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Abstract--Total Variation Diminishing (TVD) schemes 

are widely used to capture high resolution and non-

oscillatory supersonic and hypersonic flow problems. 

However, discretization and decoupling of the governing 

equations into nonlinear wave equation induces false 

numerical dissipation which affects the accuracy of 

results as well as rate of convergence. This deficiency of 

TVD schemes can be reduced by an adequate treatment 

of various parameters that signifies the effect of this 

dissipation. An appropriate scaling of eigenvectors and 

eigenvector matrix is one of the strategies to control the 

amount of numerical dissipation. In present work, 

hybrid scaling based on some classical scaling factors is 

proposed and tested on shock tube problem using SOD, 

Lax and Inverse Shock test cases. Although the 

computed results are found to be slightly less dissipative 

in comparison to the scaling used by Hoffmann and Yee, 

the proposed hybridized scaling and its theoretical 

aspects on Harten’s 2nd order TVD scheme has opened 

new challenges for the researchers. 

Keywords--Numerical Dissipation, Shock waves and 

Contact, Eigenvectors and Eigenvector Matrix, Shock 
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I. INTRODUCTION 

Computational Fluid Dynamics (CFD) is a tool to 

perform fluid flow simulations with computer aid 

based on numerical solutions of governing equations. 

Particularly in the area of hypersonic flow 

applications, CFD is achieving a growing attention of 

the researchers. The design of high-speed vehicles 

highly depends on precise predictions of 

aerothermodynamics, hypersonic flow, high enthalpy 

fluid dynamics and shock wave boundary layer 

interactions etc [1-3]. That is why, the growth of 

accurate numerical techniques is mandatory in order to 

provide optimal design of hypersonic vehicles. The 

complexities of the flow phenomena such as shock 

wave interactions involved in hypersonic and 

supersonic flows highly demand the formulation of 

non-oscillatory high-resolution shock capturing 

schemes. 

Higher order accurate non-oscillatory schemes 

possess false numerical dissipation which makes 

accurate estimations of hypersonic flow physics quite 
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challenging, typically at higher Mach numbers [2]. 

The development of a high resolution and low 

dissipative shock capturing scheme has been a keen 

interest of researchers from past few decades [4-8]. 

Harten’s 2nd order accurate explicit total variation 

diminishing (TVD) scheme proved to be high 

resolution non-oscillatory for computations of 

hyperbolic conservation laws. However, it shows false 

dissipation for strong discontinuities such as contact 

and shocks [4], which in turn affects both accuracy and 

efficiency. This incompatibility of TVD scheme to 

sharply capture discontinuities can be considerably 

minimized by controlling the affecting parameters 

involved. One of the primary features to reduce 

dissipation is the proper selection of characteristic 

transformation used in TVD scheme by an appropriate 

scaling of eigenvectors and eigenvector matrix 

appearing in the numerical flux formulation. 

In present work, some classical scaling factors 

which are previously used by Hoffman [9] and Yee 

[10] are used to form a hybrid scaling factor. The 

scaling factors used in hybridization are flow 

dependent, hence they can be changed from one point 

to another in each cell interface location. A new 

constant scaling factor is also proposed by 

normalization of eigenvector matrix. The performance 

of these scaling factors is investigated by comparing 

the results with numerical solutions obtained using 

classical form of these factors. Slight improvement is 

observed, encouraging enough to design and formulate 

an optimal hybrid structure of some new scaling 

factors. 

II. NUMERICAL METHOD 

In this paper, the conservative form of 1D transient 

Euler equation is used: 

∂U

∂t
+

∂F

∂x
= 0 (1) 

where, the vectors of conserved quantities U and the 

physical flux F are given in equation 2. 

U = [

ρ
ρu
ρE
]   and   F = [

ρu

ρu2 + p
(ρE + p)u

] (2) 

Nonlinear flux form can be changed into primitive 

form as, 

∂U

∂t
+ A

∂U

∂x
= 0 (3) 

The Jacobian matrix A can be calculated on previous 

time step and hence primitive form can be treated as 
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linear system of equation, where the Jacobian matrix 

A of the flux F is defined as: 

A =
∂F

∂U
= [

0 1 0

(γ − 3)
u2

2
(3 − γ)u (γ − 1)

(γ − 1)u3 − γuE −
3

2
(γ − 1)u2 + γE γu

]    (4) 

Partial differential equation given in (1) can be 

discretized in terms of numerical flux form as given in 

equation 5: 

Ui
n+1 = Ui

n − λ(f
i+
1

2

n − f
i−
1

2

n ) ;  λ =
Δt

Δx
           (5) 

The numerical flux for Harten’s 2nd order explicit 

TVD scheme is given by equation 6: 

f
i+
1

2

n =
1

2
(Fi+1 + Fi) +

1

2λ
∑ R

i+
1

2

km
k=1 [gi+1

k + gi
k −

Qk(ν
i+
1

2

k + γ
i+
1

2

k )α
i+
1

2

k ]                                       (6) 

where, 

 ν
i+
1

2

k =  λa
i+
1

2

k                                             (7) 

and a = u − c, u, u + c are three real and distinct 

eigenvalues of the Jacobian matrix A which makes the 

system strictly hyperbolic, hence ensure the existence 

of three linearly independent eigenvectors. Physically, 

these values represent the speed at which information 

propagates in time marching direction [9,11]. 

