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Abstract— Due to growing use of advance metering 

infrastructure (AMI), and advance communication 

technologies, optimization of the utility grid has become easy 

and fast, which has increased the overall power delivering 

efficiency of the grid and minimized the per unit cost. 

Moreover, this technological advancement has also enhanced 

the voltage fluctuations controlling capability of a grid, 

introduced by the intermittent resources. This paper proposes 

a power flow analysis technique to suppress the abrupt voltage 

variations introduced by renewables in a decentralized power 

network. To simultaneously reduce the energy consumption 

cost along stabilizing voltages in a decentralized network, a 

consumer-grid relation-based load scheduling technique is 

being proposed, which concurrently changes the VR tap 

position for load scheduling according to the consumers’ load 

demands for multiple time slots. Performance of the proposed 

techniques are verified by comparing the results with 

conventionally used algorithms. Intense performance 

evaluation proved the proposed model can significantly 

minimize the electricity generation cost, efficiently perform 

load scheduling and effectively stabilizes the voltage fluctuation 

constraints in a decentralized power network.  

Index Terms— Demand Side Management, Decentralized 

Network, Distributed Generation, Renewable Resources, Voltage 

Regulator. Advance Metering Infrastructure.  

NOMENCLATURE 

𝑇   Total time period.  
𝑙𝑘,𝑡  Load of 𝑘 household at time 𝑡 
𝐿𝑡  Vector for load scheduling for  
 
each household. 
ℛ           Set of decentralized renewable resources. 
𝐸𝑡  Total produced electricity during time  

𝑡 ∈ 𝑇.  
ℯ𝓇,𝑡 Generated Electricity by 𝓇 during time  𝑡. 
𝑁𝑇𝑜𝑡𝑎𝑙   Total number of households.  
𝒩   Total numbers of households in operation. 
𝒩𝑓 ,𝒩𝑛𝑓 Total number of flexible and non-flexible 

load consuming appliances. 
ℋ𝑘   Anticipated on time duration of each 

household𝑡 ∈ 𝒩𝑣 . 
𝐿𝑓,𝑡 , 𝐿𝑛𝑓,𝑡  Total load of flexible and non-flexible 

power consuming appliances. 
𝑃𝑘.𝐿𝑜𝑤 , 𝑃𝑘.𝐻𝑖𝑔ℎ  Lowest and highest power consumed by 

an appliance 𝑘 at time 𝑡. 
𝒫𝑘,𝑂𝑛  Minimal energy required to power an 

appliance 𝑘 to accomplish a given task.  
ℬ   Total number of buses. 
𝒩𝑘,𝑂𝑛  Number of appliances being fed by bus 

𝒷𝑘 
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ℛ𝑘,𝑇𝑜𝑡𝑎𝑙   Number of DGs connected with 𝒷𝑘. 

𝑉𝑏1(𝑡), 𝑉𝑏2(𝑡)  Voltage comparison of two adjacent 
buses at time 𝑡. 

𝑃𝑘,𝑏(𝑡), 𝒬𝑘,𝑏(𝑡)   Active power and reactive power flow 

between buses at time 𝑡. 
𝑃𝑘(𝑡), 𝒬𝑘(𝑡)  Injected active power and reactive Power 

at bus 𝑏𝑘 at time 𝑡. 
𝐷ℛ𝑘,𝑡  Injected power from various distributed 

renewable at each bus 𝑏𝑘. 
𝑉𝑙𝑜𝑤 , 𝑉ℎ𝑖𝑔ℎ  Lowest and highest voltages limitation of 

each bus. 
𝑉∗   Nominal voltages of decentralized 

network. 
𝒳  Number of tapings of a load tap changer 

(LTC’). 
𝓋 ∈ 𝒱  Corresponding voltages of bus 𝑏0. 
𝑥𝑡 ∈ 𝒳  LTC’ changed position at time 𝑡. 
𝑐𝑡   Per unit cost of electricity at time t.  
𝐶𝑒   Total cost of generated electricity.  
𝒫,ℱ  Results of (DP’) and (PP’).  
𝜆, 𝑠  Lagrange multiplier matrix. 

I. INTRODUCTION  

From past few years, consumer load on the conventional 
power grids is consistently increasing. Service providers in 
several areas of the world are unable to supply continuous 
and reliable power to the consumers. Therefore, it is 
imperative to upgrade conventional power grid to smart grid 
by the intelligent integration of renewable resources, and by 
upgrading old communication infrastructure. Hence a 
conventional grid could be upgraded to Smart Grid (SG).  SG 
enables load scheduling and real time monitoring of electric 
loads, which helps in supplying constant and reliable 
electricity supply to the consumers, for instance by 
penetrating smart metering infrastructure and advance 
communication network, grid optimization could become 
easy and robust [1]. The real time dispatched power 
monitoring also enables the load shifting from peak hours to 
off-peak hours, after considering consumers’ preferences. 
Several Demand Side Management (DSM) or Demand 
Response (DR) techniques have been developed in literature 
to efficiently govern the load shifting processes [2]. Several 
studies proved that the load scheduling is an effective method 
and could be used for reducing load in peak hours, it 
minimizes the energy procurement cost, and reduces the need 
of new power plants. These incentives make SG a feasible 
solution for smart city’s energy management. In addition, the 
emerging threat of global warming has also compelled 
nations across the globe to reduce Greenhouse Gas (GHG) 
emissions by constructing new renewable power generation 
plants (e.g., photovoltaic and wind power plants) which are 
now considered as efficient way of clean energy generation. 
A report prepared by International Energy Agency (IEA) 
states that energy production from renewable sources will be 
tripled by the year 2035, it would have overall 32% share of 
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the global power production. This study anticipates that till 
2035, the photovoltaic and wind power plants will generate 
about 27% and 5% of the total renewables production, 
respectively [3, 4]. In SG, the system frequency is maintained 
with the help of primary and secondary load controlling 
methods. i.e., vehicles to grid system enables the penetration 
of Electric Vehicles (EVs) as energy storage devices, which 
could be used as instantaneous grid stabilization tool. The 
propagation of renewable power plants comprises higher 
proliferation of clean energy generators and decentralized 
energy storage platforms i.e., integration of distributed 
battery storage systems and EVs, provide several 
implementable options for grid stabilization in peak hours. 
Although, the integration of intermittent power generation 
resources provides clean energy, but due to increased 
renewable penetration, load scheduling has become 
compulsory in a SG to cope with voltage fluctuation 
problems. In an isolated electric grid, where frequency 
deviations are high, EVs might be used as a primary 
frequency controller, it may enhance the stability of power 
grid. 

Each renewable resource exhibits stochastic and 
intermittent nature; therefore, their power generation is not 
constant, which can cause under rated or overrated voltages 
[5, 6], and usually makes load regulation very difficult. An 
efficient way to overcome these difficulties is the anticipation 
of real-time electricity production profile of distributed 
power generators. This method could be used to optimize the 
voltages on network buses by using the energy stored in EVs, 
which can stabilize the voltage in a tolerable limit [7]. It has 
been analyzed that, a grid with high renewable resources 
faces sever voltage fluctuations and load regulation 
constraints. To cope these constraints, and in order to 
maintain the constant voltages on the distribution lines, the 
voltage regulators (VRs) are installed to even out uncertain 
voltage variations on different network buses by altering the 
VR tap, hence stable voltages are maintained on a network 
bus. For example, the voltages on different feeders can be 
managed by 10% buck to 10% boost voltages by using the 
McGrew-Edison-single-phase VRs technique [8]. Since 
insufficient available power and wrong VRs tap selection can 
collectively cause voltage transients and fluctuations in SG, 
therefore, the voltage stabilizing schemes must be precisely 
selected by efficiently coordinating the load scheduling 
schemes. 

In past two-decades, massive research work has been 
carried out to efficiently stabilize load on the utility grids 
where renewables are the main source of energy generation. 
In addition, in order to minimize the peak to average ratio 
(PAR) between supply and demand, or to produce 
economical electricity several algorithms have been 
proposed in literature [8]. However, some of the existing 
techniques cater the voltage transients by employing load 
scheduling techniques, which collectively reduce the energy 
prices and regulates the stochastic voltage transients but 
failed to stabilize voltages of the commercial grids. In this 
paper, voltage regulation problem is being proposed, which 
efficiently schedules the load in a decentralized network. It 
efficiently integrates several renewable recourses in a utility 
grid and successfully suppress voltage transients. Moreover, 
a grid aggregation method is also proposed, which 
collaborates both grid and consumers’ partnership, reduces 
the total energy cost and it also regulates the voltages in a DG 
network. This paper contributes to the literature in the 
following manners: 

1. In a decentralized power network by using the load flow 
analysis, the voltage transients produced by the renewables 
are considered as a load regulation constraint. For this 
purpose, a voltage regulation method has been proposed to 
stabilize voltages at each network bus which eventually 
coordinates the load stabilization process in a synchronized 
manner. The voltage stabilization has been achieved by 
optimally changing the tap of the voltage regulators. To 
reduce the overall energy procurement price, the following 
constraint is formulated as the Mix-integral-nonlinear-
programming (MIMLPs) constraint, this MIMLP problem 
is further expanded into two sub problems. In last the 
original load regulation problem has been solved by 
computing these sub-problems independently and 
separately for achieving optimal voltage stabilization.  

