
 

 

 

INTRODUCTION 

 

Pakistan's economy is largely based on the performance of the 

agriculture sector. The economic growth rate is highly 

affected by the performance of its agricultural sector. 

Experiences show that the periods of high/low economic 

growth of national economy generally coincide with the 

trends in the growth of its agriculture sector (Ali, 2000). Due 

to the rapid increase in population, food security has become 

a national priority of Pakistan. Worsen situation of water 

scarcity in the country is causing severe threats to food 

production and security. Solutions aimed at addressing food 

security issues such as improved varieties and better 

management practices cannot be fruitful in the absence of 

adequate water quantity. The agriculture sector is the prime 

user of freshwater, which could be managed by ensuring 

efficient use of water in crop production (Raza et al., 2012; 

Shakoor et al., 2018). Modernization of irrigation practices 

plays a vital role in improving farmers’ income, employment 

opportunities, cropping intensity, and wage rate (Bhattarai 

and Narayana, 2003; Lawston et al., 2017).  

A rotational 8-day irrigation schemes as a common practice is 

used in this province to equally satisfy the crop water needs 

for local farmers (Basharat and Tariq, 2014).This is 

insufficient water allocation and farmers try to compensate 

their needs locally through groundwater and water diversion 

from the neatest rivers. However, it is still a characteristic of 

the crops to grow under water stress conditions and they do 

not reach yields than they would otherwise produce under 

stress-free conditions. 

The main challenges in the development of a monitoring 

system are the size of the Punjab irrigation area, spatial and 

temporal crop variability, the location specific stress situation 

of crops that cannot be compared to standard crops, and the 

developmental status of technically viable monitoring 

techniques/models. As a solution, such a technique must be 

chosen that fulfils the monitoring requirements (8-day 

intervals) and could be easily adjustable to the local 

conditions (e.g. crop coefficient, locally ideal crop 

performance) combined with a spatially detailed mapping 

facility that allows separation/parameterization of individual 

fields and crop types. The spatial analyses at such a regional 

scale and at such a short repetitive step are only feasible with 
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It is quite challenging to assess the crop water requirement with limited time and resources on a regional scale. The study 

focuses on developing a spatial decision support system (SDSS) for crop water requirement and to determine the efficacy of 

existing irrigation systems by utilizing advanced geo-spatial techniques. Selected region was Punjab province of Pakistan that 

covers a total area of 105227 sq.km. Reflectance based crop coefficient approach was used for crop water requirement 

estimation. Various metrological, climatic, geographical vector layers and statistical data of irrigation supply along with 

satellite imageries were used for monitoring the crop health on8-days periodic intervals for the summer (Kharif) season in the 

year 2018. For accurate quantification and mapping of crop water requirement, Landsat, MODIS and SPOT imageries were 

processed for crop classification, top of the atmosphere radiation calculation and actual and reference measurements, 

respectively. Reference evapotranspiration (ETo) was calculated using Penman method leading to provide water demand and 

consumption by further calculations in each irrigation circle. The results show that the regions lying at the tail of the canal 

command area (CCA) facing higher water deficit. In addition, irrigation circles facing insufficient irrigation water supplies 

(upper and lower Jhelum canal, Pothoar region) also demonstrating higher crop water deficits. Comparing southern with 

northern parts of the province high water deficits observed in images in the year 2018, reflecting these regions are relatively 

hotter and receive less average precipitation. Similarly, high water deficit observed at northeast of the Punjab due to insufficient 

irrigation water supply. The results have been validated by comparing the water demand with the irrigation supply in each 

CCA, which provides the water being utilized other than irrigation sources to satisfy crop water needs. This study is quite 

effective in water budget estimation and mitigation of water scarcity issues. 

Keywords: Spatial decision support system, geospatial, Irrigation system, crop water requirement, crop coefficients, reference 

evapotranspiration. 
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remotely sensed satellite images. The operational satellite 

products and models on actual evapotranspiration and on 

assessing crop water needs on a regular basis are still in the 

development phase and are mostly used for scientific 

purposes (Mu et al., 2011; Gago et al., 2015; Tadesse et al., 

2015).  