α
i+
1

2

k = R
i+
1

2

−1 ∆
i+
1

2

U                                      (8) 

Q(ν) = {
ν2

4ϵ
+ ϵ,      |ν| < 2ϵ

|ν|,           |ν| ≥ 2ϵ
                      (9a) 

where ϵ is the variable entropy fixing parameter and 

is calculated by equation 9b [12,13], 

ϵ = ε(|u| + c)                                            (9b) 

ε is arbitrary constant and is currently taken as 0.1 

γ
i+
1

2

k =

{
 

 
gi+1
k −gi

k

α
i+
1
2

k ,     α
i+
1

2

k ≠ 0

0,             α
i+
1

2

k = 0

                      (10) 

The eigenvector matrix used in the present study is 

given in equation (11). 

R = [

β1 β2 β3
β1(u − c) β2u β3(u + c)

β1 (
u2

2
− uc +

c2

γ−1
) β2 (

u2

2
) β3 (

u2

2
+ uc +

c2

γ−1
)
]  (11) 

and its corresponding inverse is as given in equation 

12, 

R−1 =

[
 
 
 
 

u

4c2β1
{2c + u(γ − 1)} −

1

2c2β1
{c + u(γ − 1)}

γ−1

2c2β1

1

β2
−

u2(γ−1)

2c2β2

u

c2β2
(γ − 1) −

(γ−1)

c2β2

−
u

4c2β3
{2c − u(γ − 1)}

1

2c2β3
{c − u(γ − 1)}

γ−1

2c2β3 ]
 
 
 
 

  (12) 

where β1, β2 and β3 are non-zero scaling factors of 

eigenvectors and eigenvector matrix. 

Let B = (β1, β2, β3) be the vector whose 

components are the scaling factors for each column of 

R in (11). 

The monotonized central (MC) limiter function gi
k 

used in present study is given in equation 13: 

gi
k = S.max (0,min (2 |g̃

i+
1

2

k | , S. g̃
i−
1

2

k ) ,min (|g̃
i+
1

2

k | , 2S. g̃
i−
1

2

k )) (13) 

where, 

g̃
i+
1

2

k =
1

2
{Q (ν

i+
1

2

k ) − (ν
i+
1

2

k )
2

} α
i+
1

2

k                (14) 

Though the limiter may not need to be same for each 

field but in order to study the sole effect of proposed 

scaling factors it is kept same for all characteristic 

fields. 

A. Proposed Scaling Factors 

The characteristic fields for the given hyperbolic 

system comprise of two nonlinear fields 

corresponding to the eigenvalues u ± c and a linear 

field corresponding to eigenvalue u [14-16]. The 

contact discontinuities are associated with the linear 

field whereas the expansion fan and shocks are 

affected by the two distinct nonlinear fields. It is 

observed that dissipation is unaffected by multiplying 

scaling factor used by Hoffman (i.e. 
ρ

c√2
) and Yee (i.e. 

1

c2
) with the eigenvector associated to a linear filed. 

This is the reason that scaling is mostly used for 

nonlinear fields only, whereas for linear field it is 

taken as unity. 

Analysis of TVD schemes using Hoffman’s and 

Yee’s scaling of eigenvector matrix used in 

characteristic transformation showed that Hoffman’s 

scaling factor is more likely suitable to capture 

expansion fan and Yee’s scaling factor can be 

considered for better results in shock region [17]. 

However, the effect of these two scaling parameters is 

distributed equally at contact. This led to the idea of 

introducing a hybrid scaling factor which can 

contribute the features of both parameters in order to 

improve the accuracy and reducing numerical 

dissipation in TVD scheme. 

In present work, the hybridization of scaling factors 

is performed by taking the combination of scaling 

factors used by both Hoffman and Yee [9] [10] as: 

B1 = (β1, β2, β3) = (
ρ

c√2
, 1,

1

c2
)                 (15) 

where, 

c
i+
1

2

2  is replaced by max(c
i+
1

2

2  , min(ci
2, ci+1

2 ))  

i.e β3 = 1 max (c
i+
1

2

2  , min(ci
2, ci+1

2 ))⁄  

The effect of this scaling is analyzed comparing the 
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results with the computations obtained by using each 

individual scaling factor as given by Hoffman and Yee 

respectively. Since β1 and β3 depends on local density 

and speed of sound therefore they can vary at each cell 

location. 