2. After acquiring the optimal solution for the original 
voltage stabilizing problem, load scheduling algorithms 
have been proposed for online and offline consumers load 
scheduling, which enable the consumer to change the 
voltage regulator taps according to the energy produced by 
renewables, voltage transients and power demand. For 
online consumers, an online algorithm is developed using 
4G communication network for broadcasting instructions 
to perform load scheduling tasks. “Online Algorithm” can 
define the separate schedule for load optimization during 
each time slot, considering real time power production 
cost, network information, and current ecological 
conditions. In last, extensive performance evaluation has 
been carried out by numerical analysis, evaluated by 
comparing the actual renewable power generation and 
consumption statistics with the conventionally used 
Deng’s algorithm. The designed strategy performs 
efficient load scheduling and regulates voltage fluctuations 
effectively, it considerably minimizes the power 
procurement cost and stabilize voltages in a decentralized 
network.  

The paper is arranged as follows, Section II covers the 
literature survey, Section III, covers the system model. The 
detail of simultaneous voltage regulation problems 
formulation and load scheduling scheme is given in Section 
IV while Section V covers the solution analysis, respectively. 
An aggregator for load scheduling coordination between 
consumers and gird is developed in Section VI. The Section 
VIII shows the performance evaluation results of the 
proposed model. In last, the conclusion and outlined future 
work of this paper is given in Section VIII.  

II. LITERATURE SURVEY 

Due to the consistently growing load on the conventional 
grids, the effectiveness of load scheduling methods has 
significantly emerged in past few years. Particularly 
relevance of load optimization has been proved in 
minimizing peak to average ratio (PAR) difference between 
demand and supply, it has also enabled the broader renewable 
integration for producing economical electricity. It also 
allows the direct or indirect load controlling, according to the 
defined controlling mechanisms [6-9]. 

In SG the consumer load is controlled remotely by a central 
aggregator office, which is responsible of regulating load of 
each individual consumer. This central load optimization is 
usually carried out on those locations where the demand is 
comparative low i.e., residential areas, by applying the load 
scheduling strategies. In [10], a load leveling scheme for 
residential consumers has been proposed to reduce the energy 
cost for consumers; satisfactions. This scheme can determine 
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the optimal scheduling even if the communication between 
consumer and service providing company is restricted or 
completely lost. In ref [11], the local load scheduling 
constraint is addressed by penetrating the game theoretical 
scheme which considers the consumer’s power consuming 
preferences. Moreover, some authors studied to extend this 
approach for commercial deployment using demand 
response in smart grids. Shen at. al, developed an adoptive 
load diverting algorithm to reduce the computational load on 
the utility grid besides energy cost minimization, reliable 
power supply is assured [12]. Meanwhile, with the 
propagation of renewables and electric vehicles (EVs), the 
energy generation forecast, and elastic energy storage 
scheduling have been incorporated for demand management 
in SG. In ref [13], authors proposed a centralized scheme for 
simultaneous load scheduling of household appliances and 
plugged-in EVs to reduce the energy expenditures for 
consumers. In ref [14], the effect of EVs has been analyzed 
in a local grid and demand side management scheme is 
developed as a load stabilizing tool to cope with the 
transformers overloading.  

The distributed load management framework aims to 
economically satisfy consumers, by making them 
independent load controllers, through dynamic cost 
adjustments. In [15] author proposed an instantaneous cost 
adjustment strategy, jointly working with the optimization 
algorithm to stabilize consumer load in hourly slots 
according to the defined electricity price for each separate 
time slot. Various comprehensive research studies have also 
been carried out to analyze the constraints during 
determination of the energy price for different hourly slots, 
for instance, local renewable energy production [16], and 
consumers’ fairness [17]. For instance, a real time energy 
price determination scheme is proposed in [16] to assist 
higher renewables penetration by enabling load elastically 
for load stabilization. In [17], an adoptive load scheduling for 
PHEV battery exchange strategy (same for BES) has been 
proposed. The objective of this proposed model was to check 
the impact of unreliable data communication on the load 
scheduling tasks, but in this study BES contribution to the 
DSM system is not analyzed. The objective of this paper is 
based on BESs analysis, rather than focusing on direct 
PHEVs charging. In [18], author emphasizes that fairness is 
essential when generated revenue is paid to the consumers 
according to their contribution in network optimization. 
Therefore, in this paper, an autonomous billing scheme is 
developed to ensure both fairness and optimality in demand 
side management. In [19], researcher created a Stackelberg 
game for creating coordination between customers and 
service providers, where energy suppliers act as leaders and 
tend to enhance their overall reserves (profit margin). While, 
customers behave like followers and dynamically govern the 
load scheduling for whole network.  

To practically implement the load scheduling approach, 
several studies particularly focus on the voltage stabilization 
in SG, where selection of accurate VR taps is required to 
stabilize the voltage transients caused by the distributed 
generators. In [20], an optimization model for the distributed 
generator voltage regulation has been proposed which jointly 
reduces the energy loss in a power network and automatically 
selects the tap positions of different VRs according to load 
on network buses. In [21], a decentralized voltage regulating 
model has been proposed to reduce the “Active Power, loss 
as well as the overall “Reactive Power” procurement in low 
rated networks interconnected with radial topologies, for 

higher loads the live-VR tap controlling is adopted to further 
minimize the overall power loss. In [22], authors evaluated 
energy loss in a distributed power network due to sever 
voltage fluctuations and reverse flow of power, under 
broader scale DG penetrations. In this paper author has 
structured a decision rendering algorithm to perform the 
optimum load scheduling for a distributed generation system 
comprising battery storage system, load controlling and 
taping transformers, to reduce power losses. 

Although, some existing techniques simultaneously 
consider load scheduling and voltage fluctuation issues to 
regulate energy price in a power grid, which are highly 
complex to jointly compute, and failed to integrate various 
renewable resources in a decentralized power network. 
However, numerous researchers tried to investigate the 
voltage stabilization and regulation issues, consistently 
occurs in a power system [5,23]. However, despite these 
efforts no considerable achievement has been reached in 
efficiently performing load scheduling to regulate system 
voltages during maintaining the required power flow. 
Therefore, in this paper, a simultaneous load scheduling, and 
nominal voltage regulating constraint is proposed to 
efficiently adjust the VRs and to simultaneously govern load 
scheduling on multiple buses, to minimize the energy cost as 
well as to achieve optimal voltage regulation and 
stabilization. 

III. SYSTEM MODELLING 

Infer a decentralized power network, comprises, a set of 
renewable distributed generators  ℛ(|ℛ| = 𝑅) , a central 
management authority, and a combination of households 
𝒩(|𝒩| = 𝑁). This managing authority is responsible for 
controlling and scheduling the power demand of household 
appliances, and jointly optimize the VR operations to 
optimally connect VRs with different network buses. Each 
distributed generator comprises a remote terminal unit (RTU) 
for broadcasting data to the central managing office. Each 
household is intelligently connected to the smart meter by 
Zigbee or Bluetooth. These smart meters are capable of 
exchanging data with the central office in order to regulate 
the working time of each household. In addition, a day has 
been divided into multiple time slots (i.e., 24) presented by 
𝒯[1, … , 𝑇] . To represent each decentralized renewable 
generator (DG) 𝓇 ∈ ℛ. let 𝑒𝓇,𝑡  is the power produced by 𝓇 

during time 𝑡, while the total produced power during the time 
duration 𝑡 ∈ 𝒯  is 𝐸𝑡 = ∑ 𝑒𝓇,𝑡𝓇∈ℛ . In this renewable 

generation modelling, I have assumed the photovoltaic plants 
and wind turbines are main source of power generation. Note, 
these renewable resources exhibit stochastic nature, however 
various already developed models can anticipate the short-
term power production by renewable resources precisely but 
failed to forecast power production statistics on commercial 
level [16]. 

