
 

 

 

INTRODUCTION 

 

Wheat (Triticum aestivum L.) is the major crop in the world, 

contributing to about 20% of the human’s caloric 

requirement. However, Fusarium head blight (FHB) caused 

mostly by Fusarium graminearum Schwabe (teleomorph 

Gibberella zeae (Schw.) Petch) and stripe rust caused by 

Puccinia striiformis f. sp. tritici (Pst), occurring in the ear and 

leaf, respectively, are two destructive diseases causing a great 

yield loss (Yang et al., 2016; Li et al., 2015). In history, there 

were some FHB epidemics in wheat and barley (Horderum 

vulgare L.) in numerous wheat-growing regions and serious 

financial losses around the world (McMullen et al., 1997; 

Nganje et al., 2004). 

In China, FHB has primarily happened within the center and 

lower valleys of the Yangtze River, and it is detailed that there 

were 7 extreme and 10 direct scourges of FHB from 1951 to 

1990 within these areas (Yao and Lu, 2000). FHB moreover 

happened and ended up progressively serious within the 

southwest locale of China, in the recent years (Zhang et al., 

2011). The FHB epidemic occurring in 2012 within the 

Yellow and Huai River valleys is the foremost genuine and 

the largest (Li et al., 2017). A latest study proposed that FHB 

had a larger reduction within the 1000-grain weight and add 

up to grain weight per spike within the FHB vulnerable line 

as compared to the FHB resistance line (Yang et al., 2016), 

which is explained in view that FHB influences kernel 

development (Del Ponte et al., 2007).  It is obvious that 

though the research about the effect of FHB on wheat yield 

loss is less than those of the mycotoxins accumulation, the 

independent effect of FHB on yield parameters had been 

elucidated.     

Stripe rust, caused by Puccinia striiformis, is the most 

devastating leaf disease and a major productivity constraint 

for wheat across the world, and China is the largest region for 

wheat stripe rust, causing large yield losses, in the world (Luo 

et al., 2005; Liu et al., 2013; Huang et al., 2014). As a leaf 

disease, stripe rust infection is closely related with leaf 

photosynthesis and senescence, which has been demonstrated 

by many of the expressed sequence tags induced by Pst and 

involved in those two processes (Mallard et al., 2008; Wang 

et al., 2009; Zhang et al., 2013). Further studies suggested that 

the degree of stripe rust influencing grain yield depend on the 

disease response (Yang et al., 2008) and the host growth stage 

at Pst infection (Murray et al., 1994). In fact, stripe rust 

influences not only wheat grain yield, but also grain yield 

component by altering the distribution of assimilates among 

the various organs of the plant (Doodson et al., 1965; 
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Siddique and Manners, 1971). Clearly, the independent 

effects of stripe rust on wheat yield are also well known.  

The perfect development conditions for stripe rust are 

temperatures of between 8-13°C for spore germination and 

entrance, and 12-15°C for more advancement and with free 

water. This makes it a predominant infection in most wheat 

developing regions of china due to their cool and mild climate 

(Roelfs et al., 1992; Stubbs, 1985, 1988; McIntosh and 

Brown, 1997; Boshoff et al., 2002; Line, 2002; Wellings and 

McIntosh, 1990; Wellings et al., 2003; Yahyaoui et al., 2002). 

Moreover, stripe (yellow) rust proved to be the most 

damaging disease of wheat in china (Li et al., 1984; Stubbs, 

1988; Li and Zeng, 2000; Li and Liu, 1957; Lu et al., 1958; 

Li 1980; Wan et al., 2004; Zeng, 1963a,b, 1979). Stripe rust 

affects plant photosynthetic source, which in turn, causes 30-

40% yield losses in wheat (Singh and Singh, 2002). 

The tasks and biological functions of various plant organs 

exhibit wide variation. For example, the foremost vital 

capacities of the leaf as a “source” tissue is to produce energy-

rich carbohydrate molecule through photosynthesis whereas 

the foremost vital part of the emerging seed as a “sink” is to 

store that carbohydrate molecule (Sturm and Tang, 1999).  As 

far as wheat diseases are concerned, FHB pathogen mainly 

attacks spike tissues and therefore affects seed increase (Del 

Ponte et al., 2007); Pst mainly infects leaf tissues and thus 

affects both seed formation and advance (Doodson et al., 

1965; Siddique and Manners, 1971). There is a dynamic 

balance between photosynthetic sources and 

nonphotosynthetic sinks (Luo et al., 2009, 2013), and this 

balance could be changed with the manifest alterations in 

photosynthesis-related parameters by the direction of cellular 

signaling homeostasis when plants were attacked by 

pathogens (Rodriguez-Brljevich et al., 2010; Wituszynska et 

al., 2013). Leaf photosynthesis can be regulated by 

manipulating source sink relationship (Damatta et al., 2008; 

Quentin et al., 2013).  