Evapotranspiration measurements through MODIS have not 

been proved reliable (NASA, 2013). Furthermore, the 

operationalization of regional evapotranspiration estimates 

from empirical models or surface energy balance models 

based on satellite data has not been successful because of the 

complexity of the procedure and its dependency on a number 

of hydro-meteorological parameters of limited accuracy at the 

regional scale (Ambast et al., 2002). The critical remote 

sensing variables used in surface energy balance models 

include leaf area index (LAI), thermal IR based surface 

temperature (Hope et al., 2005), sensible heat flux that is 

based on thermal IR estimated surface temperature (Gowda et 

al., 2008), and unaccounted adjective sensible heat flux 

resulting in higher evapotranspiration than concluded from 

net incoming radiation (Glenn et al., 2008). An incurring error 

of more than 50% was observed in calculated ETs. Though 

algorithms are continuously improved (Mu et al., 2013), they 

have not yet reached an accuracy that would allow full-scale 

implementation. 

There are two basic approaches that are commonly proposed 

for monitoring irrigated crops, the first involving the 

calculation of actual evapotranspiration from remotely sensed 

data. It is based on the calculation of a range of physical 

properties derived from the spectral content of satellite 

images, but also includes empirical relationships and makes 

various assumptions (weather conditions, agro-climatic 

conditions). The second is based on reference 

evapotranspiration and empirical linkages between the 

remotely sensed parameter NDVI (Normalized Difference 

Vegetation Index) and crop coefficients (FAO, 1998: Allen, 

2000 and 2005; Katerji and Rana, 2014; Chukaliev, 2017).  

Preference is given to the reflectance based crop coefficient 

approach supplemented by a remotely sensed vegetation 

index due to its simplicity, reproducibility, relatively good 

accuracy, and transportability among locations and climates. 

The crop coefficient based estimation of crop 

evapotranspiration is one of the most commonly used 

methods for irrigation water management at the field level 

(FAO, 1998; Er-Raki et al., 2010; Boudhina et al., 2015; 

Thomas et al., 2018). The possibility to directly derive crop 

coefficients from remotely sensed data allows the spatial 

analysis of crop evapotranspiration and crop water needs. 

This is possible because of strong correlations between the 

NDVI and plant physiological processes that in turn depend 

on photosynthesis and evapotranspiration. On the basis of 

these linkages, reflectance based crop coefficients (KC) have 

been developed for numerous individual crops (Glenn et al., 

2011) as well as general relationships between NDVI and 

crop coefficients (KC) that are likewise applicable to different 

crops (Kamble et al., 2013).The simplicity of this approach 

considering site specific crop characteristics, its applicability 

at the basin scale and reported accuracies for crop 

evapotranspiration, summarizes the advantages of the 

reflectance based crop coefficient approach (Hunsaker et al., 

2005; Campos et al., 2017; Thomas et al., 2018).  

Currently, conventional techniques are in operation at 

regional and local scale in Pakistan which becomes a serious 

challenge for irrigation water resource management (Ihuoma 

et al., 2017; Ali et al., 2018). Recent advances in crop water 

stress detection are quite helpful in predicting crop yield and 

thus developing strategies for irrigation management under 

limited water conditions (Ihuoma et al., 2017; Gerhards et al., 

2019). This research provides an efficient and reliable spatial 

decision support system to monitor and regulate the irrigation 

practices in a timely manner. This research incorporates the 

utilization of freely available remote sensing data to establish 

a robust SDSS to monitor irrigation water management issues. 

Objectives of the study are: (i) identification and 

quantification of different cropping patterns in Punjab 

province; (ii) designing of prototype SDSS for crop water 

efficacy at 8-day intervals using hydro-meteorological, 

geographical and solar parameters; and (iii) scrutinizing the 

water potential (irrigation scheme, rainfall) deficit by means 

of water availability for winter (Rabbi) and summer (Kharif) 

seasons. 

 

MATERIALS AND METHODS 

 

The Punjab irrigation region in Pakistan is an intensely 

cultivated region covering an area of about 21 million acres 
(8.4 million hectare) excluding the Greater Thal canal district) 

of which around 63 km2 and 75 km2 (excluding Greater Thal 

canal district) are under irrigation during winter (Rabi) and 

summer (Kharif), respectively. The geographic location of 

canal command areas irrigated by different canals in Punjab 

is shown in figure 1. However, the spatial distribution of the 

rivers which are the main water sources for irrigation canals 

in Punjab are represented in figure 2. This figure illustrates 

the sources of different irrigation canals (i.e. rivers) in Punjab 

province. The major source of rivers water originates from 

snow and glacier melting in the Himalayans and Karakoram 

regions, discharged by the rivers Indus, Jehlum, Chenab, Ravi 

and Sutlej and stored in various water reservoirs (i.e. Tarbela 

Dam, Mangla Dam, Satpara Dam) (Rasul et al., 2011). 