A. Consumer Load Modelling 

The consumer load has been divided into two different 
categories flexible load and non-flexible. The superscripts 
𝒩𝑓  and 𝒩𝑛𝑓  show the total number of flexible and non-

flexible households.  The combination of overall household 
appliances is represented by  𝒩 = 𝒩𝑓 ∪𝒩𝑛𝑓 . For a time 

instance  𝑡, variables 𝐿𝑛𝑓,𝑡  and 𝐿𝑓,𝑡  denote the total load of 

non-flexible and flexible households, while 𝐿𝑡 is the total 
load of all households, and it could be computed by 𝐿𝑡 =
𝐿𝑛𝑓,𝑡 + 𝐿𝑓,𝑡.  
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For each household 𝑘 ∈ 𝒩, infer 𝑙𝑘,𝑡 is the total load of a 

𝑘  household at time 𝑡 . Note, the non-flexible load of a 
household could not be diverted, therefore 𝑙𝑘,𝑡 is assumed as 

a fixed load for each non-flexible appliance as 𝑘 ∈ 𝒩𝑛𝑓 and 

each 𝑡 ∈ 𝒯 . Conversely, the flexible loads of household 
appliances 𝒩𝑓  (i.e., Clothing dryers and EVs) could be 

diverted and scheduled by the central office to achieve the 
optimal power flow. In this power network, consumers are 
only concerned with the accomplishment of assigned tasks. 
[12,16]. Let 𝑎𝑘,𝑡 is the defined schedule for load shifting of 

each household 𝑘 ∈ 𝒩  at time 𝑡 , thus 𝑙𝑡 ≜ {𝑙𝑘,𝑡}𝑘 ∈ 𝒩𝑓 

show the vector of load scheduling for each flexible 
household appliance during time 𝑡, and 𝐴 ≜ [𝑙𝑡]𝑡∈𝒯  show the 
matrix of load scheduling for each flexible appliance during 
a day. 

Moreover, the function ℋ𝑘 ≜ [𝑖𝑘 , 𝑗𝑘] shows the feasible 
working hours of each flexible appliance  𝑘 ∈ 𝒩𝑓, where the 

variables 𝑖𝑘  and 𝑗𝑘  denote the initial and eventual time 
durations required for accomplishing the task of a 𝑘 
household, and the variable ℋ𝑘  shows the total parked time 
of an EV in the house. Thus, we get the following problem 
for 𝑎𝑘,𝑡 using equation 1: 

 {
𝑃𝑘,𝑙𝑜𝑤 ≤ 𝑎𝑘,𝑡 ≤ 𝑃𝑘,ℎ𝑖𝑔ℎ         ∀𝑡 ∈ ℋ𝑘

𝑎𝑘,𝑡 = 0,                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1) 

where, 𝑃𝑘,𝑙𝑜𝑤  and 𝑃𝑘,ℎ𝑖𝑔ℎ  show the lowest and highest 

consumed electricity by an appliance 𝑘 during time 𝑡, and 
measured considering its rated power consumption [25]. In 
addition, a different time-coupled problem for 𝑙𝑘,𝑡 associated 

with the total power commutation of a household during the 
working time ℋ𝑘  is computed by the formulation given in 
equation 2. 

 ∑ 𝑙𝑘,𝑡 ≥ 𝑙𝑘,𝑙𝑜𝑤

𝑗𝑘

𝑡=𝑖𝑘

 (2) 

where, 𝑙𝑘,𝑙𝑜𝑤 is the lowest power, consumed by an 

appliance 𝑘 to accomplish the assigned task. For instance, 
𝑙𝑘,𝑜𝑤   is supposed to be 16kWh for driving an EV to 40-mile 

distance [26]. This problem assures that the assigned task will 
be accomplished till the given deadline  𝑗𝑘 . In general, the 
total demand of a power network during time 𝒯  could be 
computed through equation 3. 

 𝐿𝑡 = 𝐿𝑛𝑓,𝑡 + 𝐿𝑓,𝑡 = 𝐿𝑛𝑓,𝑡 + ∑ 𝑙𝑘,𝑡
𝑘∈𝒩𝑓

 (3) 

where, 𝐿𝑛𝑓,𝑡  is a constant.  

B. Voltage Regulator (VR) Modelling  

To show the transmission model of the power grid, and to 
define different entities of a distribution system, a single line 
grid model comprising multiple buses have been used [7,24]. 
Let 𝐵 = {𝑏0, 𝑏1, … , 𝑏𝑛}  show the collection of network 
buses. A power transformer is connected to the bus 𝑏0  it 
directly acquires power from the utility grid, and then 
distributes it to the consumers (or sell it back to the grid). A 
set of households 𝒩𝑘  is connected to each bus 𝑏𝑘 ∈ 𝐵 ∖ {𝑏0}. 
Hence, we get ⋃𝑘=1

𝐵 𝒩𝑘 = 𝒩.  

 

Fig 1: Power flow between two adjacently connected network buses. 

The shown power transformer in Fig 1, is a distribution 
transformer, which step downs the voltages injected by the 
main transmission lines (over 133 kV) to a distribution level 
(at 11 kV), here 𝑏0 denotes the distribution side of this power 
transformer. 

It can be noticed that DGs are connected to the multiple 
buses, referred as generation buses’ and other buses are 
referred as load feeding buses. 𝐷ℛ𝑘  has been used to show 
the set of multiple DGs connected with bus 𝑏1 , hence, 

⋃𝑘=1
𝐵 𝐷ℛ𝑘 = ℛ.  

By determining the line impedance value, the value of 
voltages on each bus can be computed by using the power 
flow analysis method to calculate the active and reactive 
power flow [7,27]. Fig 1 shows the relationship between 
voltage levels of two adjacently located network buses during 
time 𝑡, e.g., 𝑉𝑏1(𝑡) and 𝑉𝑏2(𝑡) and computed by equation 4 
[28].  

𝑉𝑏1(𝑡) − 𝑉𝑏2(𝑡)

=
𝑃𝑘,𝑏2(𝑡) ∙ 𝑑𝑘,𝑏2 + 𝒬𝑘,𝑏2 ∙ 𝑤𝑘𝑠

𝑉𝑏2(𝑡)
 

(4) 

where, 𝑃𝑘,𝑏1(𝑡) and 𝒬𝑘,𝑏2  denotes the active power and 

reactive power supplied by the busb1 and busb2 for the time 𝑡, 
respectively, in addition the formulation, 𝑑𝑘,𝑏2 + 𝑏 ∙
𝑍𝑏,𝑘  represent the impedance of main feeder 𝑘 − 𝑏. Equation 

4 can be redefined in per unit approximation as given in 
equation 5. 

𝑉𝑘(𝑡) − 𝑉𝑥(𝑡) = 𝑃𝑘,𝑏1(𝑡) ∙ 𝑑𝑘,𝑏2 + 𝒬𝑘,1(𝑡)
∙ 𝑤𝑘,𝑠 

(5) 

where the variables 𝑃𝑘(𝑡)  and 𝒬𝑘(𝑡)  show the active 
power and reactive power of bus 𝑏1 for the time 𝑡, 𝑉𝑘(𝑡) is 
the total voltage of an appliance, and 𝑉𝑥(𝑡) are the voltages 
at VR tap respectively, thus we get equation 6. 

{
 

 𝑃𝑘−1,𝑘((𝑡) = −∑ 𝑃𝑏2(𝑡) − 𝑃𝑘(𝑡) =
𝑀

𝑏2=𝑘+1
−∑ 𝑃𝑏1(𝑡)

𝑀

𝑠=𝑘

𝒬𝑘−1,𝑘((𝑡) = −∑ 𝒬𝑏2(𝑡) − 𝒬𝑏1(𝑡) =
𝑀

𝑏2=𝑘+1
−∑ 𝒬𝑏2(𝑡)

𝑀

𝑠=𝑘

 
(6
) 

It has been inferred that 𝐿𝑘,𝑏𝑘 = ∑ 𝑙𝑘,𝑏𝑘𝑏∈𝒩𝑘,
 is the total 

load on a bus 𝑏𝑘  during time 𝑡 . Because the total load of 
household is fully fed by the active power, it can be computed 
by following formulation given in equation 7. 

