
 

 

 

INTRODUCTION 

 

Decision making in crop planning is a crucial step in 

enhancing the profitability taking in to account multiple 

conflicting objectives under various unavoidable restrictions 

like input cost, water scarcity, water pollution, climate 

variation and the limited space and time. The design and 

employment of advanced and efficient decision making 

techniques to manage and benefit the entire agriculture 

system is one of the greatest challenges. The objectives of 

achieving highest possible profit in crop planning by 

consuming smallest possible resources and meeting all the 

restrictions can be modeled as nonlinear optimization 

problems. One of the greatest challenges in resulting 

nonlinear optimization models is the multimodality due to 

which classical methods get entrapped in local optimal 

solutions, and hence affect the reliability and worth of the 

obtained solution. Metaheuristic optimization algorithms are 

modern methods that can be used to overcome such 

disadvantages. Metaheuristics are mostly designed by 

imitating natural phenomena and are getting an increasing 

popularity. 

Inspiration from natural phenomena has become an effective 

tool in designing so called meta-heuristic approaches to solve 

complex real world optimization problems. In search of the 

best optimizer, several nature inspired algorithms have been 

proposed. For example, invasive weed optimization (IWO) 

algorithm (Mehrabian and Lucas, 2006), water cycle 

algorithm (WCA) (Eskandar et al., 2012), water wave 

optimization (WWO) algorithm (Zheng, 2015), differential 

evolution (DE) (Storn and Price, 1997), particle swarm 

optimization (PSO) algorithm (Eberhart and Kennedy, 1995), 

grey wolf optimizer (GWO) (Mirjalili et al., 2014), artificial 

bee colony (ABC) algorithm (Karaboga and Aklay, 2011), 

firefly algorithm (Yang, 2010), teaching learning based 

optimization (TLBO) algorithm (Rao et al., 2011), artificial 

showering algorithm (ASHA) (Ali et al., 2015) and etc. 

Over the last two decades, metaheuristics have been 

successfully applied to various real optimization problems, 

e.g., neural network training (Mirjalili et al., 2012; Sheihan 

and Rad, 2013), mechanical engineering (Massinaei et al., 

2013; Li and Zhou, 2011), image processing (Rashedi and 

Nezamabadi, 2013), control engineering (Oliveira et al., 

2015; Precup et al., 2012), civil and energy engineering 
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Optimization can play an important role in supporting agricultural community not only in designing and manufacturing 

mechanical equipment but also in optimal crop planning. The related optimization models are not necessarily linear due to 

varying resources and complex environmental processes. The traditional linear programming techniques may not be practical 

in such situations. Metaheuristics are powerful approaches to solve complex nonlinear models. Metaheuristics are developed 

by transforming dynamics of natural phenomena to artificial intelligence computational environment. Realizing the potential 

adaptability of working principles of irrigation tools, this paper develops a novel optimization algorithm called Targeted 

Showering Optimization (TSO) algorithm which aims to solve linear, nonlinear and multi-objective optimization problems 

arising in agriculture, engineering and other scientific areas. In the present work, the design of TSO algorithm has been 

elaborated in detail and is followed by the performance evaluation of TSO algorithm by applying it to six well-known 

benchmark functions. The obtained results reveal that the developed method finds the best quality solutions of at least four 

benchmark functions in just 100 iterations and in additional 100 iterations it supersedes other nature inspired algorithms. To 

show the applicability of the proposed method in agriculture, a case study regarding the model of optimal crop rotation in 

Slovenian organic farming has been solved by TSO. The results of optimization models of crop rotation produced by TSO are 

also promising and provide a clear trade-off between total income and the nitrogen off-take when the maximization of total 

income and minimization of nitrogen off-take are dealt simultaneously. 
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(Ganesan et. al., 2013), telecommunication (Doraghinejad et 

al., 2014), epidemiology (Ali et al., 2018) and engineering 

design optimization problems (Luqman et al., 2017; Yang and 

Deb, 2010; Rao and Patel, 2012; Tabassum et al., 2015b, 

Sadollah et al., 2015). 

Unfortunately, there exist No Free Lunch (NFLs) theorems 

(Wolpert and Macready, 1997) which state that an algorithm 

best for one algorithm may not be better for the other problem. 

Consequently necessary modifications, enhancements, 

hybridization or adaptation of more effective natural 

phenomena are needed to evolve more robust method. 

Human are the most intelligent creature of this planet and are 

trying to overcome the nature. The methods, tools and 

systems developed by them are more efficient and effective 

than those of their co-inhabitants. Therefore, it is expected 

that the balanced adaptation based on human intelligence 

might boost up the problem solving capabilities of the 

resulting optimizer. 

The idea of artificial showering for the optimization task was 

introduced by Ali et al. (2015). Originally, very limited 

adaptation from the phenomena of flow and accumulation of 

multiple water units scattered by mechanical equipment in an 

irrigation field were incorporated in the design of artificial 

showering optimization approach. Many other intelligent and 

dynamical aspects of the mechanical tools like sprinklers, 

their moving platforms, automotive controllers and other 

related concepts offer considerable inspirations for research 

on more sophisticated adaptations to design a fully equipped 

optimizer. Keeping in view these facts, the present work 

imitates advanced characteristics of artificial showering 

phenomena to propose a novel optimization method. 

Following are the main contributions of the present work. 

1. Adaptation of phenomenal working of irrigation tools to 

model an equivalent optimization process. 

2. Development of a novel metaheuristic (TSO) based on 

targeted showering through sprinklers in an irrigation 

field. 

3. Validation of the proposed method through benchmark 

functions. 

4. Efficient solution of optimal crop rotation in Slovenian 

organic farming by the proposed TSO. 

Rest of the paper is organized as follows. Firstly, the 

analogies and the procedural steps of artificial showering to 

model the TSO algorithm are elaborated. Then numerical 

results on six standard benchmark functions are reported and 

discussed in detail. Thereafter the proposed TSO is applied to 

solve a case study of optimal crop rotation in Slovenian 

organic farming along with sensitivity analysis of the model. 

In the end, main achievements of the paper have been 

concluded and some future research directions have also been 

presented. 

