
 

 

 

INTRODUCTION 

 

Climate change is gradually becoming complex around the 

globe. Whereas, from the hydrological perspective, the major 

effects of climate change are the rising sea levels due to the 

increase in temperature and amplification in the frequency 

and intensity of extreme events (IPCC, 2013).The increased 

emission of greenhouse gases in the environment resulting 

from human activities is the prime cause of global warming 

(Huang et al., 2011; Chu et al., 2010). The present rise in the 

global temperature may affect the hydrometeorological cycle, 

resource base, public health, commercial and domestic water 

demand (Huang et al.,2011). Global warming is also 

apprehended to give rise to extreme climatic events, including 

hurricanes, heavy floods, and sultriness (Masson et al., 2014). 

The average temperature had increased by 0.74 oC from 1906 

to 2005, and a significant increase of 0.13 oC per decade has 

been recorded over the last 50 years. Therefore, for the sake 

of studying climatic variations, Global Circulation Models 

(GCMs) have been developed, which serve as the main source 

for providing information on climate change at regional and 

global levels (IPCC, 2007). 

Whereas, Bias correction is a major concern regarding the 

accuracy of data acquired from GCMs. Bias Correction 

generate climate predictions at the local scale for impact 

studies such as crop and hydrology simulations (Su et al. 

2016; Liu et al. 2017). Furthermore, several models have been 

developed for future data based on stochastic and regression 

methods. Statistical Down Scaling Model (SDSM) is 

frequently employed for downscaling by integrating 

regression as well as stochastic weather creators (Wilby et al., 

2002). Similarly, dynamic and statistical downscaling 
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This study aims to the evaluation of an extensively used decision support tool “Statistical Down Scaling Model” (SDSM) for 

assessment of future variation in Precipitation (PPT), Temperature maximum (Tmax) and Temperature minimum (Tmin) of 

Jhelum River’s Drainage Area (JRDA), Pakistan. The current framework considered the partial correlation percentage (PRP) 

within 46.50%, 46.06%, 35.96%, and 21.97% to evaluate the effective predictors or the predictands. The R2 values for both 

SDSM-M and SDSM-A models were calculated in scenarios 2.6, 4.5, and 8.5 RCPs under CIMP5 (CanESM-2). The R2 

precipitation values under all scenarios ranged between 82%-88% in SDSM-M. Whereas, R2 for Tmin and Tmax was between 

69%-71% and 68%-74%, respectively. For the SDSM-A model, precipitation ranged between 76.5%-80% for all scenarios, 

while Tmin and Tmax were found to be lying between 85%-92% and 89%-96%, respectively. Both models reflected seasonal 

and annual projected precipitation under RCPs 2.6, 4.5, and 8.5 from 13%-68%, 25%-69%, and 13%-71% in the 2020s-2080s, 

respectively. Tmin in annual models under RCP 2.6 decreased from -0.91 oC to -1.89 oC, -0.20 oC to -1.46 oC and -0.87 oC to -

1.90 oC.The temperature under RCPs 2.6, 4.5, and 8.5 expressed a rise during the period 2020s-2080s from 0.04 oC to 3.75 oC, 

1.02 oC to 2.62 oC, and 1.03 oC to 2.60 oC for the monthly model. Furthermore, an increasing trend was observed for Tmax 

from 0.01 oC to 4.18 oC, 0.01 oC to 4.49 oC and 0.12 oC to 3.90 oC in the period 2020s-2080s under RCPs 2.6, 4.5, and 8.5. 

The results revealed that the region will be generally warmer and wetter compared to the historical record. SDSM-A exhibited 

normal variation for the observed data compared to SDSM-M. It was concluded that the SDSM-A provided good results for 

average seasonal and annual temperatures (Tmax and Tmin). The results predicted the occurrence of more extreme events in 

JRDA during the 21st century. This study will be useful for water resources under different climatic conditions. 

Keywords: SDSM-M (Monthly Statistical downscaling Model), JRDA (Jhelum River Drainage Area), SDSM-A (Annual 

Statistical downscaling Model), PRECIS (Providing Regional Climates for Impacts Studies), CanESM2 (Canadian the Second 

Generation Earth System Model), GCMs (Global Circulation Models), RCMs (Regional Climate Models) 
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methods were observed the level of bias for a yearly cycle in 

the data (Su et al., 2017) and also found that the causes of 

variation in the weather of Auckland due to the disparity 

between climate model simulations and climate processes 

(Lowryet al., 2017). All the GCMs predicted a thorough 

rainfall behavior in the Lucas Creek catchment area, and these 

GCMs can be categorized as a misty GCM related to the 

Weihe River catchment, China (Akhter et al., 2008). 