𝑃𝑘(𝑡) = 𝐷𝑅𝑘,𝑡 − 𝐿𝑘𝑡 (7) 

where, 𝐿𝑘,𝑡 = ∑ 𝑒𝑟,𝑡𝑏𝑘∈𝒪𝒩𝑘
 show the supplied power by 

DGs at bus 𝑏𝑘  (e.g., 𝐷𝑅𝑘,𝑡 > 𝐿𝑘𝑡), and 𝑃𝑘(𝑡) is a positive 

variable shows the distributed power by the bus 𝑏𝑘 , and it 
also show the decrease in voltage levels at bus 𝑏0. By using 
equation 5, the relationship has been formulated between the 
increasing and decreasing voltage levels i.e., 𝑏𝑘(1 ≤ 𝑘 ≤ 𝐵) 
and 𝑏0, computed by equation 8. 
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𝑉𝑘(𝑡) = 𝑉0(𝑡) −∑(𝑃𝑏𝑘−1,𝑏𝑘(𝑡)𝑑𝑏𝑘−1,𝑏𝑘

𝑘

𝑠=1

+ 𝑌 𝑏𝑘−1,𝑏𝑘(𝑡)𝑤𝑏𝑘−1,𝑏𝑘) 

 

(8) 

Voltage stabilization is compulsory for each bus. Let, 𝑉𝑙𝑜𝑤  
and 𝑉ℎ𝑖𝑔ℎ are the minimum and maximum voltages on a bus, 

and 𝑉∗  show the nominal range of voltages on other 
distribution end of the gird. It could be narrated as 𝑉𝑙𝑜𝑤 =
0.9 ∙ 𝑉∗, while the range of rated voltages, 𝑉ℎ𝑖𝑔ℎ = 1.1 ∙ 𝑉

∗. 

Hence, by using equation 6 and 8, the voltage regulation 
problem for bus 𝐵𝑘  during time 𝑡  is defined as given in 
equation 9. 

𝑉𝑙𝑜𝑤 < 𝑉0(𝑡) + ∑ {∑(𝐷𝑅𝑙𝑜𝑤,𝑡 − 𝐿𝑐𝑡) ∙ 𝑑𝑏𝑘−1,𝑏𝑘

𝐵

𝑐𝑡−𝑠

𝑘

𝑏𝑘=1

+∑𝒬𝑙𝑜𝑤(𝑡) ∙ 𝑤𝑏𝑘−1,𝑏𝑘

𝑀

𝑐=𝑠

} < 𝑉ℎ𝑖𝑔ℎ 

(9) 

As stated above, 𝑑𝑏𝑘−1,𝑏𝑘  and 𝑤𝑏𝑘−1,𝑏𝑘 are constants, 

while ∑ 𝒬𝑙𝑜𝑤(𝑡)
𝐵
𝑙𝑜𝑤=𝑏𝑘

 show the reactive power supplied by 

bus 𝐵𝑏𝑘to bus 𝑏𝑏𝑘+1, which can also be calculated separately 

for each bus. In addition, the 𝐷𝑅𝑘,𝑡  shows the electricity 

generated by renewable at bus 𝑏𝓇  which is computed by the 
proposed generation model. While, equation 9 is defined to 
overcome the problems faced by the aggregator during load 
stabilization for each bus. 

In order to stabilize the decentralized power network, the 
overall power generation capacity of renewables should not 
exceed from the transformer rating. Let, 𝑃ℎ𝑖𝑔ℎ  should be 

equal to the rated power that could be supplied by a 
transformer, in this scenario, the maximum capacity of this 
system in distributed network can be interpreted by 

∑ (𝐿𝑘,𝑡 − 𝐷𝑅𝑘,𝑡) ≤ 𝑃ℎ𝑖𝑔ℎ
𝐵
𝑘=1 . As given in equation 6 and 7, 

it is a reciprocal of equation 10. 

∑ 𝑙𝑘,𝑡 ≤ 𝜓𝑡
𝑘∈𝒩𝑓

 (10) 

where, 𝜓𝑡 = 𝑃ℎ𝑖𝑔ℎ + ∑ 𝑒𝑟,𝑡
𝑅
𝑟=1 .  

In addition, the connected VRs can be used to change 
voltage levels of first bus by taps changing according to the 
power demand [28]. It is inferred that it is a collection of VR 
taps 𝒳 for load leveling, (i.e., |𝒳| = 34 for 34 step LTCs). 
Each individual tap shows the resultant voltage 𝓋 ∈ 𝒱  on 
bus  𝑏0 : 𝑉0,𝑥 ≜ Γ(𝑥), here, Γ(∙)  is a linear function. The 

variable 𝑥𝑡 ∈ 𝒳  shows the changes in VR taps position 
during time 𝑡 , hence equation 9 can also be redefine as 
equation 11. 

𝑉𝑙𝑜𝑤 < Γ(𝑥𝑡) +∑{∑(𝐷𝑅𝑙𝑜𝑤,𝑡 − 𝐿𝑙𝑜𝑤,𝑡) ∙ 𝑑𝑏𝑘−1,𝑏𝑘

𝑀

𝑐−𝑠

𝑘

𝑠=1

+∑𝒬𝑙𝑜𝑤(𝑡) ∙ 𝑤𝑏𝑘−1,𝑏𝑘

𝑀

𝑐=𝑠

} < 𝑉ℎ𝑖𝑔ℎ 

(11) 

C. Electricity Generation Cost Modelling  

Let both consumers and power distributers are placed in a 
set. If the produced electricity by DGs is enough to even out 
consumers load during time 𝑡 , e.g., 𝐿𝑡 ≤ 𝐸𝑡 , then it is 
assumed that this set is capable to self-sustain over the 
following time period. When consumer’s load increases from 
the DGs power generation, then this set must purchase 
electricity from the national grid i.e., 𝐿𝑡 ≤ 𝐸𝑡  The selling 

price of electricity is inferred to be same as purchasing cost. 
Hence, for this set, the electricity cost on main grid side, is 
the only concerned cost, which emphasizes load scheduling, 
but it deviates during different time slots, however, it could 
be anticipated by the day-ahead load demand forecasting 
method, i.e., the per hour energy pricing method of Ontario 
Power Company, Canada. In order to represent the electricity 
price, we let 𝑐𝑡 during time 𝑡, the total cost of electricity 𝐶𝑒 
can be computed by equation 12. 

𝐶𝑒 = ∑ (𝑐𝑡 ∙ (𝐿𝑡 − 𝐸𝑡))𝑡∈𝒯 , (12) 

Now, if (𝐿𝑡 − 𝐸𝑡), 𝐶𝑒 value is negative, then it shows the 
utility company can generate profit by selling energy to the 
national grid: if not, 𝐶𝑒 is the total electricity purchased by 
the utility company from the national grid to flatten the 
consumers load.  

IV. MATHEMATICAL MODEL FORMULATION  

For voltage stabilization as well as for electricity 
generation cost minimization, a separate mathematical model 
is proposed in this research. This section covers the 
mathematical formulation of the joint voltage stabilization 
and load scheduling problem as MIINLP constraint. Since 
the MIINLP constraint is extremely complex to solve, 
therefore, this constraint is solved as a dual constraint, by 
further decomposing it into two sub-constraints which are 
easy to compute.  

A. Problem Intilization  

Total cost of the generated electricity 𝐶𝑒 is the initial cost, 
determined by analyzing the total power supplied by the 
renewables, which differs during different time slots  𝑡 ∈ 𝒯. 
In addition, continuous tap changing of VRs have shortens its 
working life due to mechanical wear/tear. Therefore, 
repairing or replacing cost of VRs have also been included, 
by comparing the differences between new and previous VR 
tap settings [7,28]. This relative cost function is initialized as 
∆(∙) ∶ 𝒳 × 𝒳 → ℝ, e.g., the wear/tear cost of VRs over the 
time period 𝑡 ∈ 𝒯  is evaluated by ∆(𝑥𝑡 , 𝑥𝑡−1) , here 
∆(𝑥𝑡 , 𝑥𝑡−1) = 0 , if 𝑥𝑡 = 𝑥𝑡−1 : if not, ∆(𝑥𝑡 , 𝑥𝑡−1) = 𝑐𝑙 . In 
addition, let ∆(𝑥1, 𝑥0) = 0 is pre-set value and the function 
𝒙 ≜ [𝑥𝑡]𝑡∈𝒯 is defined to show the position of tap changer 
vector for VRs during 24 hours, then the total cost of 
managing VR is 𝐶𝑓𝑟 = ∑ ∆(𝑥𝑡 , 𝑥𝑡−1)𝑡∈𝒯 . Note that, the total 

cost for managing VR taps 𝐶𝑓,𝑟 is independently included in 

total electricity cost  𝐶𝑒 , thus the overall cost can be 
determined by equation 13. 

