339482560 -0.7339119033 3.64x107°

8 —0.6083706122 -0.6083642019 6.41x10°°
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0, = h(-0.081457(sin (~3.+1.2247x)" t+ 0.30720(~0.69750 +0.10240 cos (~3.+1.2247x))

cos(—3.+1.2247x)t +0.019240t —0.61440cos (—3.+1.2247x)t

—6.(~0.69750 +0.10240c0s (~3.+1.2247x))" t ~0.245765in (~3.+1.2247x)t +
0.50000(—6.(-0.015729(sin(-3. +1.2247x)) +0.15360

(~0.69750 +0.10240c05(~3. +1.2247x)) +0.50000 (~6.(~0.015729sin (-3.+1.2247x)’
+0.15360(—0.69750 +0.10240 cos (3. +1.2247x) )cos (3. +1.2247x)

+0.0096200 - 0.30720cos (3. +1.2247x) ~3.(~0.69750 +0.10240 c0s (~3.+1.2247x))’
—0.12288sin (-3.+1.2247x))(-0.69750 +0.10240 cos (3. +1.2247X))

+0.0471865sin (-3.+1.2247x)" —0.46080-0.69750 +0.10240 cos (3. +1.2247x)
cos(—3.4+1.2247x) - 2.3726 +0.77414 cos(-3.+1.2247x)

+9.(~0.69750 +0.10240c0s (3. +1.2247x))’ ~0.14746 sin (-3.+1.2247x)
+0.018874cos (~3.+1.2247x)° - 0.18432(0.90240 + 0.10240sin (~3.+1.2247x))

sin (3. +1.2247x) +3.6000(0.90240 + 0.10240sin (~3.+1.2247x))’

+0.15360(-0.015729 sin (~3.+1.2247x)’ +0.15360(~0.69750 +0.10240

cos(—3.+1.2247x)) +0.0096200 —0.30720 cos(-3.+1.2247x)

~3,(~0.69750 +0.10240 cos (~3.+1.2247x))’

—0.12288 sin(-3.+1.2247x)) cos (~3.+1.2247x) +0.25083

(-0.057791sin (-3.+1.2247x)(+0.56436 (-0.69750 +0.10240 cos (-3.+1.2247x))

sin(=3.+1.2247x) +0.37624 sin (~3.+1.2247x) - 0.15050 cos (~3.+1.2247x))

sin(-3.+1.2247x) 1. (-0.070779cos (3. +1.2247x)” ~1.000010*

sin(~3.+1.2247x)’ +0.69120(~0.69750 +0.10240 cos (-3.+1.2247x))

cos(~3.+1.2247x) +0.46080 cos (3. +1.2247x) +0.18432sin (-3.+1.2247 X))
(~0.69750+0.10240 cos(—3.+1.2247x)))t2). (51)

Table 4: For V2 (X, 1).

xj Exact Solution HAM Solution Absolute Error
8 0.8788967666 0.8788422909 5.45x107°
-6 0.9840980419 0.9840164022 8.16x10°°
4 0.8001036526 0.3001409880 3.73x10
2 0.9782190462 0.9782664041 4.74x10°
0 0.8879493112 0.8879001912 491x107°
2 0.8488322900 0.8488550406 2.28x107
4 0.9993348625 0.9993205187 1.43x10
6 0.8067062979 0.8067119025 5.60x107°
8 0.9528153967 0.9528045663 1.08x107}
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And so on.
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7, = h(0.081457 cos(~3.+1.2247)’ t+0.30720(0.90240-+ 0.10240sin (~3.+1.2247))

sin(—3.+1.2247x)t +3.9062t +0.860165sin (-3.+1.2247x)t -
~6.(0.90240+0.10240sin (~3.+1.2247x))  t +0.24576 cos(~3.+1.2247x)t
+0.50000(-6. (0.015729 cos(~3.+1.2247x)’
+0.15360(0.90240 +0.10240sin (~3.+1.2247x) )sin (-3.+1.2247x)
+1.9531+0.43008 sin (~3.+1.2247x) - 3.(0.90240+ 0.10240sin (~3.+1.2247x) )
+0.12288 cos(~3.+1.2247x))(0.90240+ 0.10240sin (-3.+1.2247x))
~0.066060 cos(-3.+1.2247x)’ +0.64512(0.90240 +0.10240sin (~3.+1.2247x))
sin(-3.+1.2247x)+8.2145+1.6589sin (-3.+1.2247x) -12.600
(0.90240+0.10240sin (~3.+1.2247x))* +0.14746 08 (~3.+1.2247X)
~0.018874 sin (~3.+1.2247x)’ +0.18432(~0.69750+ 0.10240 cos(~3.+1.2247x))
c0s(~3.+1.2247x) ~3.6000(~0.69750 +0.10240c0s 3. +1.2247x))
+0.15360 (~0.015729 cos(~3.+1.2247x)” +0.15360
(0.90240+0.10240sin (-3.+1.2247x))sin (-3.+1.2247x) +1.9531