Moreover, different combinations may assess the confidence 

limits, as suggested in the projected climate changes (Borges 

et al., 2017). For patterns within the data, the records were 

verified to meet the necessities of the MK and SR tests for 

trends within the data of certain sites. Sen’s slope method is 

employed to realize the slope scale in the record (Zaman et 

al., 2017; Zaman et al., 2016). Studies showed that annual 

precipitation (PPT) levels over the Midwest may increase for 

all RCP 8.5 models by the 2080s. However, the changes found 

prominent in winter (DJF) and spring (MAM). In contrast, 

mean changes in summer (JJA) and fall (SON) are relatively 

small (Byun and Hamlet, 2018). 

RCMs were also used in a study to determine the impact of 

regional climate and to downscale the average precipitation 

and air temperature for 2071-2100 in the upper mountainous 

area of Pakistan (Akhter et al., 2008; Ashiq et al., 2010). 

Similarly, many researchers had employed SDSM in their 

projects to downscale the temperature, precipitation, and 

evaporation data in different catchments (Azmat et al, 2018; 

Borges et al., 2017). On the other hand South Asian countries 

(e.g. India) also showed a trend towards a warmer climate, 

which is experiencing a rapid rise in minimum surface 

temperature, extreme heat, and cold events (Basha 

Ghouse,2017). 

There are two main downscaling approaches: (a) statistical 

downscaling, and (b) dynamic downscaling. The impact of 

climatic change in a catchment is commonly assessed by the 

downscaling and the GCM outputs were used as boundary 

conditions to derive a regional climate model (RCM)up to 5–

50 km on a regional scale. This approach responds to different 

external forcings in physically consistent ways (Wilby, 2007). 

Whereas, Dynamic Downscaling only involves RCMs that 

appeal for parity scenarios such as inputs to minimize the 

climatic data for the concerned periods at high spatial 

resolution (Rummukanian, 2010). It often requires specific 

point climate projections to capture fine-scale climate 

variations, particularly in regions with complex topographic 

coastal or island locations and areas of highly heterogeneous 

land cover (Fowler et al., 2007). 

Global Circulation Models (GCMs) deduced global systems 

like Oceans and atmosphere for predicting the divergence and 

change in weather variables for different grades (Fowler et al., 

2007). Similarly, statistical downscaling is generally helpful 

to make the climatic record at the location level for flood 

studies. Furthermore, the statistical method caters to the local 

level climatic variables (predictors) and large level climatic 

variables (predictors) (Wilby & Dawson, 2007). 

The detailed review, as performed above, it reveals that very 

few research studies have been conducted so far in the Jhelum 

River Drainage Area (JRDA), Pakistan. In fact, throughout 

South Asia, a gap exists between the capabilities of climate 

models to predict future climate change and the information 

relevant for the environmental studies. Statistical 

downscaling models are commonly used to fill this gap. 

There are mainly three sub-models: i. Monthly, ii. Seasonal 

and iii. Annual. However, in the previous studies (Huang et 

al., 2011), only the monthly sub-model has been used to 

downscale the climatic variables.Although the research has 

been conducted in the Jhelum River basin in Pakistan using 

the DD approach and interpolation methods for downscaling 

temperature and precipitation, Akther et al. (2008) reported 

that PRECIS (Providing REgional Climates for Impacts 

Studies) has several sources of uncertainty. Similarly, Ashiq 

et al. (2010) stated that methods of interpolation could not 

improve the systematic errors inherent in PRECIS. Moreover, 

the above-mentioned studies forecast the temperature and 

precipitation data for the period 2071-2100 and not for the 

entire century. The objectives of this research were (1) to 

determine the applicability of SDSM sub-model of SDSM for 

Precipitation, Tmax and Tmin in JRDA, (2) to assess the 

SDSM sub-models for monthly and annual timescales and (3) 

to predict the future climate changes under IPCC scenarios 

(RCPs 2.6, 4.5 and 8.5) for the 21st century. The bid was to 

find out the influence of climatic variation on the Jhelum 

River Drainage Area (JRDA) Pakistan. 

Research Area: The drainage area of the Jhelum River is 

situated on the southern gradient of the Himalayas, between 

the 33 ° N to 35 ° 12'N latitude and the 73 ° 07 to 75 ° 40 East 

longitude.The total span of the study area is 33425 square 

kilometers (at the Mangla Reservoir). The Jhelum River 

originates from Verinag Spring situated between the 

Himalayan Mountains of Jammu and Kashmir and the Pir 

Panjal Mountains. The major tributaries of the Jhelum River 

are the Neelum and the Kunhar, which have confluence at 

Muzaffarabad and Kohala, respectively (Figure 1). The 

drainage area is located in the complex monsoon region, 

which witnesses intense summer rainfall and light winter rain 

as well as snow. However, due to winter snowfall, which is a 

big source of summer runoff, precipitation is mostly 

accumulated in the Jhelum drainage area. 