The photosynthetic activity of source and storage capacity of 

sink can greatly affect grain yield (Wang et al., 1997; Emam 

and Seghatoleslami, 2005). During grain filling stage, final 

grain mass is affected by the source ability to provide 

assimilates. In contrast, it has also been observed that sink 

limitation affects grain yield in most conditions (Borrás et al., 

2004; Serrago and Miralles, 2014; Jenner, 1979; Slafer and 

Andrade, 1991; Savin and Slafer, 1991; Slafer and Savin, 

1994; Kruk et al., 1997; Miralles and Slafer, 1995). A 

proficient transport of assimilates is required for high yield 

and improved grain filling. Source-sink relationship in plants 

affects the dry matter production in wheat. 

The aim of current research is to evaluate the independent as 

well as interaction effects of FHB and SR on plant yield 

parameters and to assess the source-sink relationship in wheat 

plant by estimating the correlations between different yield 

parameters under four different sets of disease stress 

conditions. The amount of variation being contributed by the 

individual traits has also been estimated. 

 

MATERIALS AND METHODS 

 

Plant material and experimental design: The wheat line 

L693 with both FHB and stripe rustresistance and the 

susceptible L661 to both FHB and stripe rust (Zhang et al., 

2011; Liu et al., 2015; Li et al., 2016), and the total of 471 F2  

plants derived from the cross ‘L661/L693” were used to 

determine the interaction between FHB and stripe rust 

because L693 and L661 are sister lines with high similar 

genetic backgrounds (Huang et al., 2014; Li,  2015).  All 

materials were planted in the field at Yaan (lat. 29°59'N, long. 

102°58'E) in 2011. which is a famous ‘rainy city’ in the world 

and a temperate rainy environment, and it was reported that 

the yearly average temperature is 15 to 17°C and the yearly 

average precipitation is 1,520 mm with about 240 rainy days 

each year  

(Luo et al., 2009), which is helpful for wheat disease 

occurrence and prevalence. The parent lines field trials 

experiments were adopted with a randomized completeblock 

design with three replication and the randomly segregating F2 

plants were planted within a replication.   

Resistance evaluation: In the present research, a 

macroconidial suspension having 200 macro conidia/ml was 

showered on the spikes of around 200 plants. In order to 

screen for disease resistance at anthesis stage, these plants 

were arbitrarily selected from each plot. Conidial suspensions 

were prepared from a single spore-derivative segregate of F. 

graminearum No. 4 which was obtained on request from 

Professor Zhengqiang Ma at Nanjing Agricultural University, 

Nanjing, Jiangsu Province, China. The F. graminearum 

conidial suspensions were prepared by placing F. 

graminearum conidia into V8 juice agar and were developed 

at room temperature for 1 to 2 weeks. Another, falcate conidia 

poured from the plates were exchanged into fluid mung bean 

medium and refined for 3 days at 25°C by shaking at 150 rpm. 

At last, the conidial suspension was centrifuged at 8,000 rpm 

for 10 min after sieving by Miracloth. It was then fixed in an 

ice bucket in order to transport to the field, and finally utilized 

for inoculation in 5 h. Heads from the main stem were 

haphazardly checked to assess FHB resistance.  

Statistical analysis: Significant contrasts in the mean disease 

severity and yield traits of arbitrarily chosen plants from three 

replications between the resistant, susceptible and among the 

four sets of disease conditions of two wheat lines (L693 and 

L661) were determined using an autonomous samples t test 

with IBM SPSS Statistics 19 software (SPSS Inc., Chicago, 

IL). Furthermore, noteworthy variations in the mean yield 

traits between both the resistant, susceptible and among all the 

four sets of disease conditions were also determined by the 

same program. 
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Principle component analysis (PCA): R software was 

utilized to conduct principle component analysis in order to 

partition the total variation present in the variables and the 

traits under observation into its principle components. 

Multivariate analysis was done to estimate the correlations 

between all the traits, density distribution of the sample data, 

regression line for all the traits and the box plots for all the 

traits under four different sets of disease conditions. Scree 

plot was made to demonstrate the percentage of explained 

variance. Graph of variables has been constructed to show the 

contribution of all the traits. PCA biplots were constructed to 

estimate the important associations between the different 

traits under all the four sets of disease conditions. 