Another scaling factor based on the concept of 

normalizing eigenvector matrix R present in (11) is 

proposed as β = 2(γ − 1). Since this factor is 

independent of the flow variables such as density and 

velocity therefore it is fixed or constant hence remains 

same at all grid points. Results computed by using 

(β1, β2, β3) = (2(γ − 1), 1,2(γ − 1)) are converging; 

however, not so promising in context of numerical 

dissipation, therefore the existing solutions are 

compared with another hybridized scaling performed 

by using Hoffman’s and the new scalar as given in 

equation (16). 

B2 = (β1, β2, β3) = (
ρ

c√2
, 1,2(γ − 1))          (16) 

B. Test Case Description 

1D shock tube problem is the one whose analytical 

solutions are available; therefore, it is used as a test 

case to investigate the performance of the proposed 

scaling of eigenvectors and eigenvector matrix. SOD, 

Lax and Inverse Shock boundary conditions are used 

as given in Table I. The computational domain is taken 

as [0,1] with 1000 grid points, setting Courant-

Friedrichs-Lewy (CFL) condition equals to 0.8. Initial 

discontinuity is centered on x = x0 at t = 0 and has 

the following form: 

U(x, t) = {
UL,     x < x0
UR,     x ≥ x0

                             (17) 

where, x0 = 0.5  

Simulations of SOD and Lax are carried out up to 

0.15 sec whereas for Inverse Shock condition up to 

0.05 sec of physical time. All computations are carried 

out on Intel(R) Core(TM) 2,CPU@2.13 GHz, 5GB 

RAM. 

TABLE I 
Boundary Conditions. 

 PR ΡR VR PL ΡL VL 

SOD 0.1 0.125 0.0 1.0 1.0 0.0 

LAX 0.571 0.5 0.0 3.528 0.445 0.698 

INVERSE 

SHOCK 
1.0 1.0 5.916 29.0 5.0 1.183 

III. RESULTS AND DISCUSSION 

The effect of proposed hybridized scaling of 

eigenvectors and eigenvector matrix on dissipation of 

Harten’s 2nd order accurate explicit TVD scheme is 

analyzed. Results are compared with the consequences 

of each individual scaling factor to understand the 

behavior of scheme for capturing expansion fan and 

discontinuities which are present in high speed flows. 

A. Behavior of TVD scheme with 𝑩𝟏 

Fig 1 to 3 show result at contact discontinuity for 

the case of SOD, Lax and Inverse Shock boundary 

conditions respectively computed with B1 given in 

equation (15), and the scaling suggested by Hoffman 

and Yee. In case of SOD, B1 is found to be good on 

average in comparison to Hoffman’s scaling factor 

 
Fig 1: Contact for SOD case with B1 

 
Fig 2: Contact for Lax case with B1 

 
Fig 3: Contact for Inverse Shock case with 𝐵1 

(β1 in B1) and Yee’s scaling factor (β3 in B1) for 
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expansion fan, contact is precisely captured by both β1 

and B1 whereas β1 is leading in shock region as shown 

in Fig 4.  

 
Fig 4: Shock for SOD case with 𝐵1 

In order to examine the accuracy of each scaling 

factor in SOD test case, error analysis for contact 

discontinuity and shock is also presented in Fig 5 and 

6 respectively. 

 
Fig 5: Error analysis for contact in case of SOD with 𝐵1 

 
Fig 6: Error analysis for shock in case of SOD with 𝐵1 

For test case of Lax, B1 is observed to be a 

compromise between β1 and β3 for expansion fan as 

well as for shock. Fig 7 shows the comparison of 

scaling factors for shock region in Lax case, β1 is 

found to give at most 15% less error than B1 on 

average and B1 is approximately 3% improved than β3 

as shown in Fig 8. 

 
Fig 7: Shock for Lax case with 𝐵1 

 
Fig 8: Error analysis for shock in case of Lax with 𝐵1 

 

Fig 9: Error analysis for contact in case of Lax with 𝐵1 

Results of B1 and β3 are almost similar for contact 

discontinuity, whereas results of β1 are varying by 2% 

on average as shown in Fig 9. Fig 10 depicts that the 

performance of TVD scheme is improved for shock 

capturing with B1 in case of Inverse Shock. Computed 



 

Optimized Decoupling of Hyperbolic Conservation Laws to Predict High Speed Flow Physics 

 

23 

results with β1 and B1 are close to each other for 

contact as well as expansion fan. Fig 11 and 12 show 

error estimation at contact and shock locations 

respectively for Inverse Shock test case. 

