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Phenol is a toxic organic pollutant to living cells and its biodegradation is considered the best method due to its environment
friendly nature and cost effectiveness. In this study, eight bacterial strains were isolated through enrichment on mineral salt
media supplemented with 300 mgL™ phenol. The isolated strains were identified by 16S rRNA gene sequence analysis and
belonged to genera: Rhodococcus, Stenotrophomonas, Lysinibacillus, Comamonas, Microbacterium, Pseudomonas and
Halomonas. The results of phenol biodegradation experiments (conducted at pH 7 and 30°C temperature) showed that the
strains could degrade 750 mg L™ phenol within 40 to 96 hours. The average phenol degradation rate by the strains was 12.5
to 34.8 mgL™h™. The most rapid phenol degradation was observed for Rhodococcus sp. NCCP-309 and Rhodococcus sp.
NCCP-312, whereas, Stenotrophomonas sp. NCCP-311, Lysinibacillus sp. NCCP-313, Comamonas sp. NCCP-314 and
Microbacterium sp. NCCP-351 took longer time in phenol degradation. The results of our study suggested that these strains

are efficient in phenol biodegradation and can be used for the bioremediation of waste water containing phenol.
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INTRODUCTION

Phenol is an aromatic hydrocarbon with good solubility in
aqueous media. Among the organic pollutants, phenol is of
special importance because of its widespread distribution
(Sandhu et al., 2009) and toxicity to humans, plants and
marine life even at low concentration (Das and Santra,
2012). Phenol is used in many industries including
petrochemicals and oil refining (Movahedyan et al., 2009),
pharmaceuticals, plastics, resin manufacturing and coke
plants (Cao et al., 2011) for manufacturing different
products and is released into the environment (water)
through discharge of waste.

On the basis of toxicity and solubility in water, phenol is
classified as a priority pollutant by the U.S Environmental
Protection Agency (Tsao et al., 1998). Water is
contaminated with phenol mainly from the industrial waste
and concentrations of more than 50 mg L™ has been found in
waste (Agency for Toxic Substances and Disease Registry
(ATSDR), 2011). A phenol concentration of 0.5 mg L™ in
industrial waste is permitted by the Environmental
Protection Agency (Giti et al., 2005). The European
Community (EC) directive for drinking water officially
permitted an acceptance level of 0.5 pug L™ phenol in water
for human consumption (Steiner et al., 2008).

Because of toxicity of phenol, deleterious changes occur in
ecosystem if it is liberated without further processing
(Pradeep et al., 2011). Phenol is detrimental for a number of
organisms including humans (Ehrt et al., 1995). Many
disorders of central nervous system, hypothermia, skin
damage, whitening of the cornea and sometimes complete
blindness, hepatic damage etc. have been reported in humans
due to phenol toxicity (Naresh et al., 2012). It is reported
that 1-10 mM phenol causes break down in vegetation
growth, nutrient intake, and transpiration in plant (Alber et
al., 1989). In experimental animals, phenol is reported
harmful to skeleton, nephrotoxic, immuno-toxic and feto-
toxic. Phenol causes change in the DNA sequence,
chromosomal abnormality and impulsive synthesis of DNA
in model animals (Brown, 2008). Phenol is lethal at a
concentration of 5-25 mg L™ for fish (Nuhoglu and Yalcin,
2005). Contamination of phenolic compounds in the food
chain is a big issue and its elimination to meet the
environment regulation is very necessary (US-EPA, 1979).

Phenol can be remediated from environment by several
physical and chemical methods, such as solvent extraction
(Lazarova and Boyadzhieva, 2004), adsorption (Carmona et
al., 2006), chemical oxidation and incineration (Wu et al.,
2000). But these methods are not environment friendly
because of the production of toxic secondary intermediates,
high cost and health hazards (Yan et al., 2006; Bai et al.,
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2007; Zhai et al., 2012). Biodegradation is the best way to
cope with the problem since this process is cheap,
environment friendly and easy to handle (Basha et al.,
2010). Bacteria oxidize phenol into CO, and H,O during
metabolic processes (Loh and Chua, 2002).