 

RESULTS 

 
Multivariate combined analysis in Figure 1 demonstrates the 

correlation between all the traits, the density distribution of 

the sample data, regression line for the traits and the box plots 

for all the traits under four different types of disease 

conditions. The last column in Figure 1 shows the box plots 

for each variable under four different sets of disease 

conditions. Spike grain weight and grains per spike exhibit the 

maximum value when the plant is resistant to both the 

diseases and also when it is FHBr-SRs while disease index 

appeared to be the maximum when the plant was susceptible 

to both the diseases and also during the phase of FHBs-SRr. 

In the correlogram (Fig. 1), grains per spike showed a strong 

positive correlation of 0.89 with spike grain weight and the 

later showed strong positive correlation of 0.739 with 

thousand grain weight in all the four types of disease 

conditions (0.918, 0.89, 0.798 and 0.8, respectively). 

However, a strong negative correlation of -0.646 has been 

found between disease index and thousand grain weight in 

case of FHBs-SRs and similar correlation of -0.586 has been 

observed in case of FHBs-SRr except with the additional 

correlation of -0.524 with spike grain weight.  

The scree plot in Figure 2 demonstrates the percentage of 

explained variances or eigenvalues by all the traits of interest. 

In this data, approximately 53% explained variances are due 

to grains per spike, 17% by spike grain weight, 8.4% by 

thousand grain weight while only 1.4% by the disease index. 

This shows that 70% of the explained variances are within the 

first two dimensions or principle components.   

 
Figure 1. Multivariate combined figure showing correlation between all the traits, the density distribution of the 

sample data, regression line for the traits and the box plots for all the traits under four different types of 

disease conditions. 
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Figure 2. Scree plot (Eigenvalues or variances explained). 

 

Figure 3 shows the contribution of the four traits. Grains per 

spike and spike grain weight lie in the same dimension 

contributing their maximum contribution towards the total 

variation. Both are positively related to each other proving 

themselves the best traits to be studied in further studies. 

Disease index is also contributing towards variation but in the 

opposite direction.  

 

 
Figure 3. Variables PCA showing contribution of traits 

towards total variation. 

 

Figure 4. PCA biplot showing disease eclipses for the traits. 
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The PCA-biplot in Figure 4 shows the direct relationship of 

grains per spike and spike grain weight with plant resistance 

mechanism while disease index is associated with 

susceptibility. 

The PCA-biplot for all the traits under the four sets of disease 

conditions in Figure 5 depicts that grains per spike and spike 

grain weight lie positively close to each other and are 

associated with FHBr-SRr, thousand grain weight exhibit its 

association with FHBr-SRs while disease index lie in the 

opposite direction associated with FHBs-SRr and FHBs-SRs. 

 

Table 1. The effects of interaction between FHB and SR 

on wheat yield parameters GPS, GWPS, and 

KGW. 

Group GPS GWPS KGW 

FHB (R) SR (R) 37.1±1.07a 1.0±0.04a 25.9±0.59a 

FHB (R) SR (S) 28.9±1.90b 0.7±0.05b 23.8±1.11a 

FHB (S) SR (R) 28.5±0.82b 0.6±0.02c 17.3±0.52b 

FHB (S) SR (S) 20.6±1.10c 0.4±0.03d 14.6±0.61c 
FHB, Fusarium head blight; SR, stripe rust; GPS, grain per spike; 

GWPS, grain weight per spike; KGW, 1000-grain weight; R 

represents resistance; S represents susceptibility; Lower cases 

symbolize significant at the probability level of 0.05 (LSD); upper 

cases symbolize significant at the probability level of 0.01 (LSD). 

 

Table 2. The effect of different FHB and SR resistance 

traits on wheat yield parameters GPS, GWPS, 

and KGW. 

Disease Phenotype GPS GWPS KGW 

FHB R 36.0±0.98** 1.0±0.03** 25.6±0.53** 

S 25.8±0.70 0.5±0.02 17.1±0.80 

SR R 33.1±0.72** 0.8±0.03** 21.8±0.46** 

S 22.7±0.98 0.5±0.03 18.4±1.62 
FHB, Fusarium head blight; SR, stripe rust; GPS, grain per spike; 

GWPS, grain weight per spike; KGW, 1000-grain weight; ** 

Significant at the 0.01 probability level; R represents resistance; S 

represents susceptibility. 