Crop water analysis depends on crop area, crop type, climatic 

conditions and type, soil type, growing seasons and crop 

production frequencies (World Bank, 2013; Navarro et al, 

2016). The methodology adopt follows the concept of 

reference evapotranspiration at various spatio-temporal 

scales. Wide data set ranges collected from different sources 

are utilized to demonstrate the crop water requirement in 

Punjab province and are listed in Table 1.  
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Table 1. Utilized Datasets and Their Characteristics. 
Description Source Resolution Objectives 

MODIS: Aqua/Terra - for 

Actual Kc calculation* 

USGS 250 m NDVI 

Landsat 8 USGS 

GloVis 

  30 m Crop 

Classification 

SPOT USGS 

GloVis 

  30 m Crop 

Classification 

Crop consumption Actual ET  - 

Crop Demand Reference 

ET & crop 

coefficients 

 
- 

*(25 May, 2 June, 10 June, 18 June, 26 June, 4 July, 12 July, 20 July, 

28 July, 5 Aug, 13 Aug, 21 Aug, 29 Aug, 6 Sep, 14 Sep, 22 Sep, 30 

Sep, 8 Oct) For reference NDVI calculation (at every 8 days interval 

from 2008-2018) 

 

 
Figure 1. Canal command areas in Punjab Province. 

 
Figure2. Irrigation command areas, Punjab, Pakistan 

(Basharat, 2014). 

Data Processing: Hargreaves method has been used for the 

estimation of evapotranspiration (ET) for individual 

identification of crops in the study area. The approach is 

recommended standard, simple, reliable, and can be used for 

daily monthly and seasonal calculations of ET (FAO, 98; 

Boudhina et al., 2015; Campos et al., 2017). Zhao et al. 

(2013); Beti et al. (2014) and Nikam et al. (2014) used 

Hargreaves methods for calculation of ET and proposed this 

method is more efficient for data poorer areas as it requires 

less number of variables for ET calculation in comparison to 

the other techniques which are complex in nature and 

demands larger number of input parameters. The 

mathematical equation is given as: 

𝐸𝑇𝑜 = 0.0023 × 𝑅 × (
𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛

2
+ 17.8)

× √𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛 

       (1) 
Where: Tmax and Tmin are average daily maximum and minimum 

temperatures, respectively. 

The variable R in the above equation is extra-terrestrial solar 

radiation (mm/day). Different techniques are used to calculate 

the top of atmosphere radiation (TOA), however, in this study 

satellite imagery has been used for the calculation of R, 

resulting in a raster formatted output as described in Fig. 3. 

 

 
Figure 3. Conceptual framework of TOA calculation. 

 

Landsat 7-8 imagery is  incorporated for this process under 

the platform of PANCHROMA which is a Remote Sensing 

application suit used for improving satellite imagery and 

extracting different information from satellite imagery 

including LANDSAT, SPOT, GeoEye and many others. 

Landsat and SPOT products have been utilized alternatively 

to achieve the objectives of TOA at 8-day temporal 

resolution. Landsat products have a revisit time of 16 days 

therefore; SPOT imagery is used side by side to calculate 

TOA for missing days. PANCHROMA requires solar zenith 

angle and band of the satellite imagery used for calculation of 
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TOA. The conceptual diagram of TOA and solar zenith angle 

(Azimuth) is explained in Fig. 3. 

Daily temperature data available for weather stations in study 

reais used to calculate the ETo. To get the ETo monthly 

measurements, monthly mean temperatures are supposed to 

resemble that of an average monthly day, so that eq. 1 can be 

applied and then the result will be multiplied with the total 

number of days of the corresponding month. Afterward, for 

spatial interpolation of ETo, Inverse Distance Weight (IDW) 

has been preferred and chosen over other complex methods 

(i.e. cokriging) which gave unsatisfactory results. This 

operation provides the spatial distribution of ET0, at monthly 

intervals. 