 

MATERIALS AND METHODS 

 

Data Collection: Observed weather data (1971-2012) for all 

stations were collected from the Water and Power 

Development Authority (WAPDA) Pakistan and Pakistan 

Meteorological Department (PMD). Table 1 describes the 

features of climatic stations of the Jhelum River drainage area 

in Pakistan. The 26 predictors of CanESM2 (The 
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2ndGeneration Canadian Earth System Model) for CMIP5 

(RCPs 2.6,4.5 &P8.5) were acquired from the Canadian 

Climate Centre. CanESM2 is a part of the Canadian Modeling 

Community's contribution to the IPCC, AR5. Main modules 

of the Earth System contain i) Atmospheric General 

Circulation Model which has triangular resolution T63 with a 

hybrid vertical domain in 35 layers, ii) Ocean GCM4 

developed from the NCAR CSM Ocean Model and defined 

by 256x192 horizontal resolution and 40 vertical layers and 

iii) CanSim1 sea-ice model and Canadian Land Surface 

Scheme (CLASS2.7). Global Gaussian reduced grid 

associated with spectral truncation T42 contains 128x64 grid 

cells in the longitude-latitude path. 
The average monthly precipitation over the JRDA is shown 

in figure 2. As per Figure 2, the months of July and August 

showed the highest value of precipitation during the year due 

to Monsoon. Another monthly peak of precipitation was 

observed in February and March, as shown in Figure 2. 

Figure: 3 Mean max. Monthly air Temperature over entire 

Jhelum River Drainage Area (JRDA) 

 
Figure 1. The Jhelum River Drainage area presenting weather stations and area in Pakistan. 

 

http://climate-scenarios.canada.ca/?page=canesm2-predictor-notes#figure1
http://climate-scenarios.canada.ca/?page=canesm2-predictor-notes#table3
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Table 1. Weather station of the research and features. 
Sr. Location Latitude 

(°) 

Longi-

tude (°) 

Tmax. 

(oC) 

Tmin. 

(oC) 

AA.PPT 

(mm) 

1 Bagh 34.0 73.8 12 22 746 

2 Balakot 34.6 73.4 12 25 766 

3 Gari Dupatta 34.2 73.6 12 26 922 

4 Gujer Khan 33.3 73.3 15 29 503 

5 Kotli 33.5 73.9 16 28 725 

6 Muzaffarabad 34.4 73.5 14 28 712 

7 Palandri 33.7 73.7 12 16 840 

8 RawalaKot 34.0 74.0 9 21 745 

9 Mangla 33.1 73.6 17 30 485 

10 Naran 34.9 73.7 9 12 188 

11 Astore 35.2 74.5 4 16 187 

*Tmax= Max. Temperature; *Tmin=Mini. Temperature; 

*AAPPT=Average Annual Precipitation 

 
Figure 2. Mean Monthly precipitations over entire Jhelum 

River Drainage Area (JRDA). 

 
Figure3. Mean Monthly Tmax over entire Jhelum River 

Drainage Area (JRDA). 

 

Mean monthly Max. Temperature has been presented in 

Fig. 3. The figure reveals the increase in Tmax during May 

and June. From July to September, monthly Tmax is almost 

at the same level. SDSM is made up of a stochastic weather 

generator (SWG) and multiple linear regression (MLR) 

compounds. Furthermore, multiple linear regressions develop 

a relationship between NCEP, large-scale variables, and local 

anesthetic scale variables as well as different regression 

factors (Liu et al., 2009). In SDSM, some suitable predictors 

are selected through a multiple linear regression model 

utilizing the combination of the correlation matrix, partial 

correlation, P value, histograms, and scatter plots. Multiple 

co-linearity must be considered during the selection of 

predictors. There are two main kinds of optimization 

techniques: (1) Ordinary Least Square (OLS) and (2) Dual 

Simplex (DS). Furthermore, for the determination of the 

relationship, predictors are selected by applying the 

combination of a correlated matrix, Partial correlation, P-

value, histogram, and scatter plot. (Huang et al.,2011). For the 

application of predictors, three kinds of sub-models can be 

used i.e. monthly, seasonal, and yearly to determine the 

statistical relationship between the local scalar variables and 

the large-scale atmospheric variables. Annual models derive 

the same type of regressions throughout the whole year, and 

the monthly sub-model presents the 12 regressions, offering a 

varied calibration parameter for every month.SDSM converts 

the records normally adore using the data in the regression 

equation (Khan et al., 2006).Two kinds of daily time series, 

namely (1) daily historical site data and (2) NCEP daily 

predictors are used for developing SDSM. The outputs of this 

model are daily time series, which can be produced by forcing 

the NCEP or HadCM3 predictors (Huang et al. 2011). 