 

MATERIALS AND METHODS 

 

Assumptions and analogies in design of Targeted 

Showering Optimization algorithm: Targeted showering 

optimization algorithm aims to perform optimization process 

by generating and improving successive populations of 

solutions in the search space through iterative process. 

Following idealizations have been made getting inspired from 

the artificial showering phenomena (similar to those as in (Ali 

et al., 2015). 

1. The whole search space resembles to an imaginary field 

offering no resistance to water flow and the water 

infiltrates only at the lowest location. 

2. There are no evaporation, raining and interflow of water. 

3. The surmounted sprinklers cover every bit of the field. 

4. Water is in abundance and remains constant throughout 

the iterations. 

5. Each unit of the water has the probabilistic sense of 

moving downhill. 

6. The objective function to be optimized is bounded below. 

In addition to above assumptions, the adaptations from 

artificial showering by irrigation tools to design the 

optimization process are described point wise as follows. 

Search space and the solution: Mathematically, the search 

space for optimization of a real valued function 𝑓:ℝ𝑛 → ℝ is 

defined as the set: 

𝓢 = {𝒙: 𝒙 ∈ Ω ⊆  ℝ𝑛  ∧  𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖  }  (1) 

Here Ω  is a subset of Euclidean field  ℝ𝑛  due to some 

problem constraints and is omitted in the absence of 

constraints. 

TSO imitates the search space, a solution and the quality of a 

solution according as follows. 

𝓢: 𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 ← an irrigation field, 

𝒙: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← a location in irrigation field, 

𝑓(𝒙)  ← landscape level of the location. 

For illustration, consider the following two-dimensional 

problem. 

Minimize 𝑓(𝒙) = 𝑥1
2 + 𝑥2

2

 𝑥𝑖 ∈ [−10, 10]
 }   (2) 

The search space reduces to the following set. 

𝓢 = {𝒙: − 10 ≤ 𝑥𝑖 ≤ 10, 1 ≤ 𝑖 ≤ 2 } 

 
Figure 1. Geometry of problem given by relation (2). 
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Figure 1 shows the corresponding surface of the objective 

function and the search space as a rectangular field. Every 

location in the associated abstract irrigation field is identified 

by an ordered pair in  𝑅2 and belonging to the set 𝓢. 

Supposing the following four members of initial 

population 𝑷(0): 

x(1) = (2.5, – 4),  x(2) = (– 5.1, – 6.091), 

x(3) = (8.51, 4),  x(4) = (–1.1, 5.091). 

Then their corresponding landscape levels are given as under. 

h(1)= f(x(1)) = 22.25 ← The Lowest Landscape level, 

h(2)= f(x(2)) = 63.11← Second Highest Landscape level, 

h(3)= f(x(3)) = 88.42 ← The Highest Landscape level, 

h(4)= f(x(4) = 27.128 ← Second Lowest Landscape level. 

Generating initial population of locations: For the 

generation of initial population of trial solutions, it is 

supposed that the entire search space is covered by overhead 

sprinklers. The initial population 𝑷(𝟎)  of M locations is 

obtained by operating M, randomly selected, overhead 

sprinklers to release water units at the corresponding locations 

in the search space  𝓢 . The mathematical expression to be 

satisfied by each initial solution is given below. 

𝒙(𝑗) = (𝑥1
( 𝑗 )

, 𝑥2
( 𝑗 )

, 𝑥3
( 𝑗 )

, … , 𝑥𝑛
( 𝑗 )

): 1 ≤ 𝑗 ≤ 𝑀 

𝑥𝑖
( 𝑗 )

= 𝑙𝑖 + 𝑟𝑎𝑛𝑑(1) × (𝑢𝑖 − 𝑙𝑖): 1 ≤ 𝑖 ≤ 𝑛  (3) 

The symbol 𝑟𝑎𝑛𝑑(1) denotes a random number drawn from 

a normal distribution over the interval [0, 1]. Initialization 

process also involves the evaluation of landscape levels of the 

locations where the water units have been launched. An 

equivalent initial set 𝑯(0)  of objective function values is 

prepared. 

𝑯(0) = {ℎ(1), ℎ(2), ℎ(4), … , ℎ(𝑀)}   (4) 

Optimization process by targeted artificial showering: To 

perform optimization process the artificial showering defines 

a task to shower water units towards the most desired location 

of the search space which is analogous to search for the best 

possible solution denoted by  𝒙(𝑏) . For a minimization 

problem the best solution is the one with the smallest 

objective function value whereas for the maximization 

problem it is the location with −1 time the largest objective 

function value. For the population  

𝑷(𝟎) = {𝒙(𝟏), 𝒙(𝟐), 𝒙(𝟑), … , 𝒙(𝑴)} 

the best solution is calculated as: 

𝒙(𝑏) = arg ( min
1≤𝑖≤𝑀

 {
ℎ(𝑖) 𝑓𝑜𝑟 𝑚𝑖𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛

−ℎ(𝑖) 𝑓𝑜𝑟 𝑚𝑎𝑥𝑖𝑧𝑎𝑡𝑖𝑜𝑛 
)  (5) 

After identifying the best location gun-type sprinklers are 

designated to each location. Each sprinkler aims to project 

water unit by following the natural phenomenon of water flow 

along the steepest path determined by the landscape topology. 

The best natural steepest downhill direction 𝒅 can be defined 

as: 

𝒅 = − 𝛁 𝑓(𝒙)    (6) 

 

However, from algorithmic point of view, TSO needs only a 

descent direction. For this purpose, a target location  𝒙( 𝑗) , 

different from the current location 𝒙( 𝑖) of the sprinkler, is 

selected randomly. The descent direction, say  𝒅𝟏 , is 

constructed according as under. 

𝒅𝟏 = {
 𝒙( 𝑗) − 𝒙( 𝑖) 𝑖𝑓 𝑓𝑗 − 𝑓𝑖 < 0

 𝒙( 𝑖) − 𝒙( 𝑗) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
  (7) 

Another better descent direction is found by following 

relation. 

𝒅𝟐 = 𝒙( 𝑏𝑒𝑠𝑡) − 𝒙( 𝑖)     (8) 

Figure 2 exhibits the above defined two directions. 