These datasets are pre-processed and resampled, if needed, 

for monthly calculations of crop water requirements for 

summer (Kharif) season. Hydrometeorology, irrigation and 

remote sensing satellite information collected from various 

sources, including organizational and open source platforms, 

are pre-processed in GIS environment. Figure 4 elaborates the 

methodological framework of study. 

 
Figure 4. Flow chart showing the processing for irrigation 

water demand. 

 

Crop Classification: For accurate quantification of water for 

crops in the study area, individual crop identification was the 

basic requirement and needed to be considered in the 

monitoring system. The intra-class variability 

check/identification performed using satellite imagery 

information. Cropping pattern was defined as a spatial 

arrangement of crops in a given area. It is categorized based 

on crop season as kharif (summer crop), Rabi (winter crop). 

The intra-class variability requires differentiation of at least 

the major crop types grown during winter (Rabi) and summer 

(Kharif) seasons. Figure 5 demonstrating the samples taken 

for crop classification in various canal command areas 

(CCAs). Minimum 2-3 samples were taken in every CCA and 

for each crop in order to get better results for crop 

classification. 

 
Figure 5. Sample location of crops in various canal 

command areas. 

 

The cropping pattern map for the year 2018was generated by 

integration of MODIS’ (Aqua and Terra) NDVI (Normalized 

Difference Vegetation Index) products at 8-day temporal 

resolution. The two products have a revisit time of 16 days 

with a shift of 8 days. Therefore, NDVI products from Aqua 

and Terra are used side by side after every 8-day interval for 

10years (2008-2018) to develop a reference NDVI. A layer 

stack of multi-date NDVI images (450images) resulted in a 

composite band image. However, information is calculated 

due to the coarse spatial and high temporal resolution of 

MODIS’ NDVI products. NDVI products of MODIS whose 

temporal flag is the nearest to the date that Landsat OLI 

images are being acquired for the year 2018. The correlation 

analysis was performed between MODIS’ NDVI and Landsat 

OLI. In homogenous crop fields, correlation evaluation 

samples were selected and subsequently the average NDVI of 

all Landsat pixels to the corresponding MODIS pixel were 

calculated. Finally, on the basis of linear correlation, Landsat 

NDVI is transformed to MODIS’ NDVI and then the 

historical reference NDVI is utilized as training samples in 

order to classify crop types for the year 2018 at 30m spatial 

resolution. 

MODIS NDVI and Reference Crop Cycle: NDVI is a remote 

sensing surrogate for green biomass and is a unitless spectral 

index calculated from a near infrared band and a red band. 

The NDVI product of MODIS (AQUA/TERRA) is used for 

reference crop cycle generation. The reference crop cycle 

defines the maximum value of crop reflectance observed in 

the past 10 years. These cycles of individual crops behave 
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near ideally throughout the crop growing to harvesting stage. 

To meet the ideal condition, it was utmost importance to 

minimize the data gaps. MODIS provides NDVI from two 

platforms: AQUA and TERA. The platforms have 16 days 

temporal resolution, however, harmonizing the two dataset 

results 8 daily by-products of NDVI. These NDVI images are 

stacked over a period of 10years for reference cycle 

identification. 

Crop Coefficients (Kc) and Crop Water Requirement 

(CWR): Crop coefficients have a strong correlation with 

satellite derived NDVI values. Reflectance based crop 

coefficients (Kcrr) are calculated as; 

Kcrr = C1 × NDVI + C2 (2) 

Where C1 and C2 are coefficients derived from linear 

regression calculations, 

Kcr = 0.0002 × NDVI − 0.0302 

between FAO crop Coefficients and the local NDVI cycles 

(Allen, 2011; Rossi and Bocchi, 2007; Kamble et al., 2013) 

are described in figure 6.  

 
Figure 6. NDVI cycle showing a linear correlation between 

the two variables C1 and C2 

 

The coefficients are crop specific and need to be determined 

individually. However, there exist generally applicable C1 

and C2 variables (Kamble et al., 2013). The reflectance-based 

actual crop coefficients (Kcra) calculated against each crop 

for a calendar year is illustrated in figure 7. 