 

 
Figure 4. Mean monthly Tmin over entire Jhelum River 

Drainage area. 

 

Selection of Predictors: In the present framework, the 

selection of predictors is of paramount importance. Therefore 

a systematic quantitative method is applied at each climatic 

station for the collection of large-scale variables. 

The following steps were followed to select the predictors. 

1. Firstly, a matrix of correlation was established between 

26 NCEP predictors (Table 2) and predictants. 

Afterward, the twelve positive correlation coefficient 

predictors were selected from 26 and ranked in the 

descending order with the highest correlation between all 

predictors (Huang et al. 2011). 

2. The absolute correlation coefficient was determined 

among the predictors and the predictands. P value was 

obtained by regression ingesting the remaining highly 

correlated predictors. 

3. The predictors having a p value less than α (0.05) were 

removed, while the predictors having significant 
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correlation values (greater than 0.95) were selected to get 

rid of the multiple relations. 

4. Percent decrease in absolute partial correlation (PRP) 

regarding absolute correlation was found for every 

predictor by using the equation (1). 

𝑃𝑅𝑃 = (𝑃. 𝑟 − 𝑅)/𝑅  (1) 

PRP= % reduction in partial correlation (PRP) with 

respect to absolute correlation, P.r= Partial correlation 

coefficient.R= Correlation coefficient among predictors 

and predictands. 

5. The Predictors having minimum PRP in partial 

correlation are selected as 2nd most appropriate predictor. 

This predictor may or may not have a strong relation with 

the first one (Table 3). 

6. From step 2 to 5 need to be repeated for the selection of 

3rd or 4th predictors. 

 

Table 2. List of used Predictors for Screening. 
Sr. Predictor      Description  Sr. Predictor    Description  

1 P_f Surface airflow 

Strength 

14 r500 500hPa relative 

humidity 

2 P_u Surface zonal 
velocity 

15 p8_f 850hPaairflow 
strength 

3 P_v Surface meridional 

velocity 

16 P8_u 850 hPa zonal 

velocity 
4 P_z Surface Vorticity 17 P8_v 850hPa meridional 

velocity  

5 P_th Surface Wind 
Direction 

18 P8_z 850hPa vorticity 

6 P_zh Surface divergence  19 p8th 850hPa divergence 

7 Rhum Surface relative 
humidity 

20 p8zh 850 hPa divergence  

8 P5_f 500hPa airflow 

strength 

21 r850 850hPa relative 

humidity 

9 P5_u 500hPa zonal 

velocity  

22 p500 500hPa 

geopotential Height 

10 P5_v 500 hPa Meridional 
Velocity 

23 p850 850hPa 
geopotential height 

11 P5_z 500 hPa vorticity 24 temp Mean Temp. at 2m 

12 p5th 500hPawind 
direction 

25 shum Surface specific 
humidity  

13 p5zh 500hPa divergence 26 mslp Mean sea level 

pressure  

 

Table 3. screening of most effective predictors. 

Sr. Predictors R P.R (%) P. R-R/R (%) 

1 p1-f 0.227 8.4 35.96 

2 p1-u 0.164 7.7 46.06 

3 p1-v 0.200 9.5 46.50 

4 p1-z 0.309 7.1 21.97 

5 p5-f 0.127 0.0 -1.00 

6 p5-u 0.209 0.0 -1.00 

7 p5-v 0.382 6.7 16.55 

8 p5-z 0.227 0.0 -1.00 

9 p8-f 0.118 0.0 -1.00 

10 p8-u 0.291 4.4 14.13 

11 p8-v 0.300 0.0 -1.00 

12 p8-z 0.182 0.3 0.65 
*Substances in the bold are particular predictors 

Calibration and Validation: SDSM Model 4.2.9 and 

CanESM2 were used to draw the future projections of the 

climatic data. The established monthly and yearly sub-models 

were labeled as SDSM-M and SDSM-A, respectively. For 

each station, individual models were developed for all 

predictand (Tmax, Tmin, and PPT) and the same predictors 

were used for the calibration of models. Therefore, the 

conditional sub-model was applied to Tmax and Tmin, and 

the unconditional sub-model was used for precipitation. After 

establishing the correlation between the models, the sub-

models were simulated by using the observed PPT, Tmax, and 

Tmin from 1971-2001 under the RCPs 2.6, 4.5, and 8.5 of the 

IPCC scenarios. The results of the simulated models were 

compared with the observed data to determine the coefficient 

of determination (R2), Root Means Square Error (RMSE), 

Mean and standard deviation of the temperature and 

precipitation. These parameters indicate the accuracy of the 

model in the predicted data as well as how well the model 

predicts. Generally, the previous studies calculate the above-

mentioned performance indicators at every weather station, 

and then the mean from all weather stations is determined. 