𝐶𝑒(𝑥, 𝒀) 

= ∑ {𝐶𝑡 ∙ (𝐿𝑢,𝑡 + ∑ 𝑙𝑘,𝑡 − 𝐸𝑟,𝑡 + ∆(𝑥𝑡, 𝑥𝑡−1)𝑡∈𝒩𝑣 )}𝑡∈𝒯   (13) 

The joint voltage regulation and load scheduling constraint 
could be established by the following expressions as 𝒙 =
{𝑥1, … , 𝑥𝑇}  and 𝒀 = {𝑙𝑘,𝑡|∀𝑘 ∈ 𝒩𝑓∀𝑡 ∈ 𝒯}  to 

(𝐏𝐏)min 𝐶(𝒙, 𝒀) 

Apparently, (PP) is the MIINLP constraint, because, it is a 
non-convex objective function (i.e., ∑ ∆(𝑥𝑡 , 𝑥𝑡−1)𝑡∈𝒯 , and 
only provide conventional solution [29] which could not be 
implemented for controlling the load scheduling constraints. 
After precise analysis, it has been determined, in equation 
(11) 𝒙 and 𝒀 are the only corresponding variables used to 
optimize (PP). Therefore, the Lagrangian relaxation 
technique is used to solve this constraint by separating it into 
two independent optimization constraints for 𝒀  and 𝒙 
constraints. 
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B. Separation of the Constraint 

In the proposed model, constraint (11) is the only problem 
which has been used to compile the optimization of sub-
constraints 𝒀 and 𝒙, therefore in order to further enhance the 
computational capability of this constraint, I have applied the 
Lagrange multiplier matrixes as: 

𝜆 = {𝜆𝑏,𝑡 > 0|1 ≤ 𝑏 ≤ 𝐵, 1 ≤ 𝑡 ≤ 𝑇} 

while 𝑠 = {𝑠𝑏,𝑡 > 0|1 ≤ 𝑏 ≤ 𝐵, 1 ≤ 𝑡 ≤ 𝑇} 

Thus, the Lagrangian 𝐿(∙) is lined to the initial constraint 
(PP) as shown in equation 14,  

ℒ(𝑥, 𝐴, 𝜆, 𝑠) = ∑ {𝑐(𝑡)∑ 𝑙𝑘,𝑡 + ∆(𝑥𝑡, 𝑥𝑡−1) + 𝑏𝑡𝑘∈𝒩𝑣
}𝑡∈𝒯    

+∑ ∑ 𝜆𝑏,𝑡 (Γ(𝑥𝑡) − ∑ ∑ ∑ (𝑑𝑝−1,𝑝𝑙𝑘,𝑡) + 𝑣𝑏 − 𝑉ℎ𝑖𝑔ℎ𝑘∈𝐵𝑦
𝐵
𝑦=𝑝

𝐵
𝑝=𝑏 )𝑇

𝑡=1
𝐵
𝑏=1   

+∑ ∑ 𝑠𝑏,𝑡 (V𝑙𝑜𝑤Γ(𝑙𝑡) + ∑ ∑ ∑ (𝑑𝑝−1,𝑝𝑙𝑘,𝑡) − 𝑣𝑏,𝑡𝑘∈𝐵𝑦
𝐵
𝑦=𝑝

𝐵
𝑝=𝑏 )𝑇

𝑡=1
𝐵
𝑏=1   (14) 

where, 𝑣𝑏,𝑡 = ∑ ∑ (𝑑𝑝−1,𝑝𝑒𝑦,𝑡 + 𝑥𝑝−1,𝑝𝑍𝑦,𝑡)
𝐵
𝑦=𝑝

𝐵
𝑝=𝑏   

and  

𝑏𝑡 = 𝑐(𝑡) ∙ (𝐿𝑢(𝑡) − 𝐸(𝑡)). 

It can be seen that both these constraints are constants, and 

showing the functions of α𝑡 ≜ [α1,𝑡, … , α|𝒩𝑣|, 𝑡]
𝑇

 and 𝑙𝑡 =

[𝑙𝑘,𝑡 , … , 𝑙|𝒩𝑓|
, 𝑡]

𝑇

and define as equations 15 and 16. 

(α𝑡)
𝑇𝑙𝑡 ≜ ∑ [(𝜆𝑏,𝑡 − 𝑥𝑏,𝑡) ∑ ∑ ∑ (𝑑𝑝−1,𝑝𝑑𝑘,𝑡)𝑘∈𝐵

𝐵
𝑦=𝑝

𝐵
𝑝=𝑏 ]𝐵

𝑏=1   

𝛽𝑡 ≜ ∑ (𝜆𝑏,𝑡 − 𝑥𝑏,𝑡) 
𝐵
𝑏=1      (15) 

𝜃 = ∑ ∑ [𝜆𝑏,𝑡(𝑣𝑏,𝑡 − 𝑉ℎ𝑖𝑔ℎ) + 𝑥𝑏,𝑡(𝑉𝑙𝑜𝑤 − 𝑣𝑏,𝑡)]
𝑇
𝑡=1

𝐵
𝑏=1 +

∑ 𝑏𝑡
𝑇
𝑡=1 .       (16) 

Hence, the Lagrangian formulation can be defined as 
equation 17. 

ℒ(𝑥, 𝐴, 𝜆, 𝑠) = ∑ (∑ 𝑐(𝑡)𝑙𝑘,𝑡 − (𝑎)
𝑇𝑙𝑡𝑘∈𝒩𝑣 )𝑡∈𝒯   

+∑ [∆(𝑥𝑡 , 𝑥𝑡−1) + 𝛽𝑡 ∙ Γ(𝑥𝑡)]𝑡∈𝒯   (13) 

 

In addition, the joint formulation is defined as equation 18:  

ℋ(𝜆, 𝑠) = Inf
𝑥,𝐴
ℒ(𝑥, 𝐴, 𝜆, 𝑠) (14) 

In order to separate 𝑥  and 𝒀 from this joint constraint, we 
define the following sub-constraints shown in equation 19 
and 20. 

(𝐒𝐂𝟏)  𝒮1(𝜆, 𝔵) ≜ min
𝐴
∑ (∑ 𝑐𝑡𝑙𝑘𝑡 − (𝑎𝑡)

𝑇𝑙𝑡𝑘∈𝒩𝑣 )𝑡∈𝒯     (19) 

s.t, E.q, (1, 2 and 10) 

(𝐒𝐂𝟐)  𝒮2(𝜆, 𝑠) ≜ min
𝓆
∑ [∆(𝑥𝑡 , 𝑥𝑡−1) + 𝐵𝑡 ∙ Γ(𝑥𝑡)]𝑡∈𝒯   (20) 

s.t, 𝑥𝑡 ∈ [1, |𝒳|] ∩ ℤ ∀𝑡 ∈ 𝒯 

where, 𝜃 is an independent variable in 𝑥 , 𝑌  constraints 
thus, for decoupling, the joint formulation can be redefined 
as equation 21. 

ℱ(𝜆, 𝔵) = 𝒮1(𝜆, 𝑠) + 𝒮2(𝜆, 𝑠) + 𝜃 (21) 

Let, initial (PP) constraint is separated into two sub-
constraints: (SC1) for load scheduling of the flexible 
households, and (SC2) is used to assess the VR taps 
positions. 

Eventually, this joint constraint is used to enhance the joint 
formulation of 𝜆 and 𝑠, i.e., shown in equation 22 and 23. 

(𝐃𝐏)     min
𝜆,𝔵

ℋ(𝜆, 𝔵)     (22) 

s. t.    𝜆𝑏,𝑡 ≥ 0, 𝑠𝑏,𝑡 ≥ 0∀𝑏 ∈ 𝐵, 𝑡 ∈ 𝒯.  (23) 

where, the 𝑙𝑡  is the discrete variable, therefore, the non-
convex formulation ∑ ∆(𝑥𝑡 , 𝑥𝑡−1)𝑡∈𝒯  in (PP), is a weak 
duality function and could only be assured by the Lagrangian 
function where the duality space is continuous [29]. We infer 
ℋ and 𝒫 will be the achieved by (DP) and (PP). As a result, 
we get, ℋ < 𝑃, this condition sustains for each forecasted 
solution, hence, ℋ is shifted towards the lowest bound of 
𝒫 [30].  

V. SOLUTION OF THE JOINT CONSTRAINT AND SUB-

CONSTRAINTS 

This section covers the solution of initial constraint by 
computing the joint constraint and two sub-constraints.  

A. Sub-gradient Model for Joint Constraint.  

If (SC1) and (SC2) could be efficiently computed by 𝜆 and 
𝔵 , then the “dual problem (DP) is considered as a joint 
constraint” and it could be rationalized in the reverse course 
which is a fractional gradient of the Lagrangian joint function 
[30-32], and defined as equation 24. 