 

Significant differences have been observed among the means 

of various wheat yield parameters under the different 

conditions of disease resistance and susceptibility. By 

comparing the combined effects of both the diseases, FHB 

and SR on the means of wheat yield parameters, it can be 

shown that FHB is affecting GPS, GWPS and KGW more 

harmfully than SR (Table 1). As the mean values of three 

yield parameters are most affected in both the conditions 

when the plant is susceptible to both the diseases or is 

susceptible only to FHB. However, the measurement of 

individual effects of both the diseases on wheat yield 

demonstrates the more harmful effects of SR on plant yield 

 

Figure 5. PCA biplot showing disease eclipses for each of the four disease conditions and each of the four traits. 
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parameters as they all have been most affected when the plant 

was SR susceptible (Table 2). 

 

DISCUSSION 

 

The results showed that FHB has the larger effect on SGW 

and the smaller GPS have been observed as compared to stripe 

rust, and that the independent effects of both FHB and stripe 

rust on all yield parameters were significant at p = 0.01, but 

that of the interaction between them was more significant than 

both independent effects. In addition, comparing the 

difference in the effect on wheat yield between FHB and 

stripe rust indicated that the influence on wheat yield of FHB 

was underestimated in the past, possibly because many 

scientists paid more attention on the effects of FHB on quality 

rather than yield.        

Different studies have been conducted to understand the plant 

source-sink mechanism in order to improve the design of 

plant disease management. Most of these studies involved 

defoliation of flag leaf or all leaves and the removal of 

spikelets for estimation of the effects of source or sink 

limitation on grain yield. Source or sink limitation may arise 

in various crops during various stages of development and 

physiological maturity. However, in cereals, grain filling 

proved to be the most important stage for the transport and 

supply of assimilates which are then stored into the grain 

structure for its development. In case of wheat, the crop is 

mostly sink limited as mentioned in the literature (Borrás et 

al., 2004; Jenner, 1979; Miralles and Slafer, 1995; Richards, 

1996; Kruk et al., 1997; Savin and Slafer, 1991; Slafer and 

Savin, 1994; Serrago and Miralles, 2014; Slafer and Andrade, 

1991). On the contrary, major source limitations have been 

observed in the warmer climates as there is an early 

senescence of green parts in these areas (Fisher, 1983). The 

novelty of present research is the understanding of source sink 

limitation and its effects on grain yield components by 

affecting both source and sink through disease i.e., stripe rust 

and FHB respectively. 

The prime objective of the current research is to characterize 

the effects of Fusarium graminarium and Puccinia striiformis 

infection on wheat grain yield parameters under different 

combination of plant disease conditions in terms of source-

sink relationship. We examined some important yield traits 

along with disease index. The results demonstrated that the 

yield traits showed a significant decrease when the plant was 

susceptible to both the diseases, i.e., FHBs-SRs while a 

significant increase in disease index has been observed in this 

condition as compared to the condition when the plant was 

resistant to both the diseases, i.e., FHBr-SRr (Fig. 3). 

However, FHB invasion had a more negative effect on yield 

traits than the stripe rust as the yield traits showed a 

significant decrease and a significant increase in the disease 

index has been shown when the plant was FHBs-SRr as 

compared to FHBr-SRs (Fig. 3). The above results were 

further affirmed from the multivariate analysis in Fig. 5. 

Correlation studies further confirmed that FHBs-SRr plants 

showed same negative results of increasing disease index on 

the yield parameters as in FHBs-SRs plants (Fig. 5).  

In terms of source-sink relationship in the present studies, 

FHB infection would be more affecting the spikes, i.e., 

photosynthetic sink of wheat plant while Plant leaves being 

the photosynthetic organ/source would be most affected by 

stripe rust. From the above results, it has been clearly revealed 

that the plant yield in this study appeared to be more sink-

limited than source-limited because FHB infection destroyed 

plant yield more than the stripe rust infection. The disease 

indices remained almost the same when the plant was resistant 

to either both the diseases or to FHB while a significant 

increase in the disease indices has been observed when the 

plant was either susceptible to both the diseases or to FHB. 

The findings of Evans and Rawson (1970) are best to further 

describe the sink restraint to plant grain yield who considered 

spike and flag leaf blade photosynthesis necessary to fulfill 

the grain requirements throughout the grain filling stage.  

Grains per spike and grain weight per spike appeared to be the 

most important trait to be considered for further studies 

because of their maximum contribution towards variation as 

well as the strongest association with plant resistance 

mechanism. Disease index also presented itself as the most 

suitable trait to link plant source-sink mechanism with FHB 

infection. The development of highly segregating F2 

population can further benefit future breeding programs 

including QTL analysis, marker assisted selection. 
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