Whereas, our study firstly determined the monthly mean of 

the simulated data (Tmax, Tmin, and PPT) by both models 

utilizing the CIMP5 predictors. Afterward, it was compared 

graphically for the validation period. 

 

RESULTS AND DISCUSSION 

 

Screening of Predictors: We determined the 1st, 2nd and 3rd 

predictors for the PPT, Tmax and Tmin data as highlighted in 

table 3. It was identified that the Surface airflow strength (p_f) 

was the best predictor for both temperature and precipitation. 

Besides, there were two super predictors, surface meridional 

velocity (p_v) and surface zonal velocity (p_u) for almost all 

weather stations. Similarly, surface meridional velocity (p_v) 

was the main predictor in the lower area of the Himalayan of 

the Jhelum River Drainage Area (JRDA) Pakistan. 

Calibration of Statistical Downscaling Model: PPT, Tmax, 

and Tmin were simulated for the period 1985-2001 by using 

both sub-models and compared with the observed data as 

shown in Table 4, 5. Although both models provided good 

results, SDSM-A illustrated better results than SDSM-M as 

revealed by the performance indicators. Regarding PPT, the 

monthly model performed better than an annual model with 

lower R2 and higher values of RMSE than those of SDSM-M, 

for all IPCC scenarios. The standard deviation of SDSM-M 

simulation was lower compared to SDSM-A with 3.78, 3.76, 

3.59 for all RCPs 2.6, 4.5 and 8.5, respectively. To validate 

both model datasets for all scenarios of the IPCC is generated 

from 2002-2012. Tables 4 and 5 show the results of SDSM-

M and SDSM-A and the mean values which were worked out 

by applying the dataset for whole climatic stations. It was 

observed in the case of both temperatures (max & min) that 

the R2 of SDSM-A is 85% to 96%, and RMSE for min temp 
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was from 3.25 oC to 3.45 oC. Similarly, RMSE for Tmax was 

from 7.96 oC to 8.20 oC lower than the SDSM-M model. In 

the case of precipitation, the R2 and RMSE values were 82% 

to 88% as well as 380mm for 381.2mm, respectively, based 

on the SDSM-M model. 

 

Table 4. Statistical comparison of observed and 

downscaled mean monthly Tmax, Tmin and 

Precipitation by SDSM-M Sub-models (2002-

2012). 
SDSM-M Statistical Downscaling 

Model-Monthly 

Standard 

Deviation 

(σ) mm     R-

Square 

RMSE Mean 

(µ) mm 

Precipitation 
    

 
Observed  

  
104.51 13.81  

RCP2.6 0.88 380.15 165.75 3.76  
RCP4.5 0.86 380.00 161.25 3.87  
RCP8.5 0.82 381.02 161.21 3.59 

Min. Temp. 
    

 
Observed  

  
11.01 1.13  

RCP2.6 0.79 10.25 13.51 0.06  
RCP4.5 0.69 10.20 13.45 0.06  
RCP8.5 0.71 10.31 13.43 0.11 

Max Temp. 
    

 
Observed  

  
11.10 11.99  

RCP2.6 0.74 9.77 24.10 0.06  
RCP4.5 0.73 9.91 24.13 0.05 

  RCP8.5 0.68 9.78 24.11 0.06 

 

Table 5. Statistical comparison of observed and downscale 

mean monthly Tmax, T min and Precipitation by 

SDSM-A Sub-models (2002-2012). 
SDSM-A Statistical Downscaling Model-

Annually 

Standard 

Deviation 

(σ) mm     R-Square RMSE Mean 

(µ) mm 

Precipitation 
    

 
Observed  

 
104.51 13.81  

RCP2.6 0.80 459.52 174.63 4.63  
RCP4.5 0.79 327.07 151.73 4.26  
RCP8.5 0.76 376.70 154.99 9.54 

Min. Temp. 
    

 
Observed  

 
11.01 1.13  

RCP2.6 0.85 3.45 11.72 0.11  
RCP4.5 0.88 3.25 11.77 0.11  
RCP8.5 0.92 3.35 11.73 0.10 

Max Temp. 
    

 
Observed  

 
11.10 11.99  

RCP2.6 0.94 8.20 24.19 0.11  
RCP4.5 0.89 7.96 21.74 0.22 

  RCP8.5 0.96 8.13 23.81 0.18 

 

From table 4, 5, both models presented good results. 