With the help of path selection probability, say 𝜌, the gun-

type sprinkler at location  𝒙( 𝑖)  selects one of the descent 

directions defined above and projects water unit by using one 

of the following governing relations. 

𝒙(𝑖)𝑛𝑒𝑤 = 𝒙(𝑖) + 𝐹𝑖  × (𝒔 ⊗ 𝒅𝟏/‖𝒅𝟏‖)     (9) 

𝒙(𝑖) 𝑛𝑒𝑤 = 𝒙(𝑖) + 𝐹𝑖  × 𝑟 × 𝒅𝟐/‖𝒅𝟐‖  (10) 

In above two equations 𝑟 is a real number randomly chosen 

from (0, 1), 𝒔 is an n-dimensional vector of random numbers 

drawn from (0, 1) and ⊗ is the Minkowski product of two 

vectors. The parameter 𝐹𝑖 is called the projection speed of the 

sprinkler at location 𝒙(𝑖) and is calculated by using following 

Euclidean norm. 

𝐹𝑖 = ‖𝒙(𝑖) − 𝒙(𝑙)‖    (11) 

The location 𝒙(𝑙) is randomly selected from the set  𝑷(𝟎) −

{𝒙(𝑖), 𝒙(𝑗)}. 
The landscape level of the new location generated by relation 

(9) or (10) is calculated and is assigned to 𝒙(𝑖) if𝑓(𝒙(𝑖)𝑛𝑒𝑤) <

𝑓(𝒙(𝑖)), otherwise it is discarded. This process is carried out 

for each member of the current population. For a successful 

up gradation of a location the corresponding descent direction 

is memorized and the projection speed is increased for next 

iteration whereas for a failed attempt new descent directions 

and the projection speed are defined. The iterative process 

continues until prescribed termination criteria are met. 

Re-installation: The A serious challenge faced by nature 

inspired algorithms is premature convergence or stagnation at 

a local optimum point. To equip TSO with strength to jump 

out of stagnation state, the phenomena of clustering of 

sprinklers and maximum number of failed attempts are 

incorporated. For this purpose, a small positive real number 𝛿 

is used as clustering tolerance and a positive integer 

𝑇𝑖
(𝑎𝑙𝑙𝑜𝑤𝑒𝑑)

 defines an upper bound for maximum allowed 

number of failed attempts made by the sprinkler at 

location  𝒙(𝑖) . A re-installation at a new random location, 

defined by equation (3), of the search space takes place if one 

of the following conditions is satisfied. 

‖𝒙(𝑖) − 𝒙(𝑏𝑒𝑠𝑡)‖ < 𝛿    (12) 

𝑇𝑖
(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

> 𝑇𝑖
(𝑎𝑙𝑙𝑜𝑤𝑒𝑑)

   (13) 
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Figure 2. Graphical views of eight locations and search 

directions for ith location. 

 

Combining the above four phases, the complete TSO 

algorithm is described as under. 

 

Main TSO algorithm 

1. Initialize 𝑀, 𝑇𝑖
(𝑎𝑙𝑙𝑜𝑤𝑒𝑑)

, 𝛿, 𝜌 𝑎𝑛𝑑 𝑠𝑒𝑡 𝑇𝑖
(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

= 0. 

2. Drive the overhead sprinklers to shower M units of water 

and evaluate their landscape levels. 

3. For each unit 𝑖 ∶  1, 2, 3, … ,𝑀 

Choose a random number 𝑟𝑖  𝜖 (0, 1). 

𝒊𝒇 𝑟𝑖 ≥ 𝜌 , find 𝒙( 𝑗)𝑛𝑒𝑤 by using equation (9) 

𝒆𝒍𝒔𝒆 Use equation (10) to find 𝒙( 𝑖)𝑛𝑒𝑤 

𝒆𝒏𝒅𝒊𝒇. 

𝒊𝒇 𝑓(𝒙(𝑖)𝑛𝑒𝑤) < 𝑓(𝒙(𝑖)) 

𝑡ℎ𝑒𝑛 𝒙(𝑖) ← 𝒙(𝑖)𝑛𝑒𝑤  𝑎𝑛𝑑 𝑠𝑒𝑡 𝑇𝑖
(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

= 0 

𝒆𝒍𝒔𝒆 𝑑𝑖𝑠𝑐𝑎𝑟𝑑 𝒙 (𝑖)𝑛𝑒𝑤  𝑎𝑛𝑑 𝑠𝑒𝑡 

𝑇𝑖
(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

= 𝑇𝑖
(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

+ 1 

𝒆𝒏𝒅𝒊𝒇. 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛. 

4. For each unit 𝒙(𝑖): 𝑖 =  1, 2, 3, … ,𝑀; if condition (12) or 

(13) is satisfied then assign a new random location to 

𝒙(𝑖)by using relation (3) and set 𝑇𝑖
(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

= 0. 

5. If termination criteria are met then STOP otherwise go 

to step 3. 

ILLUSTRATIVE EXAMPLE 

For explanation of the iterative process of TSO consider the 

well-known Rastrigin’s function defined by following 

formula. 

𝑓( 𝒙 ) = 10𝑛 + ∑[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖)]

2

𝑖=1

 

The search space is taken as [−2, 2] × [−2, 2]. Consider that 

the parameters of TSO are as under: 

𝑀 = 10, 𝜌 = 0.1, 𝛿 = 10−6 ,  
𝑇(𝑎𝑙𝑙𝑜𝑤𝑒𝑑) = {200, 180, … , 20}. 

Following matrices correspond to the initial population and 

the landscape levels returned by computer simulation denoted 

by P(0) and H(0) respectively. 

P(0) =

[
 
 
 
 
 
 
 
 
 
−1.86 − 0.47
 −1.08 1.54
 0.85 0.57

−𝟎. 𝟖𝟕 𝟏. 𝟏𝟐
−0.67 − 1.19
−1.98 0.76
−0.39 0.51
 0.51 − 0.04
 1.20 0.83

 0.82 − 0.82 ]
 
 
 
 
 
 
 
 
 

 , H(0) =

[
 
 
 
 
 
 
 
 
 
27.08
24.34
24.21
𝟕. 𝟓𝟑
22.49
13.72
37.97
20.60
14.54
13.05]

 
 
 
 
 
 
 
 
 

 

In P(0)  The best solution is 𝒙(4) with fitness value  ℎ(4) . 