{
𝜆𝑏,𝑡(𝑘 + 1) = [𝜆𝑏,𝑡(𝑘) + 𝛾𝜆 ∙ 𝑢𝜆,𝑏,𝑡(𝑘)]

+

𝑠𝑏,𝑡(𝑘 + 1) = [𝑠𝑏,𝑡(𝑘) + 𝛾𝜆 ∙ 𝑢𝔵,𝑏,𝑡(𝑘)]
+  (24) 

where , the variable 𝑘 ∈ 𝑁+ denotes the iteration index, 
𝛾𝜆 > 0 and 𝛾𝔵 > 0 denotes the tap step size adjustments and 
also show the rate of convergence, the terms 𝜇𝜆,𝑏,𝑡(𝑘) and 

𝜇𝔮,𝑏,𝑡(𝑘) are the sub-gradients of the joint function defined 

according to the values of 𝜆𝑏,𝑡  and 𝔵𝑏,𝑡, respectively as shown 

in equation 25. 

{
 
 
 
 

 
 
 
 𝜇𝜆,𝑏,𝑡(𝑐) =

𝜕ℋ(𝜆, 𝔵)

𝜕𝜆
= 𝑣𝑏,𝑡 + Γ(𝑥𝑡(𝑘)) − 𝑉ℎ𝑖𝑔ℎ

−∑ ∑ ∑ (𝑑𝑝−1,𝑝, 𝑙𝑘,𝑡(𝑘))
𝑘∈𝐵𝑦

𝐵

𝑦=𝑝

𝐵

𝑝=𝑏

𝜇𝔮,𝑙,𝑡(𝑘) =
𝜕ℋ(𝜆, 𝔵)

𝜕𝜆
= 𝑉𝑙 − 𝑣𝑏,𝑡 + Γ(𝑥𝑡(𝑘))

−∑ ∑ ∑ (𝑑𝑝−1,𝑝, 𝑙𝑘,𝑡(𝑘))
𝑘∈𝐵𝑦

𝐵

𝑦=𝑝

𝐵

𝑝=𝑏

 (25) 

where, 𝑣𝑏,𝑡 = ∑ ∑ (𝑑𝑝−1,𝑝, 𝑒𝑧,𝑡 +𝓌𝑝−1,𝑝𝑍𝑦,𝑡)
𝐵
𝑦=𝑝

𝐵
𝑝=𝑏 , the 

results for  𝑙𝑘,𝑡(𝑘)  and 𝑥𝑡(𝑘)  could be achieved by 

computing (SC1) and (SC2). Hence, the indentation of (DP) 
constantly sustains and the Lagrangian accumulators could 
be obtained by computing the above given sub-gradient 
problem. 

B. Solution of the  Sub-constraints  

These subsequent paragraphs cover the solution of the 
above given sub-constraints (SC1) and (SC2). As the 
iteration process is used to solve the joint constraint; 
therefore, the sub-constraints must be addressed effectively 
to assure the reliability and efficiency of the proposed model. 
The load scheduling constraint, i.e., (SCI), has been defined 
as the linear optimization constraint, which could be solved 
directly through conventional linear programming methods 
[33,34], and the VRs adjusting constraint, e.g., (SC2) is the 
integral optimization constraint, which is complex to solve 
directly. Therefore, we are mainly focusing on finding the 
polynomial solution for (SC2) as follows:  
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Fig 2: The proposed graph pattern which is derived to evaluate (SC2). 

1) Solution of (SC1): The 𝑠 𝑎𝑛𝑑 𝜆 are the functions of 

Lagrange multiplier matrix, and 𝛼𝑡 , can be set as constants 

for the each time slot 𝑡 ∈ 𝒯. Consider, if 𝜑𝑘,𝑡 ≜ 𝑐𝑡 − 𝛼𝑘,𝑡  is 

fixed then the objective function from (SC1) can been 

redefined as equation 26. 

𝑃1(𝜆, 𝑠) = max
𝑌
∑ ∑ (𝜑k,t ∙ 𝑙𝑘.𝑡)𝑘∈𝒩t∈𝒯    (26) 

Algorithm 1: ‘Bellman Ford’ based optimization for (SC2)  

Inputs: 𝛽 = {𝛽1, … , 𝛽𝑇} and the graph 𝑅; 

Outputs: The ‘tap position vector’ 𝑥 = [𝑥1, … , 𝑥𝑇]  
and the ‘optimal value’ of 𝒮2(𝜆, 𝑠); 
Initialization of ‘vertex matrix’ 𝑛[𝑇 − 1][𝑋] , source 
node 𝐻 , edge matrix 𝑏[𝑇][𝑋][𝑋]  in accordance with 
equation 29 and 30. 

[𝑠𝑟𝑐 ← 𝐻], dist [𝐻] ← 0; 

for each ‘vertex’ 𝑛[𝑡][𝑏𝑘] in the ‘vertex matrix’ do; 

 𝑑𝑖𝑠𝑡[𝑡][𝑏𝑘] ← 𝒊𝒏𝒇𝒊𝒏𝒊𝒕𝒚; 

 precursor[𝑡][𝑏𝑘] ← 𝒏𝒖𝒍𝒍; 

end; 

for each ‘vertex’ 𝑛[𝑡][𝑏𝑘] in the ‘vertex matrix’ do; 

for each ‘edge’ 𝑚[𝑡 + 1][𝑏𝑘][𝑘]  in the ‘edge matrix’ 
do; 

if  𝑑𝑖𝑠𝑡[𝑡 + 1][𝑘] + 𝑏[𝑡 + 1][𝑏𝑘][𝑘] < 𝑑𝑖𝑠𝑡[𝑡][𝑏𝑘] 
then; 

 𝑑𝑖𝑠𝑡[𝑡][𝑏𝑘] ← 𝑑𝑖𝑠𝑡[𝑡 + 1][𝑘] + 𝑚[𝑡 + 1][𝑏𝑘][𝑘]; 

 𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟[𝑡][𝑏𝑘] ← 𝑛[𝑡 + 1][𝑘];𝐞𝐧𝐝 

 end 

end 

 𝑆2(𝝀, 𝖝) ← max
1≤𝑠≤𝑋

𝑑𝑖𝑠𝑡[1][𝑏𝑘]; 

𝑓 ← 𝑎𝑟𝑔 max
1≤𝑠≤𝑋

𝑑𝑖𝑠𝑡[1][𝑏𝑘]; 

for each (𝑡) from (1 𝑡𝑜 𝑇) do; 

if (𝑡 = 𝑇)  

then 

 Set 𝔵𝑡 in accordance with (20); 

else; 

  𝑠𝑡 ← 𝑓; 

 𝑓 ← 𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟(𝑓); 

 end  

end  

return 𝑆2(𝜆, 𝑠) and 𝑠; 

and this constraint has been redefined as equation 27. 

{

𝛾𝑘
𝑚𝑖𝑛 ≤ 𝑙𝑘,𝑡 ≤ 𝛾𝑘

𝑚𝑎𝑥∀𝑘 ∈ 𝒩𝑣∀ ∈ 𝒯

∑ 𝑙𝑘,𝑡 ≥ 𝑃𝑘,𝑜𝑛𝑡∈𝒯                                  

∑ 𝑙𝑘,𝑡 ≤ 𝜓 ∀ ∈ 𝒯𝑘∈𝒩𝑓
                 

   (27) 

where, 𝛾𝑘
𝑚𝑖𝑛 = 𝛾𝑘

𝑚𝑎𝑥 = 0  ∀𝑡 ∉ [𝑖𝑘 , 𝑗𝑘] . Hence, (SC1) 
turned into a classical linear programming constraint, the 
scheduling algorithm proposed in [14] is a feasible solution 
for solving this constraint effectively uses load forecasting 
technique in order to implement the linear programming and 
assures the polynomial collaboration.  

2) Solution of (SC2): The 𝑠 𝑎𝑛𝑑 𝜆  are Lagrange 

multiplier matrix functions and, 𝛽𝑡(𝛽𝑡 ∈ ℝ) can be set as 

constant for the each time slot 𝑡 ∈ 𝒯. It has to be noted that 

the objective function for the constraint (SC2) determines 

each alteration of 𝑥𝑡 and 𝑥𝑡−1, hence, the achieved solution 

can be declared as globally optimal. Furhter, I have also 

aggravated this solution in such manner: it will only follow 

the defiend path in the directed graph.  