Phenol is widespread in distribution (Park et al., 2012) and
many microorganisms can utilize phenol for their growth as
primary energy source (Tuah et al., 2009). Such
microorganisms have potential to degrade phenol (Nair et
al., 2008). Several phenol degrading bacteria have been
isolated  like Gulosibacter sp. (Zhai et al., 2012),
Acinetobacter sp. (Ahmad et al, 2011), Bacillus
cereus (Banerjee and Ghoshal, 2010), Staphylococcus
epidermis (Mohite et al., 2010), Xanthobacter flavus (Lowry
et al., 2009), Burkholderia cepacia (El-Sayed et al., 2003),
Pseudomonas (Mahiudddin et al., 2012; Ahmad et al., 2014)
and Rhodococcus (Rehfuss and Urban, 2005), etc.

The objectives of current study were to isolate and
characterize indigenous bacterial strains from industrial
waste that can tolerate toxic concentrations of phenol and to
further test their phenol degrading ability.

MATERIALS AND METHODS

Isolation and purification of the strains: All the chemicals
of reagent grade were purchased from Merck (Darmstadt,
Germany) and Sigma Chemicals Co. (St. Louis, MO, USA).
Phenol having purity of 99.0% was used in the experiments.
Mineral salt medium (MSM, Sigma, USA) was used for
determination of phenol tolerance and degradation. This
medium composed of K,HPO, (0.4 g L), KH,PO, (0.2 g L’
1), NaCl (0.1 4 g L), MgS0O,4 (0.1 4 g L™), (NH,),S0, (0.4 g
LY and 0.01 g L' of MnSO,H,0, Fe,(SO,).3H,0 and
Na,Mo00,.2H,0. For isolation of phenol degrading bacteria,
samples of sludge were collected from Bioremediation Site-
1, National Agricultural Research Centre, Islamabad,
Pakistan and from a combined drainage of an Industrial area
in Sector 1-9, Islamabad, Pakistan. Sample (10 mL) were
added to 90 mL MSM supplemented with 300 mg L™ phenol
as sole source of carbon and energy to enrichment of phenol
tolerant bacteria. The pH of medium was adjusted to 7. The
flasks were incubated at 28°C for 3 days on a rotary shaker
(120 rpm). After 3 days of enrichment, 2-3 drops of the
sample were spread on MSM agar plates containing 300 mg
L™ phenol. The plates were incubated at 28°C. The
individual colonies were sub-cultured on same medium to
get pure culture of single strain. The isolated strains were
differentiated morphologically on the basis of colony shape,
color, surface, margins, elevation and opacity. The purified
culture of strains was stocked in glycerol (30% wi/v) at —
20°C for further experiments.

Identification and phylogenetic analysis of isolated strains:
The isolated strains were identified using 16S rRNA gene
sequence, which was amplified by colony PCR method