Execution of first iteration improves the current best solution 

in its vicinity. Next few populations of trial solutions and their 

fitness values are given as under. 

After the first iteration following P(1)  and H(1)  were 

obtained. 

[
 
 
 
 
 
 
 
 
 
−1.22  1.73
−0.96  1.15
 0.85  0.57
−0.97  1.14
−0.67 −1.19
−1.98  0.76
−0.78  1.13
 0.51  −0.04
 1.20  0.83
 𝟎. 𝟏𝟎  𝟎. 𝟗𝟎 ]

 
 
 
 
 
 
 
 
 

 ,  

[
 
 
 
 
 
 
 
 
 
24.02
6.43
24.21
5.99
22.49
13.72
13.40
20.60
14.54
𝟒. 𝟖𝟔 ]

 
 
 
 
 
 
 
 
 

 

The 20th iteration produced P(20) and H(20) as under. 

[
 
 
 
 
 
 
 
 
 

−0.9849 0.9310
−0.0428 0.9335
−0.0012 0.0073
0.0026 0.0064

−0.0029 0.0059
−0.0004 − 0.0095
−0.0021 0.0057
−0.0014 0.0059
1.0186 0.9220

−𝟎. 𝟎𝟎𝟎𝟒𝟏 𝟎. 𝟎𝟎𝟓𝟗]
 
 
 
 
 
 
 
 
 

, 

[
 
 
 
 
 
 
 
 
 
 2.8063
2.0935
0.0108
0.0094
0.0085
0.0181
0.0074
0.0073
3.1335
𝟎. 𝟎𝟎𝟕𝟎]

 
 
 
 
 
 
 
 
 

 

The 30th iteration was completed to generate following P(30) 

and H(30). 

[
 
 
 
 
 
 
 
 
 

5.26𝑒 − 7 9.08𝑒 − 6
8.96𝑒 − 6 7.98𝑒 − 6
6.54𝑒 − 7 9.49𝑒 − 6

−4.56𝑒 − 6 3.97𝑒 − 5
3.53𝑒 − 7 9.61𝑒 − 6

−𝟑. 𝟏𝟒𝒆 − 𝟕 𝟗. 𝟎𝟖𝒆 − 𝟔
−2.01𝑒 − 5 9.11𝑒 − 6
−1.20𝑒 − 5 9.02𝑒 − 6

−9.95𝑒 − 5 − 4.11𝑒 − 5
1.4179 0.7084 ]

 
 
 
 
 
 
 
 
 

 , 

[
 
 
 
 
 
 
 
 
 
1.64𝑒 − 8
2.86𝑒 − 8
1.80𝑒 − 8
3.17𝑒 − 7
1.83𝑒 − 8
𝟏. 𝟔𝟒𝟑 − 𝟖
9.62𝑒 − 8
4.47𝑒 − 8
2.30𝑒 − 6
33.7975 ]
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The population P(40) and the landscape levels H(40) matrices 

are given as under respectively. 

[
 
 
 
 
 
 
 
 
 
−1.89𝑒 − 7
1.07𝑒 − 7

−3.50𝑒 − 8
5.55𝑒 − 9

−1.15𝑒 − 8
−𝟖. 𝟏𝟑𝒆 − 𝟗
9.55𝑒 − 9

−1.67𝑒 − 8
6.19𝑒 − 8
−0.0003

−2.07𝑒 − 8
−3.55𝑒 − 8
−1.26𝑒 − 7
−4.55𝑒 − 8
9.51𝑒 − 8

−𝟒. 𝟓𝟕𝒆 − 𝟗
3.38𝑒 − 8

−4.69𝑒 − 9
−2.11𝑒 − 7
−0.0235 ]

 
 
 
 
 
 
 
 
 

 , 

[
 
 
 
 
 
 
 
 
 
7.17𝑒 − 12
2.52𝑒 − 12
3.41𝑒 − 12
4.16𝑒 − 13
1.82𝑒 − 12
𝟏. 𝟕𝟖𝒆 − 𝟏𝟒
2.45𝑒 − 13
5.68𝑒 − 14
9.56𝑒 − 12

0.1097 ]
 
 
 
 
 
 
 
 
 

 

At the end of 44th iteration the global optimum solution 

𝑓∗(0,0) = 0 is achieved. 

 

RESULTS AND DISCUSSION 

 

The results of TSO are compared with ASHA, Water Cycle 

Algorithm (WCA) (Eskandar et al., 2012), Water Wave 

Optimization (WWO) algorithm (Zheng, 2015), Differential 

Evolution (DE) (Storn and Price, 1997), Particle Swarm 

Algorithm (PSO) (Eberhart and Kennedy, 1995) and 

Artificial Bee Colony (ABC) algorithm (Karaboga and Akay, 

2011). Each algorithm is implemented to optimize the given 

functions under the following limitations: 

1. Number of independent runs = 30 

2. Total number of iterations = 500 

3. Number of function evaluations = 25000 

4. The objective function values in the best run are observed 

at five different levels and the 𝑘𝑡ℎ level is defined as the 

end of (
𝑘

5
× 500)

𝑡ℎ

iteration. 

The objective is to evaluate efficiency, speed of convergence 

and accuracy of each of the algorithm at various levels of the 

best run of an algorithm under a limited budget. The relevant 

parameters of all the competing algorithms have been listed 

in Table 2. All the algorithms are programmed and 

implemented in MATLAB environment. 

Details of benchmark functions: Table 1 exhibits the 

mathematical form, bounds on decision variables and the 

global minimum value 𝑓∗ of each benchmark. The selected 

benchmarks have been rigorously used in literature (Jamil and 

Yang, 2013; Hansen, 2006; Tanabe and Fukunaga, 2013; 

Chen et al., 2014) for evaluating performances of algorithms. 

The considered benchmarks involve separable, non-

separable, convex, non-convex, differentiable, non-

differentiable, unimodal, multi-modal, convex and non-

convex functions. 