Fig 2 shows the defined directed graph 𝑅 comprises time 
slots 𝑇, and also show the autonomous vertex sets, in which 
each set 𝑡(1 ≤ 𝑡 ≤ 𝑇) , consists of 𝑋  number of nodes. In 
order to signify 𝑠(1 ≤ 𝑠 ≤ 𝑋) in a time slot set (𝑡),  𝑛𝑡,𝑏𝑘 are 

used in this work. As long as (2 ≤ 𝑡 ≤ 𝑇) is concerned, each 
node 𝑠 of a set (𝑡 − 1) comprises an edge corresponding to 
each hourly slot set (𝑡). The mass of this edge on a node 
𝑠 prevails in a set (𝑡 − 1) to a node 𝑏𝑘  for 𝑘  set of 
households which is 𝑏(𝑡, 𝑏𝑘, 𝑐).  

Now, we are focusing on the objective function, deals with 
the (SC2). Consider we characterize 𝑈(𝑡 − 1, 𝑡) ≜
(𝑥𝑡 , 𝑥𝑡−1) + 𝛽𝑡 ∙ Γ(𝑥𝑡)  for each (1 ≤ 𝑡 ≤ 𝑇) , thus the 
objective function could be refined as 𝑆2(𝜆, 𝑠) = ∑ 𝑈(𝑡 −𝑇

𝑡=1

1, 𝑡). The main focus here is to evaluate the optimal positions 
of 𝑥𝑡  for the set of VR tapings 𝒳  for each time slot 𝑡 to 
achieve 𝑆2(𝜆, 𝑠). 

Algorithm 2: For Day-ahead Demand Scheduling.  

Inputs:  Mandatory load vector 𝑘, anticipated electricity 
generation vector 𝐸 , set load vector  𝐿𝜇  and the cost 

vector 𝑘; 

Outputs: The optimal load scheduling profile 𝒀(𝑘) and 
the adjusted positions vector of VR taps 𝑥(𝑘); 

Let 𝑘 = 0 ; Initialize Legranigen multipliers 
𝜆𝑏,𝑡(𝑘) and 𝑠𝑏,𝑡(𝑘); 

repeat  

With 𝜆𝑏,𝑡(𝑘) and 𝑠𝑏,𝑡(𝑘) , compute the ‘scheduled 

load’ matrix 𝒀(𝑘) by computing (SC1), and asses the 
‘tap position’ vector 𝒙(𝑘), while computing (SP2) in 
accordance to the ‘Algorithm 1’; 

With 𝑙𝑘,𝑡(𝑘)  and 𝑥𝑡(𝑘) , upgrade 𝜆𝑏,𝑡(𝑘 + 1)  and 

𝑠𝑏,𝑡(𝑘 + 1) in accordance with equations 23 and 24; 
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until (i) 𝑘 overlaps the highest iteration numbers; or 
(ii) the space between 𝒬 𝑎𝑛𝑑 𝒫 at minimum level;  

return 𝒀(𝑘) and 𝒙(𝑘); 

In case we fix each time slot 𝑡, and the position of VR taps 
𝑏𝑘 ∈ 𝒳 within a node at 𝑛𝑡,𝑏𝑘 in a time set (𝑡) of 𝑅, then the 

mass 𝑏(𝑡, 𝑏𝑘, 𝑐)(1 ≤ 𝑏𝑘 ≤ 𝑋, 1 ≤ 𝑘 ≤ 𝑋)  could be 
redefined as equation 28. 

{
𝑏(2, 𝑏𝑘 , 𝑘) = ∆(𝑏𝑘 , 𝑘) + 𝛽1Γ(𝑏𝑘) + 𝛽2Γ(𝑘), if 𝑡 = 2

𝑏(𝑡, 𝑏𝑘 , 𝑘) = ∆(𝑏𝑘 , 𝑘) + 𝛽1Γ(𝑘), 𝑖𝑓 2 < 𝑡 ≤ 𝑇       
 

 
(15) 

 
Algorithm 3: The Intraday Load Stabilization 

Inputs; Similar to ‘Algorithm 2’; 

Outputs: The stabilized load matrix 𝑌∗  and the ‘tap 
position vector’ 𝒙∗ over the time slot ‘2 to 𝑇’; 

For primal time slot adjust LTC tap position and 
‘schedule load’ by using the result acquired from 
Algorithm 2; 

Add 𝒍1  as the initial column of 𝒀∗ , 𝒙𝒕  and as the 
primal element for 𝒙∗; 

repeat  

In start of the time 𝑡(2 ≤ 𝑡 ≤ 𝑇),  
update the projected power generation vector 𝑬′ =
{𝐸𝑡

′, … , 𝐸𝑇
′ }, anticipated load vector 𝑘′ together with 

scheduling load of the previous 𝑇 − 𝑡 time slot; 

By updating 𝐸′ and 𝑘′, run Algorithm 2 to achieve 
the real time schedule for stabilizing load 𝑙𝑡

′  and ‘tap 
position’ vector 𝑥𝑡 over the time 𝑡; 

Add 𝑙𝑡 as 𝑡𝑡ℎ column of 𝒀∗, 𝑥𝑡 as 𝑡𝑡ℎ element of the 
𝑥∗; 

until 𝑡 = 𝑇; 

return 𝒀∗ and 𝒙∗ 

Thus, (SC2) has been equally transformed to select a node 
𝑛𝑡,𝑏 for each set (𝑡) of 𝑅, to reduce the overall mass of the 

entire path. Those nodes selected to create a fixed 
conjunction path are referred as path nodes. 

To solve this constraint, some more alterations for the 
above graph are proposed. If each path node, the set 1 to set 
(𝑡 − 1)  has been assessed in such a manner that it can 
leniently select the appropriate connection of a node from set 
(𝑡). It shows, if a path node has been pre-established for a 
time set (𝑡 − 1) , then the optimal preference of a set (𝑡) 
supposed to be at node’ 𝑏𝑘 which has the lowest mass 

𝑚𝑖𝑛1≤𝑐≤𝑋(∆(𝑠, 𝑐) + 𝛽𝑡Γ(𝑘)), Hence, it can be observed that 

time set (𝑡) in the form of solitary node 𝒮, in addition, the 
mass of this edge is relative to the node 𝑏 for a time set (𝑡 −
1) and computed by equation 29. 

𝑏(𝑇, 𝑏𝑘, 𝒮) = min
1≤𝑘≤𝑋

𝑏(𝑡, 𝑏𝑘 , 𝑘) (29) 

while the path node of a set (𝑡) can be defined as equation 
30. 

𝒮 = arg min
1≤𝑏𝑘≤𝑋

𝑏(𝑡, 𝑏𝑘 , 𝑘) (30) 

If 𝒮 is selected as a “Source Node”, while the ‘Path Node’ 
𝑛1,𝑏𝑘 from primal set is selected as destination node, then it 

overturns each edge direction located in the graph 𝑅, thus the 

entire path from 𝒮 to 𝑛1,𝑏𝑘 exhibits lowest mass. So, we can 

consistently compute the value of the closest path from 𝒮 to 
𝑛1,𝑏𝑘(1 ≤ 𝑏𝑘 ≤ 𝑋) , and it could  also be declared as the 

optimal solution of (SC2). .It must be noted that the mass of 
each ‘edge’ in ℋ might be negative, in this case, the closest 
path of a node can be computed by using the Bellman Ford 
method. The main approach of the proposed solution for 
(SP2) is  𝐵(𝑋3𝑇2). 

VI. THE CONSUMER-GRID INTERACTION AND LAOD 

SCHEDLUNG SCHEME 

The section explains the complete working procedure of 
the proposed model and defines the consumer-grid 
interaction-based load scheduling technique to reduce the 
overall power consumption cost, to eliminate surges and to 
counter voltage fluctuations disturbing the generation 
system. The proposed load scheduling model is based on two 
processes; first day-ahead (DA) scheduling, in which a 
central management office forecasts load schedules and tap 
position vectors for LTC’s for the next 24 hourly slots, while 
the second process is based on the methodology in which the 
consumer load is directly controlled by the central aggregator 
office for all 24 hours, in this method the central management 
center is responsible to manage the real time load and the 
positions of VR taps for each time slot.  