described by Ahmed et al. (2007). The PCR reaction was
performed in a thermal cycler (Applied Biosystems, Veriti
96-wells, U.S.A) by mixing of template DNA with
TAKARA Pre-mix Ex-Taq (25 uL), universal forward and
reverse primers (10 pmol uL™): 2 uL of 9F (5'-
GAGTTTGATCCTGGCTCAG-3') and 2 pL of 1510R (5'-
GGCTACCTTGTTACGA-3") in a total volume of 50 pL.
The PCR cycling parameters consisted of an initial
denaturation at 94°C for 2 min, followed by 30 cycles of
denaturation at 94°C for 1 min, annealing at 50°C for 1 min
and extension at 72°C for 1.5 min and a final extension for 7
min at 72°C. An amplicon of approximately 1.5 kb of 16S
rRNA gene was purified using purification kit (Invitrogen)
according to manufacturer’s protocol and was sequenced
using universal forward 27F (5-
AGAGTTTGATCMTGGCTCAG-3’) and reverse 1492R
(5’-ACCTTGTTACGACTT-3’) primers from Macrogen,
Korea (http://dna.macrogen.com/en). The sequence obtained
were assembled using BioEdit software to get the consensus
sequence for each strain. The sequences of all the stains
were submitted to DNA Data Bank of Japan (DDBJ) under
the accession numbers as mentioned in Table 1. The strains
were identified using 16S rRNA gene sequence on Ez-Taxon
Server (http://eztaxon-e.ezbiocloud.net) and BLAST search
on DDBJ / NCBI servers. Sequences of closely related
validly named type strains were selected and retrieved from
the database of EzTaxon Server for constructing
phylogenetic tree. The alignment and editing were
performed using CLUSTAL X version 1.8msw; (Thompson
et al., 1994) and BioEdit (Hall, 1999) packages. Ambiguous
positions and gaps were excluded during calculations.
Phylogenetic and molecular evolutionary analyses were
conducted using MEGA version 5 (Tamura et al., 2011) in
Neighbor joining algorithm. The stability of the relationship
was assessed by bootstrap analysis,(Felsenstein, 2005) by
performing 1,000 re-sampling for the tree topology of the
neighbour-joining data.

Biochemical characterization of the isolated strains: The
isolated strains were characterized for the utilization of
various organic and inorganic compounds. For this purpose,
16-18 h of pure bacterial culture was used to inoculate the
APl 20E kit (bioMerieux, France) according to the
manufacturer’s protocol and incubated at 28°C for 24-48 h
before reading the results.

Phenol toxicity tolerance and biodegradation: The strains
were grown in MSM broth supplemented with 200 mg L™
phenol in sterilized test tubes at 28°C for 2-3 days on shaker.
This primary culture of each strain was used to inoculate the
MSM broth containing various phenol concentrations (O,
250, 500, 750 and 1000 mg L™). Growth of each strain was
determined by taking optical density (OD) using a
spectrophotometer (IMPLEN, Germany) at 600 nm
wavelength at different time intervals depending upon the
growth pattern of strains.
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Promising strains were selected on the basis of their
maximum tolerance level to phenol for biodegradation
studies. These selected strains were inoculated in MSM
broth having 750 mg L™ phenol for 2-3 days at 28°C. The
culture sample was collected at specific intervals depending
upon growth patterns of the strain. An aliquot of each culture
(1 mL) was collected at different time intervals and optical
density (ODgy) was determined at 600 nm on
spectrophotometer. The cells were removed by
centrifugation (13000 rpm, 5 min) and phenol was quantified
in the supernatant by High Performance Liquid
Chromatography (HPLC). The HPLC analysis was carried
out on Interface 900 Series HPLC System (Perkin Elmer,
U.S.A) equipped with binary LC Pump 250, LC Oven 101,
Column C18, and LC 295 UV/Vis detector. Mobile phase
included acetonitrile and water (60:40) with a flow rate of
0.8 mL min™ and detector was set at a wave length of 280
nm. Identification of phenol peak was done on the basis of
retention time and quantification on the basis of six point
external standard calibration curve.

RESULTS

Isolation and identification of the isolated strains: Phenol
degrading strains isolated from the samples collected from
Bioremediation Site-1, NARC and Industrial Area I-9,
Islamabad grew well on MSM medium enriched initially
with 300 mg L™ phenol. Preliminary characterization was
done based on strain morphology (viz., colony morphology,
color, margins, surface, elevation and opacity). Based on
colony morphology, eight different strains were observed
that were designated as NCCP-309, NCCP-311, NCCP-312,
NCCP-313, NCCP-314, NCCP-351, NCCP-407 and NCCP-
178. The colonies of all isolated strains were circular in
shape except NCCP-314, which produced irregular colonies.
The colony margins in most of these strains were entire
except NCCP-313 (undulate) and NCCP-178 (lobate).
Similarly, majority of the isolated strains were opaque
except NCCP-311 and NCCP-407 (transparent). Color
variation was observed in most of these strains.