An ideal crop is considered well-performing without water 

stress. For, 2008-2018 images, where the crop is behaving 

ideally or having maximum reflectance’s and showing least 

or no water stress is taken as Reference NDVI. Whereas, for 

actual NDVI (actual crop), images at every 8-days interval 

were taken (actual crop is one which may lie under water 

stress conditions), the positive difference between ETC ref 

minus ETC act defines the crop water need. The reflectance-

based reference crop coefficients (Kcrr) and actual crop 

coefficients (Kcra) are used for crop water requirement using 

the following equation: 

CWR= Kcrr - Kcra × ETo           (3) 

 

 
Figure 7. Crop coefficients of various crops for a crop 

calendar 

 

RESULTS AND DISCUSSION 

 

The vegetation index (NDVI) time-series approach generates 

a total of 12 land covers in the study area including six major 

crop types. The classification schemes split area in winter 

(Rabbi) and summer (Kharif) season crops. The same 

geographical location results multiple classes throughout the 

calendar year. The time-series NDVI profiles of each class 

behave differently due to the intrinsic properties of crops. 

Statistics were only performed on cultivated areas that fall 

within the irrigation district limits as shown in figure 8. 

However, there is considerable cultivation outside district 

limits, for example in many floodplains; these areas do not 

appear in any statistics. The total cultivable area for both 

winter (Rabi) and summer (Kharif) season was calculated for 

each irrigation circle in Punjab province as presented in figure 

8. This table depicts that agricultural practices being increased 

in summer (Kharif) season in comparison to winter (Rabi) 

almost in every irrigation circle and as whole. 

This is mainly because of the sufficient availability of 

irrigation supply during summer (Kharif) season. In addition, 

the study area receives high monsoon rainfall during the 

summer (kharif) season. So, the areas lying at the tails of 

irrigation circles or having insufficient irrigation supply are 

largely depended on rainfall for agricultural practices. 

Pothowar region falling in upper Jhelum and Lower Jhelum 

canal circles are highly dependable on rainfall, so the 

cultivation in these regions in winter (Rabi) season is reduced 

due to less rainfall and irrigation supply. 
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Figure 9. Crop classification & samples distribution in the 

study area. 

Crop classification was performed for both winter (Rabi) and 

summer (Kharif) season, which resulted in six Major crops 

across the Punjab province including Wheat, Rice, Cotton, 

Maize, Sugarcane and Potato presented in figure9. While 

there are some other classes observed which are cultivated in 

the limited area. The northeast part of the study area is largely 

cultivated with wheat and rice crops for winter (Rabi) and 

summer (Kharif) seasons respectively. Potato cultivation at 

larger scale is observed in middle part of the province, while 

moving towards south from middle part of the study area, 

Crop classification revealed Wheat crop as highest growing 

crop in winter (Rabi) season across the province. Some 

scattered sugarcane cultivation observed in middle and 

southern parts. Similarly, wheat and cotton combinations are 

observed at central and southwards of the Punjab province. 

Figure9 also illustrates the ground sample locations for 

validation of crop classification results. Minimum 4-5 

samples were taken against each crop type by keeping in view 

the spatial distribution of crop types in study area. 

Calculated crop coefficients (KC ref and KC act) and 

reference evapotranspiration (ETo) being used to calculate the 

crop water requirements at the 8-day periodic interval for 

summer (Kharif) season for the year 2018 (Figure 10& 11). 

 
Figure 8.Season- based cultivable canal command area 
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Summer (Kharif) actually starts from 15thMay and ends on 

15thOctober in Punjab province. A total of 19 water deficits 

maps for the summer (Kharif) seasons were generated, among 

them 18 are presented in figures 10 and 11. Very high-water 

deficit was observed in the month of July and August in 

comparison to the other months of summer (Kharif) season in 

the year 2018. This is because summer (Kharif) crops were at 

middle stage of growth in these months and require high 

amount of water. Despite high rainfall in these months, both 

irrigation supply and rainfall do not satisfy the required 

amount of crop water. These findings are supported by the 

results of Usman et al., (2009); Naheed et al., (2010); 

Bhattacharya, (2018); Arshad et al., (2019).  

Irrigation circles lying in southern parts of the province faced 

by high water deficits in comparison to the northern parts 

across the whole season.. This trend is mainly because; these 

regions are relatively hotter and received less average 

precipitation across the season. The increase in temperature 

during summers (Kharif season) cause high 

evapotranspiration, which resulted in higher water deficits. 