The values of 𝑢𝑗  and 𝑣𝑗  in 𝑓6  are given as components of 

vectors 𝒖 and 𝒗 respectively as under: 

𝒖 = [0.1957, 0.1957, 0.1735, 0.16, 0.0844, 0.0627, 
 0.0456, 0.342, 0.0323, 0.0235, 0.0246] 

𝒗 = [4, 2, 1,
1

2
,
1

4
,
1

6
,
1

8
,

1

10
,

1

12
,

1

14
,

1

16
]. 

The algorithmic parameters of all of the competing algorithms 

have been presented in Table 2. Obtained results are presented 

Table 1. Details of benchmark functions. 

Name and Mathematical forms and Domains 𝒇∗ 

𝑓1( 𝒙 ) = ∑ 𝑥𝑖
2𝑛

𝑖=1  ;  −100 ≤ 𝑥𝑖 ≤ 100  0 

𝑓2( 𝒙 ) = ∑ |𝑥𝑖| + ∏ |𝑥𝑖|
𝑛
𝑖=1

𝑛
𝑖=1  ;  −10 ≤ 𝑥𝑖 ≤ 10  0 

𝑓3( 𝒙 ) = ∑ (∑ 𝑥𝑖
𝑗
𝑖=1 )

2
𝑛
𝑗=1  ;  −100 ≤ 𝑥𝑖 ≤ 100  0 

𝑓4( 𝒙 ) = 𝑚𝑎𝑥{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛}; −100 ≤ 𝑥𝑖 ≤ 100 0 

𝑓5( 𝒙 ) = ∑ 100(𝑥𝑖
2 − 𝑥𝑖+1)

2𝑛
𝑖=1 + (1 − 𝑥𝑖

2)2;  −30 ≤ 𝑥𝑖 ≤ 30  0 

𝑓6( 𝒙 ) = ∑ (𝑢𝑗 −
𝑥1(𝑣𝑗

2+𝑣𝑗𝑥2)

(𝑣𝑗
2+𝑣𝑗𝑥3+𝑥4)

)

2

 ; −5 ≤ 𝑥𝑖 ≤ 5 11
𝑗=1   

0.00030749 

 

Table 2. Parameters of the algorithms. 

Algorithms   Parameters 

𝑇𝑆𝑂: 𝑀 = 50, 𝜌 = 0.1, 𝛿 = 10−16 , 𝑇(𝑎𝑙𝑙𝑜𝑤𝑒𝑑) = {200, 180, … , 20} 

𝐴𝑆𝐻𝐴: 𝑀 = 50, 𝜌0 = 0.1, 𝛿 = 10−16 

𝑊𝐶𝐴: 𝑁𝑝𝑜𝑝 = 50,𝑁𝑠𝑟 = 4, 𝑑𝑚𝑎𝑥 = 1𝑒 − 32 

𝑊𝑊𝑂: 𝑁𝑝𝑜𝑝 = 50, ℎ𝑚𝑎𝑥 = 12, 𝛼 = 1.0026, 𝛽𝑚𝑖𝑛 = 0.001, 𝛽𝑚𝑎𝑥 = 0.25, 𝛽 = 𝛽𝑚𝑎𝑥 , 𝑘𝑚𝑎𝑥 = 𝑚𝑖𝑛 (12, 𝑛/2) 

𝐷𝐸: 𝑁𝑃 = 50, 𝐹 = 0.5, 𝐶𝑅 = 0.9 

𝑃𝑆𝑂: 𝑐1 = 2, 𝑐2 = 2, 𝑉𝑚𝑎𝑥 = 6,𝑊𝑚𝑎𝑥 = 0.9,𝑊𝑚𝑖𝑛 = 0.2 

𝐴𝐵𝐶: 𝐹𝑜𝑜𝑑 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 = 𝐶𝑜𝑙𝑜𝑛𝑦𝑠𝑖𝑧𝑒/2 = 25, 𝐿𝑖𝑚𝑖𝑡 = 200  

 



Luqman, Saeed, Ali, Tabassam & Mahmood 

 230 

in Table 3 whose last column contains the symbols "𝑤","𝑑" 
and "ℓ"  which represent the numbers of wins, draws and 

losses respectively. A win, draw or loss respectively means 

that TSO finds a better, equally good or an inferior solution 

as compared to some other algorithm. The bold face numbers 

in Table 3 represent the best approximates of optimal values 

produced by an algorithm among all the competing 

algorithms. 

Validation of TSO on benchmark functions: From the 

results presented in Table 3 it can be observed that TSO was 

able to find the smallest objective function value of 7.66e-14 

for the benchmark function 𝑓1 (𝒙) using only 100 iterations 

and converged to zero optimal value in just 300 iterations. On 

Table 3. Comparison of median run results on 10-dimensional benchmark functions. 