Based on sequences of 16S rRNA genes, the isolated strains
NCCP-309, NCCP-311, NCCP-312, NCCP-313, NCCP-314,
NCCP-351, NCCP-407 and NCCP-178 showed similarity to
Rhodococcus  phenolicus  (98.9%), Stenotrophomonas
geniculata  (99.6%), Rhodococcus zopfii  (99.9%),
Lysinibacillus sphaericus (99.9%), Comamonas thiooxidans
(100%), Microbacterium paraoxydans (99.2%),
Pseudomonas plecoglossicida (99.4%) and Halomonas
elongate (99.7%), respectively (Table 1). The resulting
phylogenetic tree depicts the phylogenetic relationship of the
selected strains to closely related validly named species (Fig.
1-5). Among these strains, Rhodococcus sp. NCCP-309,
Rhodococcus sp. NCCP-312, Stenotrophomonas sp. NCCP-
311, Lysinibacillus sp. NCCP-313, Comamonas sp. NCCP-

314 and Microbacterium sp. NCCP-351 were selected for
further evaluation of their phenol degrading abilities.
Biochemical characterization of selected isolated strains:
Table 2 shows biochemical characterization of selected
strains. After 48 h of incubation, the strain Rhodococcus sp.
NCCP-309 showed positive results for p-galactosidase,
sodium pyruvate and reduction of nitrite to N, and negative
for the rest of substrates tested. Similarly, the strain
Rhodococcus sp. NCCP-312 showed negative results for the
entire substrates tested. However, Stenotrophomonas sp.
NCCP-311 showed positive results for p-galactosidase,
arginine  dihydrolase, lysine  decarboxylase, citrate
utilization, sodium pyruvate, gelatinase and NO, production
and negative for the rest of substrates tested. In comparison,
Comamonas sp. NCCP-314 showed positive results only for
NO, production and negative for the rest of substrates.
Lysinibacillus sp. NCCP-313 showed positive results for
gelatinase and reduction to N, gas and negative for all
substrates tested. Similarly, Microbacterium sp. NCCP-351
showed positive result only for reduction to N,.

Phenol tolerance of the isolated strains: The selected
strains were grown in MSM supplemented with different
concentration of phenol (0, 250, 500, 750 and 1000 mg L™)
as a sole source of carbon and energy at 28°C. No growth of
any strain was observed in the absence of phenol, while
significant growth was observed with the rest of
concentrations. Rhodococcus NCCP-309 was incubated at
28°C for a total period of 118 h. At 250 and 500 mg L, no
lag phase was observed. Log phase was started from the time
of inoculation and continued up to 24 and 51 h with
maximum optical densities (OD) of 0.6 and 0.91,
respectively, at 600 nm. At 750 mg L™, a lag phase of 24 h
was observed and log phase was started after 24 h of
inoculation and continued up to 51 h. Maximum growth was
observed at 51 h of inoculation with OD of 1.17. At 1000
mg L™ concentration, a longer lag phase was observed that
started from the time of inoculation and continued up to 51
h, then log phase was started and continued up to 75 h.
Maximum growth was observed at 75 h of inoculation and
the OD value was 0.74 at 600 nm which was higher than that
of 250 mg L™ and lower than 750 and 500 mg L™* (Fig. 6a).
Stenotrophomonas sp. NCCP-311 was incubated at 28°C for
a total period of 66 h. At 250 mg L™ dose, lag phase was
started from the time of inoculation and continued up to 18
h. Log phase was started after 18 h of inoculation and
continued up to 43 h. Maximum OD of 0.59 showing the
highest growth was observed at 43 h. Similarly, at 500 and
750 mg L™ phenol concentration, no lag phase was present.
Maximum growth was observed at 2 days with OD of 0.45
and 0.93 at 600 nm. At 1000 mg L™ phenol concentration,
no growth was observed (Fig 6b).