Similarly, high water deficit was observed at northeast of the 

Punjab province in the month of July as shown in figure10. 

These regions are at such geographical locations where 

supply of irrigation systems is very low and having high 

dependency on rainfall. July is the hottest month of the year 

and received very little rain fall in the year 2018, which is 

 
Figure 10. Water deficit at the 8-day interval for summer (Kharif)Season 2018. 
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resulted in high water deficits. Same results have been 

reported by various researchers like Harmsen et al., (2009); 

Tanasijevic et al., (2014); Perdomo at al., (2017); Bhatt & 

Hossain, (2019); Arshad et al., (2019). However, months of 

the august and September received more average precipitation 

and resulted with less crop water deficit as illustrated in 

Fig. 11. 

Multiplication of reference evapotranspiration (ETo) with the 

actual crop coefficient (KCact) provided consumption of the 

water amount while the multiplication of (ETo) with the 

reference crop coefficients (KC ref) gives demand of water at 

a specific pixel by considering the crop type and its 

phenology. Consumption and demand of water in each 

irrigation circles were calculated at 8-day interval for whole 

summer (Kharif) season. Figure 12 illustrates the total water 

demand and consumption in each canal command area (CCA) 

which was used for clear identification of real-time irrigation 

water supply. Water deficits and surplus for each canal 

command area has been shown in this figure. 

 

 
Figure 11. Water deficit at the 8-day interval for summer 

(Kharif) season 2018. 

 

Moreover, the difference between the supplied amount of 

irrigation and the amount of water being consumed in each 

CCA is calculated to estimation the water budget. This 

difference actually describes that how much amount of water 

by other sources (Rainfall and groundwater) were utilized for 

irrigation purposes In all CCAs, irrigation supply has not 

fulfilled the crop water demand, and amount of water 

consumed is quite higher than the suppliedirrigation supply. 

These results are indicating the other water sources 

contribution (Rainfall and groundwater) in fulfilling the crop 

water requirement.  

 
Figure 12. Effectiveness of irrigation system and other 

water sources. 

 
Figure 13. Irrigation supply and other water sources 

contribution. 
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Figure 13 presents the water budget estimation in each canal 

command area of the Punjab province in millimeters. This 

figure is also demonstrating that insufficient or less irrigation 

supply may result in water utilization from other sources (i.e. 

Rainfall, groundwater, etc.) to satisfy the crop water demand. 

These results are in line with the findings by Latif & Ahmad, 

(2009); Scanlon et al., (2012); Ho et al., (2016). Bhalwal 

canal command area received less irrigation supply (less than 

50 mm) resulting in the utilization of other water sources (i.e. 

350mm) to meet the crop water needs. Contrary, irrigation 

supply was high in Dera Ghazi Khan CCA (i.e. 300mm), and 

demand was around 400 mm, so less amount of water by other 

sources has been usedin this irrigation circle. A similar pattern 

was observed in Muzaffargarh CCA, where irrigation supply 

was higher as compared to all other CCAs, which is almost 

meeting the crop water demand requirement and resulting in 

very less contribution of other water sources. Almost same 

correlation/pattern has been observed across all the CAAs of 

the study area. 

 

Conclusion: This study provided with the estimation of crop 

water requirement at 8-days periodic interval and water 

budget estimation at canal command area scale for summer 

(Kharf) season of 2018. Higher water deficits have normally 

been observed in Pothowar region and in those canal 

command areas lying at southern parts of the study area. 

These are mainly because of; i) having high 

evapotranspiration due to high temperature (warmer areas); 

ii) regions lying at tail of the canal command; iii) where 

irrigation supply is low, and iv) average rainfall is relatively 

low. The comparison of irrigation water supply with the 

actual water demand, water consumption and water deficits 

elaborated a strong correlation between irrigation water 

supply and alternative water sources (Rainfall and 

groundwater). This correlation authenticates the credibility of 

derived results and efficacy of designed prototype SDSS. This 

research revealed, current irrigation practices in study area 

causing exploitation of surface and groundwater sources at 

large. This prototype would be significant in efficient 

quantification and utilization of irrigation supply in any 

particular region by knowing the crop water demand and 

rainfall patterns. For precise decision making at field level, 

this system can be improved by incorporating high spatial and 

temporal resolution imageries and respective derived NDVIs.  
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