Function  Objective function value at iteration number w/d/ℓ 

100 200 300 400 500 

f1 

TSO 

ASHA 

WCA 

WWO 

DE 

PSO 

ABC 

7.66e-14 

6.89e-02 

4.31e-11 

2.26e02 

2.87e-02 

5633.58 

8.06-04 

5.05e-29 

9.90e-07 

3.73e-19 

8.01e-02 

4.83e-08 

798.4096 

4.23e-07 

0 

2.58e-11 

1.36e-22 

1.96e-04 

1.51e-13 

1.14e-02 

4.07e-11 

0 

2.02e-15 

2.02e-28 

6.02e-07 

3.90e-19 

4.85e-10 

1.56e-15 

0 

6.76e-21 

0 

3.91e-10 

3.36e-24 

1.84e-23 

2.92e-17 

5/1/0 

f2 

TSO 

ASHA 

WCA 

WWO 

DE 

PSO 

ABC 

8.97e-06 

2.96e-02 

1.69e-06 

1.54745 

4.65e-02 

26.6593 

4.36e-02 

1.06e-12 

3.06e-05 

5.05e-10 

1.82e-01 

5.32e-05 

8.706 

4.78e-04 

2.75e-14 

1.90e-08 

9.20e-13 

8.08e-03 

1.80e-07 

2.75e-02 

1.49e-06 

0 

4.94e-11 

1.78e-15 

7.23e-04 

2.76e-10 

1.06e-06 

5.23e-09 

0 

1.66e-13 

0 

3.39e-05 

4.06e-13 

2.55e-13 

7.53e-12 

5/1/0 

f3 

TSO 

ASHA 

WCA 

WWO 

DE 

PSO 

ABC 

5.34e-05 

18.8964 

4.36e-04 

5.6828 

2.30e-01 

328.7168 

42.57807 

4.29e-10 

2.96e-01 

3.99e-07 

2.42e-01 

8.57e-05 

265.3724 

4.94037 

3.69e-16 

5.83e-03 

1.75e-11 

2.09e-02 

6.31e-08 

4.5167 

3.1782 

2.90e-24 

5.09e-05 

5.24e-17 

8.70e-04 

1.10e-11 

9.79e-03 

1.4799 

3.16e-29 

4.35e-06 

7.10e-19 

2.23e-05 

4.04e-15 

1.64e-06 

9.81e-01 

6/0/0 

f4 

TSO 

ASHA 

WCA 

WWO 

DE 

PSO 

ABC 

2.548e-03 

1.78e-01 

9.16e-03 

1.3743 

1.53e-01 

8.6092 

1.8765 

4.68e-06 

6.29e-03 

3.96e-04 

1.73e-01 

1.51e-03 

 5.3837 

 5.98e-01 

9.45e-10 

1.82e-04 

1.09e-05 

1.61e-02 

1.96e-05 

4.40e-02 

1.28e-02 

7.11e-15 

1.37e-06 

1.31e-06 

2.38e-03 

1.66e-07 

3.69e-03 

9.15e-02 

7.11e-15 

2.02e-08 

3.16e-08 

1.53e-04 

1.66e-09 

1.53e-06 

3.04e-02 

6/0/0 

f5 

TSO 

ASHA 

WCA 

WWO 

DE 

PSO 

ABC 

2.84e-01 

96.2577 

1.51 

380.998 

5.8203 

384635.02 

6.19649 

3.83e-02 

73.33551 

2.22e-01 

18.5866 

3.0627 

8537.766 

1.2789 

1.42e-03 

1.8843 

7.09e-02 

4.8820 

2.2073 

59.5539 

6.39e-01 

4.40e-04 

6.08e-01 

2.08e-02 

4.4669 

1.1978 

1.61e-01 

6.05e-02 

1.07e-04 

3.72e-01 

4.94e-04 

4.4218 

7.29e-01 

1.22e-01 

9.22e-03 

6/0/0 

f6 

TSO 

ASHA 

WCA 

WWO 

DE 

PSO 

ABC 

3.08e-04 

7.19 e-04 

3.0749e-04 

6.61e-04 

3.08e-04 

2.29e-03 

1.99e-03 

3.0749e-04 

5.87e-04 

3.0749e-04 

5.1047e-04 

3.0749e-04 

1.26e-03 

1.54e-03 

3.0749e-04 

0.00042836 

3.0749e-04 

0.00050313 

3.0749e-04 

8.58e-04 

1.34e-03 

3.0749e-04 

3.74e-04 

3.0749e-04 

4.76e-04 

3.0749e-04 

8.30e-04 

7.66e-04 

3.0749e-04 

3.18e-04 

3.0749e-04 

3.55e-04 

3.0749e-04 

8.17e-04 

7.66e-04 

4/2/0 

 



Training irrigation tools for crop 

 231 

the other hand ASHA, WCA, WWO, DE, PSO and ABC were 

unable to find optimal solution up to 400 iterations. For 

benchmark function 𝑓2 (𝒙)  WCA showed fast convergence 

for first 100 iterations but could reach an accuracy of 1.78e-

15 at the level of 400 iterations. TSO proved to be superior to 

WCA and other algorithms at the levels of 200, 300, and 400 

iterations. ASHA was able to find the third best approximate 

objective function value of 1.66e-13 for this function. TSO 

produced the approximate solutions of third benchmark 

function and secured 6 wins at each of observation levels. For 

the benchmark function 𝑓4 (𝑥)  TSO stood the first by 

producing the smallest function values 2.548e-03, 4.68e-06, 

9.45e-10, 7.11e-15, 7.11e-15 at five levels respectively. DE 

found the second best final value of 1.66e-09 for this function 

which was surpassed by TSO within 200 iterations. Rest of 

the algorithms showed much inferior solutions as compared 

to that of TSO algorithm. The performance of TSO on fifth 

benchmark function is quite similar to that on fourth 

benchmark function. On the sixth benchmark function TSO 

was better than ASHA, WWO, PSO and ABC but showed 

equal performance in comparison with WCA and DE. At the 

end of 500 iterations TSO was able to locate the optima of all 

the objective functions with the best accuracies. It is worth 

mentioning that among the other water based algorithms only 

WCA showed comparable performance on f1, f2 and f6 

functions but overall performance of TSO ranked the first. 

Application of TSO to the case study regarding the model of 

optimal crop rotation in Slovenian organic farming: 

Model data: The proposed TSO algorithm is applied to the 

model of optimal crop rotation in Slovenian organic farming 

considered by Prisenk and Turk (2015). The model aims to 

determine optimum crop production combination to 

maximize the total income and minimization of nitrogen off-

take in crops by satisfying the constraints of mechanical 

labour costs, manual labour costs, cropped areas and fertilizer 

costs. There are seven crops Maize, Rye, Barely, Oats, Wheat, 

Potato and Grass Silage with related incomes, mechanical 

labour costs, manual labour costs, fertilizers costs and 

nitrogen off-takes (kg N/ha) denoted by 𝑐𝑖 , 𝑒𝑖 , 𝑎𝑖 , 𝑧𝑖  and 𝑡𝑖 
respectively. Table 4 presents the relevant data of the model. 

Development of mathematical models: 

Consider the decision variables, 𝑥𝑖 ∶ 1 ≤ 𝑖 ≤ 7, represent the 

number of hectares allocated to the crops Maize, Rye, Barely, 

Oats, Wheat, Potato and Grass Silage respectively. 

Consequently a seven dimensional design vector 𝒙 =
(𝑥1, 𝑥2, … , 𝑥7)is formed. The model is solved by considering 

three optimization problems. The first problem is the 

minimization of the objective function 𝜑1(𝒙) that maximizes 

the total income by obeying four inequality (≤) constraints. 

