
 

 

 

INTRODUCTION 

 

Agriculture is the mainstay of Pakistan economy as it adds 

18.9% to the total gross domestic product (GDP) and 

providing work to more than 42.3% of the workforce. The 

population of Pakistan is increasing at the rate of 2.4% 

annually according to the Population and Housing Census of 

Pakistan, 2017. This increase in population is rising demand 

for products from agricultural sector. Amongst the main 

agriculture products, wheat is the necessary food of the people 

of Pakistan. Wheat production is a function of a number of 

factors like water availability, area under cultivation, prices 

of fertilizer etc. The identification of important variables that 

affects the production of wheat is of prime interest of 

researcher to increase the production of wheat to meet the 

basic need of increasing population. 

In developing the relationship between response and 

predictors, both prediction accuracy and interpretability are 

key issues. When there are multiple predictors, the selection 

of best subset of important predictors is required which is 

possible by excluding the less important predictors. 

Moreover, shrinkage of variables is important mainly if the 

true model has a sparse representation. A good predictive 

method selects a useful list of predictors with high prediction 

accuracy. Therefore, the regression method that selects the 

relevant and important predictors is of prime interest to the 

researchers. The objectives associated to the selection of the 

significant predictors are mainly dual; one is to get unbiased 

estimates of parameters and other is the prediction accuracy. 

Prior information from the research literature is usually seen 

as the key basis for the inclusion or exclusion of variables, but 

generally, it is not available for all research problem 

(Greenland, 2008). 

Ordinary least squares (OLS) is a traditional estimation 

procedure and frequently used for estimating the multiple 

linear regression models, but it performs poorly in case of 

large number of predictors. Because of multicollinearity, OLS 

estimates although are unbiased but have large variances, 

which affects the prediction accuracy. Subset regression and 

Ridge regression are alternates to improve the OLS 

estimators, but both have some drawbacks in their 

implementation (Breiman, 1995). Subset regression provides 

interpretable models by selecting only a subset of predictors 

but it is extremely variable due to its inherent discreteness 

(Breiman,1995). Second way is to compromise over 

unbiasedness for which Hoerl and Kennard (1970) proposed 

the Ridge regression to obtain the biased estimates. It is a 

continuous process, which shrinks the regression coefficients, 

but it does not provide interpretable model as it does not 

exclude the unimportant variables. 
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Agriculture sector plays a significant role in the economy of Pakistan. Amongst the major crops, wheat is essential food of 

Pakistani people’s. Wheat production is a function of a number of factors. The identificatsion of important variables that affects 

the production of wheat is of prime interest of researcher to meet the basic need of increasing population. With multiple 

predictors, statistical modeling becomes complicated mainly due to the collinearity within the predictors. Regularized 

regression approaches do variable selection and shrinkage at same time. In this study, a rigorous comparison of the predictive 

performance of seven regularized regression approaches was performed via simulation while considering different levels of 

multicollinearity and sparsity. The results showed that Smoothly Clipped Absolute Deviation (SCAD) and Minimax Concave 

Penalty (MCP) performed better under low and high variation when the true model is sparse for all sample sizes based on mean 

squared error prediction (MSEP). Moreover, wheat production forecast model for Punjab province was estimated; while, using 

regularized regression methods and the significant predictors were identified. Among six predictors, area under crop, average 

retail price of fertilizer and average maximum temperature are important parameters that affect production of wheat. It is 

recommended that the farmers of the Punjab must be care full about these factors while sowing the wheat and government 

should provide facilities to farmers regarding these factors. 
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To overcome such problems, Tibshirani (1996) developed a 

novel technique entitled as “Least absolute shrinkage and 

selection operator” (Lasso) for sparse model selection. Since 

that, various generalizations of Lasso method were proposed. 

The Lasso-type methods have become popular due to their 

property of (Albrecht et al., 2014) shrinkage. The objective 

function of such methods includes a penalty term. Different 

researchers suggest different assumptions regarding the 

penalty term, i.e. L1 norm, L2 norm or both L1 and L2 norm, 

which are termed as the tuning (regularized) parameters. 

Different shrinkage methods have been compared with OLS 

via Monte Carlo simulation in terms of model error and mean 

square error in literature. Adaptive elastic net and Bayesian 

model averaging revealed better stability and traditional 

estimates of regression coefficients and the standard errors as 

compared to basic stepwise methods (Morozova et al., 2015). 

In a comparison of penalized regression methods, Oyeyemi et 

al. (2015) used Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC) for model selection. 

Their results showed that Lasso performs better at all three 

levels of muticollinearity and sample. Adaptive lasso 

performs best only for moderate muticollinearity and medium 

sample size.  