 
Fig 10: Shock for Inverse Shock case with 𝐵1 

 

Fig 11: Error analysis for contact in case of Inverse Shock with 𝐵1 

 
Fig 12: Error analysis for shock in case of Inverse Shock with 𝐵1 

It is observed that the hybridized scaling factors take 

the effect of first eigenvector (associated to the 

eigenvalue u − c) for expansion fan and the effect of 

third eigenvector (associated to the eigenvalue u + c) 
for shock region. Since both scaling factors β1 and β3 

appearing in B1 are non-constant therefore the impact 

of these factors vary case to case. 

 
Fig 13: Density for SOD case with 𝐵2 

 
Fig 14: Density for Lax case with 𝐵2 

 
Fig 15: Density for Inverse Shock case with 𝐵2 

B. Behavior of TVD scheme with 𝑩𝟐 

The hybridization of scaling factor B2 is performed 

by using Hoffman’s scaling factor (β1 in B2) for the 

characteristic field which is more likely to affect the 

region of expansion fan and a normalizing factor (β3 

in B2) for the characteristic field influencing the shock 

region and its neighborhood. Fig 13 to 15 represents 

the comparison of density profile for case of SOD, Lax 

and Inverse Shock boundary conditions respectively 

with B2, Hoffman’s suggested scaling and a new 

constant scaling factor introduced in this paper (β3 in 
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B2). In case of SOD, B2 is approximately 2% more 

accurate than its individual components for expansion 

fan and contact whereas β1 is leading in shock region 

as shown in Fig.16. 

 
Fig 16: Shock for SOD case with 𝐵2 

 
Fig 17: Error analysis for shock in case of SOD with B2 

 

Fig 18: Shock for Lax case with 𝐵2 

The error estimation for shock location as shown in 

Fig 17 reveals that numerical dissipation is reduced by 

3% on average with β1, whereas B2 and β3 are found 

to be equally dissipative. For Lax case, B2 is less 

accurate than β1 in the region of contact discontinuity 

but results for expansion and shock are superior with 

B2.  

Fig 18 and 19 represent shock region and 

corresponding residuals for Lax test case. Similar 

behavior is observed in case of Inverse Shock with the 

exemption that β3 in B2 is more accurate across the 

shock as shown in Fig 20. Error analysis for shock 

location presented in Fig 21 depicts the accuracy of β3 

whereas, B2 is still improved than β1. 

 

Fig 19: Error analysis for shock in case of Lax with B2 

 

Fig.20 Shock for Inverse Shock case with 𝐵2 

 

Fig.21 Error analysis for shock in case of Inverse Shock with B2 

It is observed that the normalizing constant (β3 in 

B2) used for scaling the eigenvector associated to 

eigenvalue u + c proved to be good to capture shock 

precisely in two out of three test cases. This issue can 
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be studied further for making it more general to be 

applicable in all cases in order to get desired results. 

IV. CONCLUSION 

Accuracy of numerical results is degraded due to 

false numerical dissipation near discontinuities in high 

speed flows. Hybridization of previously notable 

scaling factors for decoupling of hyperbolic 

conservation laws are proposed to encounter this issue. 

One of the scaling factors is formed by using the 

combination of Hoffman’s and Yee’s proposed scaling 

factors, whereas the second one is generated by 

Hoffman’s scaling factor and normalizing constant of 

eigenvector matrix. The impact of proposed scaling on 

the behavior of Harten’s 2nd order explicit TVD 

scheme is investigated by solving 1D shock tube 

problem subject to SOD, Lax and Inverse Shock 

boundary conditions. It is found that hybridized 

scaling factor which is composed of Hoffman’s and 

Yee’s scaling factors improved the results 

approximately 2% for expansion fan but its 

performance is not preferable over Hoffman’s scaling 

factor for shock region in two out of three test cases, 

even so both are equally dissipative for contact 

discontinuity. Computed results with the scaling factor 

formed by combining Hoffman’s scaling and 

normalizing constant are somewhat satisfactory in 

comparison for boundary conditions used in present 

study. However, contact discontinuity in case of Lax 

and shock region for SOD still have some margin of 

refinement for this scaling factor to be the best choice 

in reducing numerical dissipation.  

The idea is based on treating each characteristic 

field according to their nature with dissimilar scaling 

factors. Despite all discrepancies, the concept of such 

hybridization has given new direction in the area of 

optimized decoupling of hyperbolic conservation 

laws, which can be explored further in 2D and 3D 

problems involving high speed flow physics. 
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