The second problem is minimization of objective function 

𝜑2(𝒙) denoting the nitrogen off-take with three inequality 

constraints of mechanical labour cost, manual labour cost, 

fertilizers cost and one equality constraint of cropping area. 

Third problem is the minimization of 𝜑3(𝒙) that is weighted 

aggregate of two objective functions 𝜑1(𝒙) and 𝜑2(𝒙) and is 

equivalent to simultaneous maximization of total income and 

minimization of nitrogen off-take. This problem considers 

fixed budget of 1734€ for mechanical labour cost and three 

other inequality constraints.  

Problem 1: 

Minimize 𝜑1(𝒙) = − ∑ 𝑐𝑖𝑥𝑖
7
𝑖=1  

Subject to the constraints: 

∑ 𝑒𝑖𝑥𝑖
7
𝑖=1  ≤ 1734 ; ∑ 𝑎𝑖𝑥𝑖  

7
𝑖=1 ≤ 1854 ; ∑ 𝑧𝑖𝑥𝑖

7
𝑖=1 ≤ 1880 , 

∑ 𝑥𝑖
7
𝑖=1 ≤ 7. 

Problem 2: 

Minimize 𝜑2(𝒙) = ∑ 𝑡𝑖𝑥𝑖
7
𝑖=1  

Subject to the constraints: 

∑ 𝑒𝑖𝑥𝑖
7
𝑖=1 ≤ 1734; ∑ 𝑎𝑖𝑥𝑖 ≤ 1854,7

𝑖=1  ∑ 𝑧𝑖𝑥𝑖 ≤ 18807
𝑖=1 , 

∑ 𝑥𝑖
7
𝑖=1 = 7. 

Problem 3: 

Minimize 𝜑3(𝒙) = 𝑤1𝜑1(𝒙) + 𝑤2𝜑2(𝒙) 

Subject to the constraints: 

∑ 𝑒𝑖𝑥𝑖
7
𝑖=1 = 1734; ∑ 𝑎𝑖𝑥𝑖 ≤ 1854,7

𝑖=1  ∑ 𝑧𝑖𝑥𝑖 ≤ 18807
𝑖=1 , 

∑ 𝑥𝑖
7
𝑖=1 ≤ 7. 

Each of the above problems is converted to an unconstrained 

optimization problem by means of penalty function approach. 

The weights 𝑤1and 𝑤2for third problem are set as unity. The 

proposed TSO algorithm is implemented by considering same 

parameters setting as shown in Table 2. For comparison of 

Table 4. Input data for the model. 

Organic Crop Cropped 

area (ha) 

Costs (€/ha) Nitrogen off-

take: 𝒕𝒊 Total 

income:𝒄𝒊 

Mechanical 

labour cost: 𝒆𝒊 

Manual labour 

cost: 𝒂𝒊 

Fertilizers 

cost: 𝒛𝒊 

Maize 𝑥1 2430 274.4 192.5 260.8 78.0 

Rye 𝑥2 1505 213.1 176.0 217.2 37.5 

Barely 𝑥3 1470 217.2 176.0 215.8 56.0 

Oats 𝑥4 1380 217.2 176.0 211.5 42.5 

Wheat 𝑥5 1680 217.1 176.0 246.3 45.0 

Potato 𝑥6 7350 501.7 786.5 381.3 112.5 

Grass silage 𝑥7 1289 93.6 170.5 347.1 412.5 

Restrictions ≤,= 7  Maximize ≤,= 1734 ≤ 1854 ≤ 1880 Minimize 
Source: Cuttle et al. (2003), Jeric et al. (2011) and Prisenk and Turk (2015) 
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results of TSO algorithm the results produced by those of 

Prisenk and Turk (2015) using Weighted Goal Programming 

(WGP) have been considered. Comparison of results has been 

presented in Tables 4 and 5. 

From Table 5 it can be observed that the proposed TSO 

method was able to find the optimal total income of 

19620.9639€ for problem 1 that is better than that of 

infeasible solution found by Prisenk and Turk (2015). The 

minimum nitrogen off take in problem 2 found by our 

proposed TSO algorithm is 306 kg N/ha which is 27.8% 

smaller than the reported solution of WGP. The problem 3 is 

equivalent to a multi-objective optimization problem and 

possesses many priority based optimal solutions. All such 

solutions have been obtained under two scenarios and are 

exhibited in Figure 3 and 4. Figure 3 shows the optimal 

solutions under the equality constraint on mechanical labour 

cost and Figure 4 shows the optimal curve under all inequality 

constraints.  

 
Figure 3. The optimal curve of first scenario of problem 3. 

 

One of the optimal solutions under equality constraints on 

mechanical labour cost is presented in the last column of 

Table 5. The total income found by TSO algorithm is 

18964.5329€ at nitrogen off-take level 423.83 kg N/ha. This 

solution provides a better optimal crop rotation option as 

compared to that of SC4 of WGP. 

 

 
Figure 4. The optimal curve of second scenario of 

problem 3. 

 

Figures 3 and 4 provide the extended insightful knowledge of 

the optimal crop rotation options. It can be observed from 

Figure 3 that the total income increases almost linearly from 

16625.3266€ to 19620.1799€ when nitro off-take increases 

from 335 kg N/ha to 450 kg N/ha. It clearly describes that total 

income cannot be increased beyond 19620.1799€ whenever 

nitrogen off-take falls from 335 kg N/ha or exceeds the value 

450 kg N/ha. Similarly Figure 4 shows that the total income 

Table 5. Optimal results of TSO optimal crop rotation problem. 