However, the results with higher values of R2 were better 

compared to the other model. SDSM-A performed much 

better compared to SDSM-M. Nevertheless, SDSM-M 

produced a good result in the case of precipitation compared 

to SDSM-A for all scenarios of the IPCC. This indicated that 

SDSM-A is not capable to find the deviation in the observed 

record of precipitation. It is also evident from Table 4, 5 that 

most of the time, T max, T min, and rainfall predicted by the 

RCP4.5 and RCP8.5 produced better results. The RCPs 2.6, 

4.5, and 8.5 were calibrated by both models using the dataset. 

However, the results of RCP 2.6 were also satisfactory. 

Downscaling Project Precipitation and Temperature: 

SDSM-M and SDSM-A were used to simulate PPT, Tmax, 

and Tmin, in lieu of the future phases of the 2020s (2006-

2020), 2050s (2021-2050), and 2080 (2051-2080) under the 

RCPs 2.6, 4.5, and 8.5 scenarios. The simulated monthly, 

seasonal and annual PPT, Tmax and Tmin data were equated 

with the baseline record (1971-2012) to find out the variations 

in the 2020s, 2050s, and 2080s in the study area and the results 

were presented in table 6, 7, 8, respectively. 

Precipitation: Table 6 shows the variation in annual as well 

as seasonal mean precipitation for the 2020s, 2050s, and 

2080s regarding the baseline record under the IPCC scenarios 

RCP 2.6, 4.5, and 8.5 from both models. Both models 

represented a mean yearly increment for historical data in the 

2020s, 2050s, and 2080s for all scenarios. Under the RCP 2.6 

scenarios, SDSM-A showed an increase in the average annual 

precipitation by 40% in 2020, 2050, and 2080 in the JRDA. 

Whereas, SDSM-M presented an increment of 36% under 

RCPs 4.5 and 8.5. For SDSM-A and SDSM-M, there was a 

slightly increasing trend with 35-36% and 31-40%, 

respectively. Rendering to the sub-models, all seasons 

expressed an increasing trend in the precipitation for the 

2020s, 2050s, and 2080s.  

 

Table 6. Future Changes in precipitation (%) with respect 

to baseline under RCP scenarios  
  SDSM-A SDSM-M  

RCP2.6 RCP2.6  
2020 2050 2080 2020 2050 2080 

Summer 15 15 15 33 34 34 

Spring 41 41 43 56 55 55 

Autumn 68 69 68 69 68 68 

Winter 40 41 41 14 13 14 

Annual 40 40 40 35 36 36  
RCP4.5 RCP4.5 

Summer 30 26 25 33 33 32 

Spring 30 33 35 55 55 55 

Autumn 60 58 58 69 68 68 

Winter 26 25 26 16 14 16 

Annual 36 35 36 35 35 35  
RCP8.5 RCP8.5 

Summer 25 14 13 33 33 34 

Spring 41 33 34 57 57 58 

Autumn 65 58 57 70 70 71 

Winter 36 25 27 14 13 14 

Annual 40 31 31 35 35 36 
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Both models during the autumn season showed an increasing 

trend of precipitation up to 70 by the end of this century for 

all scenarios of the IPCC. SDSM-A revealed an estimated 

increment of precipitation compared to SDSM-M. Spring and 

autumn exhibited changing behaviors of precipitation trends. 

Minimum Temperature, Tmin: Table 7 shows the change in 

the Tmin in the 2020s, 2050s, and 2080s with respect to a 

baseline record under RCPs 2.6, 4.5 and 8.5 scenarios from 

both SDSM-A and SDSM-M. The change in Tmin was 

projected by both models with different magnitude. In the 

case of the SDSM-A model, Tmin was found to be 

decreasing, for all IPCC scenarios in the 2020s, 2050s, 2080s 

during annual and seasonal. In winter for all scenarios, Tmin 

was increasing 1.26 oC to 1.29 oC for RCP 2.6, and RCP 4.5 

also showed an upward trend from 1.54 oC to 1.88 oC, 

respectively. By using SDSM-M, the Tmin is increasing for 

all the IPCC scenarios. Under RCP 2.6, minimum temperature 

shows an increasing tendency by the start of the century with 

3.75 oC. However, it expressed a gradual decline with 0.33 oC 

during the summer season. An almost similar situation was 

observed during the spring season with a 3.74 oC increment at 

the beginning of the century, and gradually declining till 0.11 
oC by the end of the century. For the autumn season, 

temperature showed an increasing trend at 2.99 oC, but by the 

end, the temperature was on decreasing side with -0.10 oC. 

Similarly, for the other scenarios, the minimum temperature 

expressed an increasing trend over the entire JRDA in 

Pakistan. 