Similarly, Rhodococcus NCCP-312 was incubated for a total
period of 53 h. At 250, 500 and 750 mg L™, no lag phase
was observed and log phase started from the time of
inoculation
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Figure 1. Phylogenetic tree showing the inter-relationships of two strains (Rhodococcus sp. NCCP-309 and
Rhodococcus sp. NCCP-312) with the most closely related species inferred from sequences of 16S rRNA
gene. Millisia brevis (AY534742) was used as an out group. The tree was generated using the Neighbour-
Joining method. Bootstrap values expressed as a percentage of 1000 replications, are given at the branching
point. The Bar shows 5% sequence divergence. The accession number of each strain is shown in

parenthesis.
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Figure 2. Phylogenetic tree showing the relationships of strain NCCP-311 with the most closely related type species
inferred from sequences of 16S rRNA gene. Xanthomonas oryzae (X95921) was used as an out group. The
tree was generated using the Neighbour-Joining method. Bootstrap values expressed as a percentage of
1000 replications, are given at the branching point. The Bar shows 5% sequence divergence. The accession
number of each strain is shown in parenthesis.
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Figure 3. Phylogenetic tree showing relationships strain NCCP-314 with the most closely related species inferred
from sequences of 16S rRNA gene. Ottowia pentelensis (EU518930) was used as an out group. The tree was
generated using the Neighbor-joining method. Bootstrap values expressed as a percentage of 1000
replications, are given at the branching point. The Bar shows 1% sequence divergence. The accession
number of each strain is shown in parenthesis.
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Figure 4. Phylogenetic tree showing the relationships of strain NCCP-313 with the most closely related type species
inferred from sequences of 16S rRNA gene. Paenibacilluspolymxa (AJ320493) was used as an out group.
The tree was generated using the Neighbour-Joining method. Bootstrap values expressed as a percentage of

1000 replications, are given at the branching point. The Bar shows 1% sequence divergence. The accession
number of each strain is shown in parenthesis.
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Figure 5. Phylogenetic tree showing the inter-relationships of strain NCCP-351 with the most closely related type

74

species inferred from sequences of 16S rRNA gene. Brevibacterium albidum (AB046363) was used as an out
group. The tree was generated using the Neighbour-Joining method. Bootstrap values expressed as a
percentage of 1000 replications, are given at the branching point. The Bar shows 5% sequence divergence.
The accession number of each strain is shown in parenthesis.

and continued up to 47 h. Maximum OD of 0.86 shows the
highest growth after 47 h. At 500 mg L™ log phase started
from the time of inoculation and continued up to 28 h of
inoculation. Maximum growth was observed at 28 h with
OD of 0.94 at 600 nm. At 750 mg L™ log phase started from
the time of inoculation and continued up to 28 h. Maximum
growth was observed at 47 h of inoculation with OD of 1.15.
At 1000 mg L™, log phase was rather slower and started
from the time of inoculation and continued up to 47 h.
Maximum OD of 0.67 showed highest growth at 47 h (Fig.
6¢).

Lysinibacillus sp. NCCP-313 was incubated for a total
period of 66 h. At 250 mg L™ phenol concentration, lag
phase was observed. Maximum growth (OD 0.49) was
observed in log phase that started after 18 h of inoculation
and continued up to 48 h and completed in 30 h. At 500 and
750 mg L™ lag phase of 18 h was observed while the log
phase continued upto 43 h of inoculation. Maximum OD of
0.57 and 0.65 showing the highest growth was observed
after 43 h and 48 h. At 1000 mg L™ phenol concentration no
growth was observed (Fig. 6d).

Comamonas sp. NCCP-314 was incubated at 28°C for a total
period of 66 h. At 250 mg L™, lag phase started from the

time of inoculation and continued up to 1 day of inoculation.
Log phase was started after 1 day of inoculation and
continued up to 2 day of inoculation. OD of 0.46 showed the
highest growth after 2 days. At 500 and 750 mg L™ no lag
phase present, while log phase started from the time of
inoculation and continued up to 1 day. Maximum growth
was observed at day 1 with OD of 0.591and 0.72 at 600 nm,
whereas, no growth was observed at 1000 mg L*
concentration (Fig. 6e).