A new approach named as raise regression as an alternate to 

the ordinary least squares was proposed by Gomez et al. 

(2020) to handle the problem of multicollinearity. They 

extended the theory of variance inflation factor after 

performing the raise regression. The application of this 

addition is to limit the raising factor. The also used mean 

square error for comparison as raise regression provides a 

biased estimator. The compared the raise estimator to ridge 

and Lasso. Their results showed that raise regression 

performed better than ridge regression in terms of mean 

square error. The regularized methods including Partial Least 

Squares, Principal Components Regression and Ridge 

Regression was compared and assessed by Goktas et al. 

(2020).They generate a number of different groups of datasets 

with six different levels of collinearities and sample sizes 

from standard normal distribution for 10000 replications. The 

mean squared error of the regression parameters had used for 

comparison purpose. Their findings showed that each method 

of prediction is affected by the number of predictors, sample 

size or level of collinearity. However, their results showed 

that Principal component regression had better results in 

terms of lower man squared error as compared to other two 

methods for any number of predictors. 

An understanding of heredities for the improvement of 

current wheat varieties for mineral contents needs the 

investigation of genetic diversity. Ali et al. (2018) evaluated 

the wheat varieties via cluster analysis that have grains rich in 

zinc and iron. They estimate the hereditary diversity in grains 

for zinc and iron content along with agro-morphological traits 

85 different wheat varieties. Average values for zinc and iron 

indicates the presence of genetic variability of all the 

varieties. Cluster analysis results in six clusters of germplasm. 

Mineral contents and most of the yield attributes were 

strongly correlated. 

However, the earlier research work was based on a single 

moderate value of collinearity . In addition, most of 

the comparative studies did not consider the PLSR as a 

competitor to other shrinkage methods, which is also an 

important shrinkage method for high collinearity and non-

sparse model. This study is helpful in deciding about the best 

regularized method in the presence or absence of collinearity, 

with large or small sample and with high or low variation, 

while the true model is sparse (not sparse). 

 

MATERIALS AND METHODS 

 

The usual multiple linear regression model is 

𝑍 = 𝑋𝛽 + 𝜀 (1) 

where  is the design matrix of p-predictors, vector of 

regression coefficients is the independently and 

identically distributed normal noise with mean 0 and 

covariance ,  is the random response vector. The 

OLS solution of (1) depends on the inverse of  and is  

𝜷̂𝒐𝒍𝒔 = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒁 (2) 

In case of multicollinearity, is singular or nearly 

singular and hence creates problem in OLS solution. Ridge 

regression (Hoerl and Kennard, 1970) is a shrinkage method, 

an alternate method to improve the OLS estimators by 

allowing the biased estimators with smaller mean squared 

error. Calculation of shrinkage estimators is complicated than 

the ordinary least squares. The objective function for the 

shrinkage estimators is as follows: 

 
(3) 

where  is the tuning parameter of the shrinkage method, 

, and  is the researcher’s specified value of the 

norm. The first part of (3) is just the least squares objective 

function while second term is the penalty factor. The ridge 

estimator by solving the penalized least squares from (3) is 

 (4) 

where  is the usual residual sum of squares. The  

term  is the L2-norm penalty on . Here strength 

of the penalty is controlled by the regularization parameter 

. The large values of  will result in better shrinkage. 

PLSR is used particularly when the predictors are highly 

correlated and is alternate to ridge regression. It was 

originally developed by Wold (1975) and thereafter Frank and 
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Friedman (1993) and Goutis (1996) proved its properties. 

After that PLSR have been applied in many fields and 

compared with other shrinkage methods (Phatak and Jong, 

1997; Braak and Jong, 1998). PLSR attempts to find the linear 

decomposition of X and Z such that  and 

 where R and S are the score matrices of X and 

Z respectively, U and V are loading matrices and A and B are 

the matrices of residuals. The PLSR estimator obtained by 

regressing Z not on X itself but on the scores is 

 (5) 

The Lasso estimator of regression coefficients uses the L1 

penalty that enables the Lasso to regularize the least squares 

fit and shrinks some of beta coefficients to zero 

simultaneously for some chosen value of tuning parameter.  

The Lasso estimator obtained from (3) is 

 (6) 

where  is the L1 norm penalty on  and 

 is the regularization parameter.  

Fan and Li (2001) showed that Lasso turn out in biased 

estimates for large coefficient, hence, not attain high 

prediction accuracy. They suggested a new method for 

variable selection called SCAD and proved that it satisfies the 

properties of an oracle procedure. Fan and Li (2001) proposed 

the SCAD penalty, and Zhang (2010) proposed the MCP 

penalty. Both are the penalized methods with nonconvex 

penalties and are solutions to 

 (7) 

where for some  

 (8) 

for SCAD and  

 
(9) 

 

for MCP.  