 

Table 7. Future Changes in Tmin under RCP 2.6, 4.5, 8.5 

Scenarios with two sub-models. 
  SDSM-A SDSM-M  

RCP2.6 RCP2.6  
2020 2050 2080 2020 2050 2080 

Summer -1.84 -1.84 -1.87 3.75 0.32 0.33 

Spring -1.02 -0.93 -0.77 3.74 0.04 0.11 

Autumn -0.87 -1.06 -1.36 2.99 0.04 -0.10 

Winter 1.29 1.26 1.27 2.67 1.52 1.49 

Annual -0.91 -0.95 -0.98 3.04 0.21 0.20  
RCP4.5 RCP4.5 

Summer -1.18 -1.46 -1.46 1.03 1.02 1.04 

Spring -0.35 -0.63 -0.37 1.18 1.19 1.28 

Autumn -0.20 -0.72 -1.02 1.18 1.12 0.98 

Winter 1.88 1.54 1.60 2.63 2.62 2.62 

Annual -0.28 -0.60 -0.59 1.21 1.19 1.19  
RCP8.5 RCP8.5 

Summer -1.85 -1.87 -1.90 1.03 1.06 1.09 

Spring -1.05 -0.87 -0.58 1.19 1.23 1.29 

Autumn -0.87 -1.11 -1.36 1.21 1.17 1.02 

Winter 1.30 1.14 1.12 2.66 2.60 2.55 

Annual -0.92 -0.97 -0.97 1.22 1.23 1.21 

 

Table 8 shows the change in the Tmax in the 2020s, 2050s, 

and 2080s with respect to a baseline record under RCPs 2.6, 

4.5, and 8.5 scenarios from both models. Both models showed 

incremental changes for baseline in the 2020s, 2050s, and 

2080s except for RCP 2.6 in SDSM-M, which showed a 

decrease in Tmax during all seasons. In summer, temperature 

expressed a decreasing trend from -7.07 oC in the 2020s and -

4.19 oC by the end of the 21st century. For the spring, autumn 

and winter temperature revealed a decrease at the start of the 

century with -7.55 oC, -9.57 oC, and -7.49 oC in the 2020s, 

respectively, but in the 2080s temperature turned its trend 

towards increase with 2.38 oC, 0.22 oC, and 5.62 oC 

respectively. Similarly, for SDSM-A during autumn, the 

temperature expressed an increase by 0.37 oC in the 2020s and 

decrease by -0.01 oC in the 2080s. For RCP 4.5 in SDSM-A 

during spring, the temperature showed an increase by 4.60, 

4.51, and 4.49 in the 2020s, 02050s, and 2080s, respectively. 

For annual analysis temperature displayed, decrease -1.18 oC, 

-1.30 oC and -1.42 oC in 2020s, 2050s and 2080s respectively. 

For RCP 8.5, the temperature showed an increase of 0.12 oC 

to 3.19 oC in the SDSM-A model and SDSM-M from 0.05 oC 

to 3.97 oC. 

 

Table 8. Future Changes in Tmax under RCP 2.6, 4.5, 8.5 

Scenarios with two sub-models. 
  SDSM-A SDSM-M  

RCP2.6 RCP2.6  
2020 2050 2080 2020 2050 2080 

Summer 0.10 0.07 0.08 -7.07 -3.96 -4.19 

Spring 1.07 1.30 1.62 -7.55 2.83 2.38 

Autumn 0.37 0.22 -0.01 -9.57 0.81 0.22 

Winter 4.18 4.23 4.18 -7.49 6.40 5.62 

Annual 1.03 1.05 1.09 -8.13 -1.06 -1.56  
RCP4.5 RCP4.5 

Summer 0.10 0.09 0.11 0.11 0.09 0.10 

Spring 4.60 4.51 4.49 1.19 1.21 1.22 

Autumn 2.93 2.74 2.45 0.95 0.86 0.72 

Winter 1.37 1.16 1.93 3.99 3.96 3.94 

Annual -1.18 -1.30 -1.42 1.04 1.02 1.00  
RCP8.5 RCP8.5 

Summer 0.17 0.12 0.14 0.08 0.05 0.06 

Spring 2.73 2.93 3.19 1.18 1.14 1.11 

Autumn 1.99 1.78 1.53 0.92 0.89 0.77 

Winter 1.50 1.38 1.23 3.97 3.93 3.90 

Annual 0.77 0.70 0.64 1.02 0.99 0.96 

 

The primary aim of this research was to assess the Statistical 

Downscale Model (SDSM), using CIMP5 (CanESM-2) for 

different RCPs (2.6, 4.5 and 8.5) considering future changes 

in the Precipitation, Tmax and Tmin over the drainage area. 