Microbacterium sp. NCCP-351 was incubated at 28°C for a
total period of 120 h. At 250 mg L™ no lag phase was
observed, while log phase started from the time of
inoculation and continued up to 29 h with maximum OD
value of 0.7. At 500 mg L™ phenol concentration there was
no lag phase and the log phase prolonged up to 53 h with
OD value of 0.55. At 750 mg L™ phenol concentration lag
phase started from the time of inoculation and continued up
to one day, while log phase took 101 h. The log phase was
completed in 77 h with maximum OD of 0.8. At 1000 mg L"
! phenol concentration lag phase started from the time of
inoculation and continued up to 53 h. Afterwards the log
phase completed in 48 with maximum OD of 0.66 (Fig. 6f).
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Figure 6. Tolerance of promising strains to different concentration of phenol grown at 28 °C in relation to time scale.
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Phenol biodegradation: Isolated bacteria were studied for
their ability to degrade phenol. The strains were grown in
MSM supplemented with 750 mg L™ phenol concentration.
Optical density was determined from the time of inoculation
until stationary phase at different time intervals. Two set of
control were used, one with MSM with 750 mg L™ phenol
without inoculum and the other had the inoculums without
phenol. All the strains showed phenol degradation when
supplemented as primary source of carbon and energy.
Neither any phenol degradation was observed in control
without inoculum nor any growth observed in control
without phenol. No lag phase was observed for phenol
degradation.

Rhodococcus sp. NCCP-309 degraded 14%, 48% and 96%
of phenol (750 mg L™) in 8, 26 and 32 h, respectively. 100%

degradation occurred within 40 h with average degradation
rate of 29.1 mg L*h' (Fig. 7a). Stenotrophomonas sp.
NCCP-311 took longer time and degraded 8%, 21% 29%,
77%, and 89% of phenol in 23, 28, 32, 47 and 60 h,
respectively. This strain degraded 100% of 750 mg L™
phenol within 71 h with an average degradation rate of 16
mg L™'h™ (Fig. 7b). Rhodococcus sp. NCCP-312 degraded
12, 35 56, 64 and 99.6% of phenol in 8, 26, 32, 49 and 53 h,
respectively. The strain degraded 100% phenol within 56 h
with an average degradation rate of 12.5 mg L™h (Fig. 7c).

Lysinibacillus sp. NCCP-313 degraded 9, 24, 25, 69, 75, 88
and 99.6% of phenol (750 mg L™) in 6, 23, 28, 32, 47, 71
and 78 h, respectively. The strain degraded 100% of 750 mg
L phenol within 96 h with an average degradation rate of
22.7 mg L*h* (Fig. 7d).
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Figure 7. Degradation of phenol (a — f) and growth response as measured by optical density (a — f). - phenol

concentration in inoculum,
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Comamonas sp. NCCP-314 degraded 22, 61, 98.6 and 99%
of phenol in 8, 13, 24 and 32 h, respectively. For this strain,
100% phenol degradation took place within 32 h with an
average degradation rate of 34.8 mg L*'h™ (Fig. 5e).
Microbacterium sp. NCCP-351 degraded 9, 21, 57, 72, 88,
97 and 99% of phenol (750 mg L™) in 26, 32, 29, 53, 56, 73
and 75 h, respectively. The strain degraded 100% of 750 mg
L phenol within 77 h with an average degradation rate of
24.7 mg L*h! (Fig. 7f).