Another generalization of Lasso was introduced by Zou and 

Hastie (2005), called the “Elastic net”. Elastic net estimator is  

 (10) 

 

where  are tuning parameters usually selected by 

cross validation. The penalty term of elastic net is the 

combination of Ridge penalty and the penalty term in Lasso. 

Zou (2006) suggested the use of adaptive weights for 

penalizing different coefficients, and provided the evidence 

regarding the inconsistency of the Lasso. The Adaptive Lasso 

estimator is 

 
(11) 

 

where  is the regularization parameter, are the 

adaptive weights with (possible values suggested by 

Zou (2006) are 0.5, 1, and 2) for the adjustment of adaptive 

weights,  is any consistent initial estimator of  it may be 

 or  

Simulation study: To evaluate the performance of above 

explained seven regularized regression methods for each 

combination of sample size, variation level and correlation

 we conduct a simulation study using R-

software. The R-packages “GLMNET” (Friedman et al., 

2009), “NCVREG” (Breheny and Breheny, 2020), and “PLS” 

(Wehrens and Mevik, 2007) have been used to estimate the 

regularized regression models. The OLS coefficients have 

been used to compute the adaptive weights for Adaptive 

Lasso as suggested by Zou (2006). An important concern 

during the model estimation is the selection of regularized 

parameter. Various approaches like Mallow’s Cp, leave one 

out cross validation, k-fold cross validation, and generalized 

cross validation are used for this purpose. In this article, k-

fold (k=10) cross validation methodology was adopted as this 

approach has been frequently and successfully adopted in 

diverse statistical approaches. In addition, it is directly 

associated to the predictive performance. The multi-variables 

data sets were simulated from the model  
 (12) 

where  is the vector of parameters (two true parameter 

vectors having different sparsity structures were considered), 

 is a random error from standard normal distribution, and 

 (columns of X matrix) were simulated from  

where the (i, j) element of (positive definite covariance 

matrix) is  for all i and j (i=1, 2, …, p, j= 1, 2, ..., p, and 

). To study the effect of different levels of collinearity 

among predictors, the correlation between xi and xj was 

considered as  
 

Additionally, different levels of variation were 

also considered in order to check the effect of variation on 

prediction. The data sets were simulated separately for 

training set as well as for a test set. We estimate the models 

by using training data while test data were used to compute 

mean squared error prediction (MSEP). Sample sizes for 

training set (test set) were taken as: 20(40), 60(120), 

100(200), 200(400), 500(1000). The MSEP is defined as 
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(13) 

where  are the observed and predicted response in 

test data, and the sum is over all observations in the test data. 

For all the shrinkage methods and each data set, the median 

of mean squared error prediction over 500 simulations was 

used for comparison purpose.  

Model-1: a sparse true model with eight predictors, 

 

Model-2: true model is not sparse with eight predictors,  

 

 
RESULTS 

 

In this section, a graphical comparison of the regularized 

regression approaches has been presented. The simulation 

results for sample sizes 200(400) and larger showed that there 

were non-significant changes occurred in the selection of best 

shrinkage method. Therefore, the results of only six 

combinations (I-VI) are shown in Figures 1 & 2 due to the 

scarcity of space. We considered the following cases:  
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 (a): n=20(40) and σ=1                                                                 (d): n=20(40) and σ=3 

 
 (b): n=60(120) and σ=1                                                                   (e): n=60(120) and σ=3 

 
 (c): n=500(1000) and σ=1                                                                   (f): n=500(1000) and σ=3 

Figure 1. Median (MSEP) vs rho for model-1 
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Case I: n=20(40), σ=1 Case IV: n=20(40), σ=3 

Case II: n=60(120), σ=1 Case V: n=60(120), σ=3 

Case III: n=500(1000), σ=1 Case VI: n=500(1000), σ=3 

Figure 1, present the results for model-1. In this case the true 

model is a sparse one. The method of SCAD and MCP 

outperforms for low and high variation for low to moderate 

collinearity. Furthermore, for model-1, PLSR shows low 

MSEP for small samples and high multicollinearity. Increase 

in the variation (from 1 to 3) also increases the mean squared 

error prediction for all methods. However, performance of 

Ridge regression and Adaptive lasso is of poorer quality in all 

scenarios. 