The PRP (partial correlation percentage) for the predictors 

with high predictands values was determined. The Surface 

airflow strength (p_f) was found to be the best predictor for 

both temperature and rainfall. There were two other super 

predictors, surface meridional velocity (p_v) and surface 

zonal velocity (p_u) for almost all weather stations in the 

south-west of the Himalayan region of the Jhelum River 

Drainage Area (JRDA) Pakistan. These predictors also 

articulated a somatic relationship with PPT, Tmax, and Tmin. 

SDSM-M produced better results compared to SDSM-A for 
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all IPCC scenarios and determined the different levels of 

biases in the downscaled data at different seasons using 

GCMs (Su et al., 2017). 

Projections of climatic variability are associated with multiple 

imminent uncertainties from different places. The 

uncertainties include (1) Variations in the climate at the local 

scale (2) future scenarios (3) GCM’s resolution and (4) 

downscaling methods (Ouyang et al., 2014). The projected 

precipitation by both models for the 2020s, 2050s, and 2080s 

is with reference to the baseline period under the IPCC 

scenarios (RCPs 2.6, 4.5, 8.5).Both models showed increasing 

precipitation trends from 35% to 70% in the 2020s, 2050s, 

and 2080s. SDSM-M showed better results compared to 

SDSM-A for the baseline data. SDSM-A predicted a decrease 

in the annual and seasonal Tmin in the 2020s, 2050s, and 

2080s, but the winter season foresaw an increase from 1.26 
oC to 1.88 oC. At the beginning of the 21st century, SDSM-M 

revealed a 3.75oC increase in the Tmin but showed a decline 

of 0.11 oC in the minimum temperature by the end of the 

century. Similarly, for all IPCC scenarios, both models 

predicted increment for Tmax. RCP 2.6 under SDSM-M 

showed a decline in the temperature from -7 oC to -4.19 oC at 

the start of the century, but at the end of the century, the 

temperature showed an increase from 0.22 oC to 5.62 oC. 

Burhan et al. (2018) also carried out a similar analysis of 

PDFs. However, more GCMs and emission scenarios needed 

to be evaluated, with other statistical downscaling approaches 

by utilizing a reliable process of selection of GCMs. The 

credibility of statistical downscaling models in non-stationary 

climate (Salvi et al.,2016). 

 

Conclusions: (It’s too much detailed concise it and write in 

paragraph form) SDSM was used to downscale the projection 

of PPT, Tmax and Tmin by using CanESM-2 under the IPCC 

scenarios of RCPs 2.6, 4.5 and 8.5 in the JRDA. In this study, 

t models of SDSM were developed and evaluated to establish 

the correlation between the large scale variable and local scale 

variance in connection with 11 years (2002-2012) data. The 

current framework works out a partial correlation percentage 

(PRP) in a respective manner within 46.50%, 46.06%, 

35.96%, and 21.97%. The R2 values for both SDSM-M and 

SDSM-A models were calculated for all three scenarios 2.6, 

4.5, and 8.5 RCPs under CIMP5 (CanESM-2). R2 

precipitation values under all three RCP scenarios were found 

to be between 82%-88% in SDSM-M. R2 for Tmin and Tmax 

fell between 69%-71% and 68%-74%, respectively. For the 

SDSM-A model, precipitation lied between 76.5%-80% for 

while Tmin and Tmax existed between 85%-92% and 89%-

96%, respectively. Both models projected seasonal and 

annual increase in precipitation under RCPs 2.6, 4.5 and 8.5 

from 13%-68%, 25%-69% and 13%-71% during the period 

2020s-2080s, respectively. Tmin in annual models under RCP 

2.6 showed a decreasing trend from -0.91 oC to -1.89 oC, -0.20 

oC to -1.46 oC and -0.87 oC to -1.90 oC.The temperature under 

RCPs 2.6, 4.5 and 8.5 reflected a rising trend during the period 

2020s-2080s from 0.04 oC to 3.75 oC, 1.02 oC to 2.62 oC and 

1.03 oC to 2.60 oC for the monthly model. Moreover, an 

increasing trend was noticed in the case of Tmax from 0.01 
oC to 4.18 oC, 0.01 oC to 4.49 oC and 0.12 oC to 3.90 oC during 

the 2020s-2080s under all three RCPs scenarios. The results 

predicted that the region will be warmer and wetter compared 

during the period 2020 to the 2080s. SDSM-A showed a 

normal variation for observed data compared to SDSM-M. In 

general, SDSM-A provided good results for average seasonal 

and annual temperatures (Tmax and Tmin). 

In nutshell, the above results revealed that JRDA is expected 

to experience more extreme events in the 21st century. To 

mitigate the impacts of these events on human life as well as 

economic and ecological stability, strong emphasis needs to 

be put on identifying the nature and extent of danger to be 

caused by these extreme events and then on acting 

accordingly. This research will be helpful for water resources 

planning under different climate change scenarios. 
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