Objectives Results of WGP ( Prisenk and Turk 2015)  The Proposed TSO algorithm 

Problem 1 Problem 2 SC1 SC4  Problem 1 Problem 2 Problem 3 

Total Income (€) 19618.97 n/a 19227.45 17698.38  19620.964 n/a 18964.5329 

Mechanical labour costs(€) 1734.32 2045.82 1675.74 1734.33  1734 1512 1734 

Manual labour costs (€) 1853.54 2377.31 1853.50 1706.55  1854 1232 1854 

Fertilizers costs (€) 1508.43 1879.91 1460.25 1646.07  1507.89336 1565.8 1531.91482 

Cropped area (ha) 5.11 7.00 4.91 5.98  5.10391 7.00 5.42518 

N off-take (kg N/ha) n/a 423.83 423.81 423.81  n/a 306 423.81 

Organic crop rotation   

Maize 3.64 0.00 3.00 2.64  3.63674271 0.00 2.8566 

Rye 0.00 2.00 0.00 0.00  0.00 2.00 1.17298 

Barley 0.00 0.00 0.00 0.00  0.00 1.00 0 

Oats 0.00 1.12 0.00 0.00  0.00 2.00 0 

Wheat 0.00 2.00 0.37 2.34  0.00 2.00 0 

Potato 1.47 1.88 1.54 1.00  1.46716723 0.00 1.3956 

Grass silage 0.00 0.00 0.00 0.00  0.00 0.00 0 
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is maximally achieved at nitrogen off-take level around 450 

kg N/ha. 

Sensitivity analysis: Table 6 presents the sensitivity analysis 

of three optimization models. For problem 1, it can be 

observed that the fertilizer cost can be reduced to about 1508€ 

whereas the total cultivated area can be reduced to 5.2 ha. The 

farmer has an option to utilize rest of the area for some other 

usage. The shadow prices of mechanical and manual labour 

costs are 4.16242€ and 6.70€ respectively which indicate that 

an increase or decrease in the manual labour cost effects the 

total income more significantly.  

 

Table 6. Sensitivity analysis of crop rotation models. 
Restrictions Mechanical 

labour cost 

Manual 

labour cost 

Fertilizers 

cost 

Total 

cropped 

area 

 Problem 1 

Final Value 1734 1854 1507.89336 5.10391 

Shadow 

Price 

4.162419222 6.690037224 0 0 

Constraint 

R.H. Side 

1734 1854 1880 7 

Allowable 

Increase 

336.8488836 864.3396452 1E+30 1E+30 

Allowable 

Decrease 

551.3530833 637.5459184 372.10664 1.89609 

 Problem 2 

Final Value 1512 1232 1565.8 7 

Shadow 

Price 

0 0 0 56 

Constraint 

R.H. Side 

1734 1854 1880 7 

Allowable 

Increase 

1E+30 1E+30 1E+30 1 

Allowable 

Decrease 

222 622 314.2 1 

 Problem 3 

Final Value 1734 1854 1531.91482 5.42518 

Shadow 

Price 

-1.50937311 10.16561029 0 0 

Constraint 

R.H. Side 

1734 1854 1880 7 

Allowable 

Increase 

0.767230706 1.615058423 1E+30 1E+30 

Allowable 

Decrease 

1.955505398 1.202764501 348.08518 1.57482 

 

Moreover the allowable increase and decrease in the 

mechanical labour cost are 551.35€ and 336.85€ respectively 

whereas those of manual labour cost are 637.55€ and 864.34€ 

respectively. These variations do not disturb the feasibility of 

the obtained solution. For problem 2, the overall mechanical 

labour cost can be reduced by 222€, the overall manual labour 

cost can be reduced by 622€ and the overall fertilizers cost 

can be reduced by 314.2€ without effecting the feasibility of 

the solution. The increments in these quantities will be 

unnecessarily excessive. On the other hand a unit increase or 

decrease in the cropped area will increase or decrease 56 units 

in nitrogen off-take respectively. 

For problem 3, the change in mechanical labour cost has 

opposite effect on total income as well as nitrogen off-take. 

The relevant allowable increase and decrease in mechanical 

labour cost are 0.767€ and 1.956€ which leave an opposite 

effect of 1.5094 units on the objective function value. The 

manual labour cost can be increased and decreased by 

1.6151€ or 1.2028€ respectively by causing a variation of 

10.1656 units in the objective function value. The solution 

remains feasible even the farmer reduces the allocated budget 

for fertilizers by 348.085€. The overall cropped area can be 

reduced by 1.575 ha and the excessive land can be utilized for 

some other needful crops. 

 

Conclusions: In this work, a new nature-inspired 

optimization algorithm, called Targeted Showering 

Optimization algorithm, based on artificial showering and 

moving of gun-type sprinklers has been presented. The 

developed TSO is a general purpose optimizer and has a great 

potential to solve linear as well as nonlinear optimization 

problems. TSO tackles the crop rotation optimization 

problems, especially involving conflicting objectives, in an 

effective and competent way. 

To evaluate the potential of TSO, two experiments have been 

conducted. First, TSO has been compared with six state-of-

the-art nature inspired algorithms namely ASHA, WCA, 

WWO, DE, PSO and ABC. The final values found by TSO 

for functions 𝑓1−6 by utilizing 500 iterations are 0, 0, 3.16e-

29, 7.11e-15, 1.07e-04 and 3.0749e-04 which result in a total 

of 32 wins, 4 draws and no losses over the competing 

optimizers (please see last column of Table 3). Based on these 

facts and figures it can be concluded that TSO shows top 

ranked performance in solving the considered test suite. 

The proposed TSO algorithm has been successfully applied to 

solve three models of optimal crop rotation problem in 

Slovenian organic farming. The solution of first problem 

demonstrates that the maximum income found by TSO is 

19620.964€ that is better than the solution reported by Prisenk 

and Turk (2015) and is achievable at 19.79% reduction in the 

budget allocated for fertilizers along with 27.1% less 

utilization of cropped area. The optimal value of second 

problem found by TSO is 306 kg N/ha which is around 27.8% 

better than that reported by Prisenk and Turk (2015). The 

results of problem 3 found by TSO have been exhibited in 

Figures 3 and 4 which evidently reflect that up to what extent 

a compromise can be made over the nitrogen off-take or total 

income. It is worth noting that the solutions of all the 

considered crop rotation problems found by the proposed 

TSO are fully feasible whereas the solution obtained by 

Weighted Goal Programming (Prisenk and Turk 2015) 

possess large violations of the allowable resources. 

From above facts and figures, it can be concluded that 

working principles of irrigation tools can be effectively 
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imitated to evolve efficient optimizer for a wide range of 

practical optimization problems, especially in agriculture. 
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