Figure 2 presents the results of model-2. The model is not 

sparse, having all small non-zero coefficients. In case of not 

sparse model, some different observations have been made on 

the performance of regularized regression methods. PLSR 

outperforms for small and moderate sample while performs 

equally as MCP and SCAD for large samples. Performance of 

Ridge regression is also quite well for small samples and high 

correlation.  

 
 (a): n=20(40) and σ=1                                                 (d): n=20(40) and σ=3 

 
 (b): n=60(120) and σ=1                                                   (e): n=60(120) and σ=3 

 
 (c): n=500(1000) and σ=1                                                   (f): n=500(1000) and σ=3 

Figure 2. Median(MSEP) vs rho for model-2 
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Application to real data: For real data example, the data on 

wheat production was taken from Agriculture statistics, 

Pakistan Bureau of Statistics (2018) for the years 2000-

2016.The data set contains the wheat production, average 

rainfall (AR), area under cultivation, average retail price of 

fertilizer (ARPF), distribution of seed (DOS), number of tube 

wells (TW), and average maximum temperature (AMT).The 

dependency of production of wheat on different factors 

affecting the production was investigated using regularized 

regression methods. Moreover, a sparse model which has 

maximum shrinkage and minimum prediction error have to 

fit. The Anderson-Darling Normality test was performed for 

testing the normality of wheat production, Figure 3 shows the 

normality of response (A2 = 0.44, p-value > 0.05). A 

regression model estimated by OLS had been used to assess 

if there is any multicollinearity effect present. The variance 

inflation factor (VIF) obtained for TW was large (>5) and 

thus, there is an evidence of the presence of multicollinearity. 

Because of multicollinearity, the combine effect of all the 

predictors on wheat production was highly significant (F-

ratio=14.35, p-value=0.000) while they were non-significant 

individually. Examination of correlation matrix (Table 1) also 

confirms the presence of collinearity. Hence, fitting 

regression model by using ordinary least squares was not 

appropriate and the regression approaches based on 

regularized methods were used to establish the relationship 

between production of wheat and 6 candidate predictors.  

 

Table 1. Correlation matrix of all variables 

 Prod Area ARPF DOS TW ARF AMT 

Prod 1.00 0.88 0.82 -0.54 0.90 0.34 -0.37 

Area 0.88 1.00 0.70 -0.50 0.84 0.28 -0.19 

ARPF 0.82 0.70 1.00 -0.28 0.81 0.32 -0.25 

DOS -0.54 -0.50 -0.28 1.00 -0.60 -0.29 0.25 

TW 0.90 0.84 0.81 -0.60 1.00 0.37 -0.32 

ARF 0.34 0.28 0.32 -0.29 0.37 1.00 -0.40 

AMT -0.37 -0.19 -0.25 0.25 -0.32 -0.40 1.00 

 

Table 2 represents the number of variables selected from 

seven regression methods. Two methods i.e. Ridge regression 

and PLS regression do not set any regression coefficient equal 

to zero because these are the elementary methods of shrinkage 

without the ability of variable selection.  

 

Table 2. Number of variables selected by each regularized 

regression method 

Total Predictors 6 

Ridge Regression 6 

Lasso 3 

Adaptive Lasso 1 

Elastic net 5 

MCP 6 

SCAD 5 

PLSR 6 

 

 
Figure 3. Summary report for the wheat production 
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The Lasso and Adaptive Lasso result in the greatest reduction. 

MCP and SCAD, however, do not reduce the model size 

significantly. This is an indication that the model is sparse 

with few large coefficients and others are zero. Based on the 

results of simulation study (model-1), only MCP, SCAD and 

Lasso methods have been used to fit the wheat production 

forecast model. The most effecting predictors to the 

production of wheat, identified by the Lasso were; area, 

ARPF and TW. These predictors were also selected by all 

other methods except that adaptive lasso. In addition, MCP 

and SCAD also identified two other variables (AMT and 

DOS) as significantly affecting the production of wheat. 

 

DISCUSSION 

 

The results of simulation suggested that the PLSR is a worth 

competitor to concave penalty methods if true model is not 

sparse and sample size is small or when multicollinearity is 

very high. PLSR produces lower MSEP even than Lasso, 

Elastic net and Adaptive lasso. Furthermore, with sparse true 

model, SCAD and MCP performs best. Adaptive lasso and 

Elastic net, however, not result well in case of reducing 

prediction error significantly. However, due to different levels 

of collinearity, dimensions and sparsity structures in data sets, 

no single shrinkage method is robust in all situations. On the 

other hand, while fitting wheat production model, area under 

crop, average retail price of fertilizer and average maximum 

temperature are important parameters that affect production 

of wheat. It is further recommended that the farmers of the 

Punjab must be care full about these factors while sowing the 

wheat. 
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