+0.43008 sin (~3.+1.2247x) - 3.(0.90240+ 0.10240sin (~3.+1.2247x))’

+0.12288 cos(-3.+1.2247x))sin (-3.+1.2247x) - 0.25083

(0.057791 sin(-3.+1.2247x)cos (~3.+1.2247x) - 0.56436
(0.90240+0.10240sin (-3.+1.2247x) ) cos(~3.+1.2247x) +0.52674
cos(—3.+1.2247x)—0.15050 sin(-3.+1.2247x)) cos(-3.+1.2247x)-1.

(~1.000010* cos(~3.+1.2247x)" ~0.070779sin (-3.+1.2247x)’

+0.69120(0.90240 +0.10240sin (-3.+1.2247x) )sin (-3.+1.2247x)

—0.64512 sin(-3.+1.2247x) - 0.18432cos (-3.+1.2247x))

(0.90240+0.10240sin (~3.+1.2247x) )t*). (52)

Table 3 and Table 4 list the approximate solutions by the HAM

Following the same procedure as in case 1, we finally obtain the and the absolute errors between the exact solutions and the
6-terms approximations solution given by numerical solutions for U(X,t) and V(X,t) at
gy (%, 1) =0y (X, 1) + 0, (X, t) + 0, (%,8) + Gy (X, 1) + U, (X, t) + U5 (X, 1), Comparison of the numerical results obtained by HAM and

(83)

ADM presented in the following tables:

7, (1) =0, (%, 8) + 0,0, ) + 7, (1) + 7, (x,) + 0, (x, 1) + U, (x,t),  CaseL:

(54)

Table A:For u(X,t).

For V(X 1).
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xi Hm -um| |Hm—ﬂm| Vm—le |vm_v.dﬂll
8 1.81x107% 2.65x107% 4.6x10 1.11x10™%
6 1.43x10°% 2.50x107% 6.6x10°% 3.44x10°%
4 4.68x107 1.57x107% 22x1078 1.41x10™%
2 4.76x10°® 1.97x107% 2.9x107® 1.45x107%
0 3.60x10°° 3.09x107% 7.2x107% 2.96x10%
2 1.14x10° 1.38x107% 2.0x10°¢ 2.15x10%
4 6.72x107% 1.22x107% 6.6x107 1.58x107%
6 7.8x107° 3.53x107% 5.9x10°% 2.33x107%
8 4.51x107° 9.92x107% 2.7x10 2.81x107%
Case 2:
Table B: For u(X,t).
For v(X,t).
X; T (T WV eoer = Vrzane | |V cner = V.a00e
-8 1.34x107 54757x10% 545x107 9.3182x107%
-6 1.49x107 5.4945x107% 8.16x107° 9.3170x10™®
-4 3.81x107 5.4762x10™% 3.73x107 9.3214x107%
2 8.44x107° 5.4824x107® 4.74x107 9.3170x107%
0 6.60x107 5.4702x107® 4.91x107° 9.3208x107%
2 1.78x107° 5.4778x107® 2.28x107° 9.3173x107®
4 251x107 5.4789x107% 1.43x107° 9.3161x107"
6 3.64x107 5.4792x107% 5.60x107 9.3195x107™%
8§ 641x107° 5.4786x10°% 1.08x10°° 9.3221x10™"
Conclusion REFERENCES

The homotopy analysis method has been well applied on the
non-linear reaction diffusion system of equations of Lotka-
Volterratypefor finding the approximate solutions. The
relationship made between the exact solutionand the
HAMshows that HAM is nearly close to the exact solution, and
it is very effectiveand accurate as presented by Table 1, 2, 3and
4. The obtained numerical values as presented in Table A, and
Table B show much accuracy of this method as compared to the

ADM. Further if we take h= _1, we can obtain the results of
ADM as a special case of the HAM.

The HAM has the non-zero auxiliary parameter h, by means of
which we can control and adjust the convergence area of the
series solutions. Unlike the other numerical methods,itgivesa
good degree of accuracy for solving high nonlinear problems.
Obviously, it is concluded that the HAM is a very reliable,
efficient and powerful tool with the help of which we can
solvehighly non-linear problems in science and engineering
without any limitations andassumptions.
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