A. DA Load Forecasting 

Preliminarily, initially proposed constraint defined to 
eliminate the voltage fluctuations introduced by renewables 
is considered , which is the main purpose of consumer-grid 
synchronized load scheduling policy. In the proposed 
algorithms, excluding decision making variables  𝑥 and 𝒀 , 
each other parameter of primal constraint is determined in 
advance, or it is anticipated one day ahead. Along electricity 
cost of the central power grid 𝑐 = {𝑐𝑡|∀𝑡 ∈ 𝒯}  and the 

required power for flexible households 𝑘 = {𝑘𝑡|∀𝑡 ∈ 𝒩𝑓} is 
also pre-determined. In addition, the total power required to 

power fixed households 𝐿𝑛𝑓 = {𝐿𝑛𝑓,𝑡|𝑡 ∈ 𝒯}, as well as the 

feasible statistics of the renewable power generation 𝐸 =
{𝐸𝑡|∀𝑡 ∈ 𝒯} are also anticipated in advance. Hence, the 
Algorithm 2 illustrates the objective approach of the day 
ahead scheduling and proceeds the optimal load scheduling 
on a global scale for flexible households and the positions of 
LTC taps for the next 24-hourly slots. 

 

Fig 3: The proposed intra-day load stabilizing strategy. 

B. Intra-day Load Stabalizing  

Algorithm 2 illustrates the offline load stabilizing method, 
which executes one day-ahead to forecast the next day 
renewable production. However, in literature, several 
proposed renewable generation forecasting algorithms can 
precisely predict the feasible renewables generation, but the 
error in power prediction statistics anticipation is still not 
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fully eliminated, which can affect the projection accuracy. In 
quest to further reduce the impact of power generation 
forecasting error, an intra-day load stabilizing and scheduling 
algorithm is proposed to upgrade the load scheduling in real 
time 𝑙𝑡  for the flexible appliances and to determine the 
appropriate position of LTC taps 𝑥𝑡  during each time slot 
𝑡(2 ≤ 𝑡 ≤ 𝑇) for the next day.  

This load scheduling algorithm effectively determines the 
next day load and renewable generation statistics, because it 
is using day-ahead forecasted load schedules, as presented in 
Fig 3, prior to the execution of first time slot, “Algorithm 2” 
is presented to evaluate the required energy demand to power 
load 𝐿, along it also determines the position vector 𝑥 of LTC 
taps, for next time slot 𝒯. Meanwhile, before the execution 
of 𝑡′th (2 ≤ 𝑡 ≤ 𝑇) time slot, the central control office again 
computes the power production vector 𝐸′ = {𝐸𝑡

′, … , 𝐸𝑇
′ } , 

considering the power generation statistics of  previous time 
slot 𝑇 − 1 . Moreover, the effect of real time ecological 
conditions (i.e., wind speed, and photovoltaic radiation) are 
also determined. After that, 𝐸′ is used as an input in order to 
execute the Algorithm 2 for anticipating real time load 
scheduling vector 𝐿𝑡 and appropriate tap positions 𝑥𝑡. 

 

Fig 4: Illustration of the Proposed Model for Simulation 

 
Fig 5: Generated electricity pattern by renewables and production cost. 

VII. CASE STUDIES 

In this section, the performance of the proposed algorithm 
is evaluated during load scheduling tasks and power 
generation forecasting, actual renewable generation and load 
demand statistics are penetrated. The simulations have been 
carried out on 16-bus grid network proposed in [16]. For 
better load management a VR is added between bus 1 and 

main power grid, i.e., with the bus 0. The photovoltaic power 
plants are connected to the bus 14, while bus 15 is connected 
to the windmill and as presented in Fig 4.  

A. Simulated System Specifications 

The simulated VR was manufactured by the McGraw 
Edison and it is used for voltage regulation of single phase, 
whose voltage levels can be adjusted by 85% and 116% of 
the nominal voltages [37]. The statistics of the energy 
produced by photovoltaic and windmills is acquired from the 
Belgium’s renewable energy department [35,36] and ‘UQ’ 
solar [37]. The real time energy cost statistics are acquired 
from the Ameron IIionis [38], which vigorously alters its 
energy prices during each hour.  

Fig 5 defines the renewable power production and energy 
cost statistics. The load profiling data of each consumer 
during different time slots is acquired by the advance 
metering infrastructure (AMI) installed by the Northern 
Walterloo-Hydro, in the premises of Laurel-wood, Waterloo 
Ontario Canada [7]. The flexible household appliances load 
accounts about 32% of the overall load of each customer [38], 
having load scheduling problem for each household (i.e., 
EVs charging load can be directed and scheduled from 16:00 
to 20:00 hours). 

However, for simulation testing, acquired statistics have 
been applied to the proposed algorithm to check its capability 
of load scheduling of day-ahead offline load scheduling 
algorithm. Voltage regulators (VRs) are used as well as the 
proposed intra-day algorithm is penetrated in order to 
schedule the online load by using VRs. A day has been 
divided in 24 time slots (e.g., one hour is considered as a 
mandatory schedule slot each day). The results of the 
proposed algorithms are compared with the method proposed 
in [39], which is termed as Deng-ad’al algorithm. The Deng’s 
algorithm only targets the optimal load scheduling without 
evaluating voltage fluctuation constraints. The data of the 
flexible and non-flexible loads which is used for simulation 
is given in Table I. A household appliance which is labeled 
as type 0 is defined as non-flexible load. The simulations are 
carried out by using the MATLAB R2017a by employing the 
Mat-power toolbox. 

B. Electricity Cost and Load Scheduling  

Fig 6 present the comparison of scheduled consumers load, 
regulated by penetrating the proposed online load scheduling 
algorithm with the original consumers’ load statistics. It 
could be analyzed that proposed algorithm has successfully 
scheduled the consumers load and minimized the peak load 
by enforcing the higher electricity cost during peak hours. 
Moreover, the online scheduling algorithm also stabilizes the 
electricity generated by DGs to provide stable power to the 
consumers, along it can sell the excessively available energy 
back to the grid at higher rates.  

Fig 7 shows the comparison of total energy consumption 
cost statistics obtained by implementing the Deng’s 
algorithm and proposed online algorithm. It could be 
analyzed that proposed online algorithm can effectively 
minimize the power consumption cost for multiple days. 
Although, the Deng’s algorithm is showing lower energy 
costs as compare to the proposed algorithm, main reason of 
this difference is, the Deng’s algorithm only focuses to 
optimal schedule of the consumer load without determining 
the voltage fluctuation constraints. Conversely, the proposed 
algorithm considers both, which eventually reduces the 
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overall energy cost as well as stabilizes the load on the main 
power gird.  

 

Fig 6: The scheduled load profile of the residential consumers. 

 
Fig 7: The overall electricity price comparison of different algorithms. 

Table I 

Household Appliances Using Pattern 

Appliances 
Required 

Load’ 
(kW) 

Operation 
Power’ 
(kW) 

Starting 
Time 

Load 
Type 

Scheduling 
Problem’  

EVS 15 4.550 18:2 1 18-8:03 

Air-
conditioner 

6 2500 19:15 1 18-21:06 

Dishwasher 1.343 0.468 8,13,15 1 12-18:12: 

Cloths Dryer 4.112 4.114 11 1 11-22:30 

Compressor 2.2 3.1 8 0 - 

Room lights 1.00 0.11 17 0 - 

Refrigerator  1.33 0.266 0 0 - 

Heaters  7.13 0.315 0 0 - 

 
Fig 8: The probability comparisons of the voltage variations. 

C. Regulated Voltage Assessment  

Fig. 8, shows the comparison of voltage variation 
difference probabilities of the proposed online load 
scheduling algorithms with the Deng’s algorithm. It is 
evident from the figure that proposed algorithm has jointly 
carried out the voltage stabilization and load scheduling, and 
significantly minimized the voltage fluctuation probabilities 
of the distribution network as compared to the Deng’s 
algorithm. In addition, online algorithm provides precise 
pricing details and generated power information as compare 
to the Deng’s method. These voltage variation probabilities 

can be further minimized by comparing these results to the 
offline scheduling algorithm. 

VIII. CONCLUSION  

In this research paper, a joint voltage stabilizing and load 
scheduling algorithm is proposed for a decentralized power 
networks to effectively integrate renewable resources. By 
implementing the power flow analysis technique, a load 
scheduling problem as a MIINLP constraint is formulated 
and divided this into two sub-constraints which are 
completely independent and could be computed separately 
for achieving optimal solution. In addition, a consumer-grid 
coordination-based load scheduling scheme has been 
proposed that comprises online and offline algorithms, to 
jointly govern the voltage regulation and consumer load 
scheduling optimization tasks. In last, real life statistics from 
utility grids are used to conduct simulations analysis to 
evaluate performance of the proposed algorithms, test results 
show that the performance of proposed technique is 
appropriate, and the model could be used for grid 
stabilization practically. In future, research will focus on 
distribution network stabilization, where DGs will be 
equipped with scattered energy storing stations, this system 
can further contribute to the voltage transients controlling in 
a gird. 
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