DISCUSSION

Microorganisms have the ability to utilize toxic organic

phenol concentration in control without inoculum, =8 observed ODZ,g,

compounds such as phenol at lower concentrations, because
they need a carbon source for their metabolic processes
(Cokgor et al., 2008). Phenol degrading bacteria belongs to
different genera and mostly include Pseudomonas,
Agrobacterium,  Acinetobacter,  Klebsiella, Bacillus,
Rhodococcus and Rhizobium (Koutny et al., 2003). The
present work describes the isolation and characterization of
indigenous phenol degradation bacterial strains from highly
contaminated industrial wastes. The industrial waste was
collected from two different areas of Pakistan and isolated
on MSM media previously enriched with phenol. Many
reports have shown that enrichment of bacterial strains is
necessary for degradation of phenol (Balk et al., 2010). In
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this study eight morphologically different strains were
identified on the basis of 16S rRNA gene sequence analysis.
Among the isolated strains, Rhodococcus sp. NCCP-309,
Rhodococcus sp. NCCP-312, Comamonas sp. NCCP-314,
Stenotrophomonas sp. NCCP-311, Lysinibacillus sp. NCCP-
313 and Microbacterium sp. NCCP-351 were further
evaluated for phenol degradation tests because the genus
Rhodococcus and Comamonas are well known for
bioremediation as these genera exhibit a wide range of
enzyme activities. The species in these genera have ability to
grow on a variety of complex carbon sources, such as short-
and long-chain as well as halogenated hydrocarbons,
aromatic compounds, polycyclic aromatic compounds, and
steroids (Koutny et al., 2003; Shen et al., 2009). Yoon et al.
(2000) identified and reported a novel Rhodococcus
pyridinivorans strain capable of pyridine degradation.

Based on our results, Rhodococcus sp. NCCP-309 shared
98.9% sequence similarity of 16S rRNA gene with
Rhodococcus phenolicus (AM933579) (Table 1; Fig. 1),
which was isolated by Johnson Space Center and reported to
have phenol (0.75% wi/v) degrading ability (Rehfuss and
Urban, 2005). The 16S rRNA gene sequence similarity
greater than 98.5% among representatives of Rhodococcus
species can be considered as novel species (Yassin, 2005)
because of sharing whole genomic relatedness values well
below the 70% cut-off point recommended for the
delineation of bacterial species (Wayne et al., 1987). The
sequence similarity of NCCP-309 of 98.9% with this species
may give a further opportunity to investigate NCCP-309
taxonomically for delineation of possible novel species;
however, the taxonomic studies are beyond the scope of this
manuscript.

On the basis of these results, NCCP-309 may be different
than the previously reported Rhodococcus phenolicus in
terms of higher degradation ability and significant growth on
enriched medium. Our isolated strain and Rhodococcus
phenolicus showed positive result for p-galactosidase but
negative for H,S production, urease, fermentation of
glucose, mannitol and sorbitol. In comparison Rhodococcus
NCCP-312 shared 99.93% 16S rRNA sequence similarity
with Rhodococcus zopfii (AF191343) which was also
reported for phenol degradation. Rhodococcus NCCP-312
was negative for all the biochemical substrates (Table 2) and
the reference strains Rhodococcus zopfii (Stoecker et al.,
1994) is positive for p-galactosidase and urease.

Comamonas NCCP-314 and Stenotrophomonas NCCP-311
shared 100% and 99.64% similarity, respectively with
Comamonas thiooxidans (DQ322069) and
Stenotrophomonas geniculata (AB021404). Members of
genus Comamonas are reported for the degradation of
different phenol derivatives (Chen et al., 2003). Similarly,
strains belonging to Stenotrophomonas are also reported for
degradation of various xenobiotics. Papizadeh et al. (2011)
reported the isolation of Stenotrophomonas sp. NISOC-04

which degraded dibenzothiophene, whereas Liu et al. (2007)
reported that Stenotrophomonas LZ-1 shows growth on p-
nitrophenol and 4-chlorophenol. There has been no previous
report on the phenol degradation ability of
Stenotrophomonas and our study is therefore, the first report
that  describes  phenol  degrading  potential  of
Stenotrophomonas at different concentration of phenols.
Phenol degrading ability of Rhodococcus, Comamonas
Stenotrophomonas, Lysinibacillus and Microbacterium:
From various environments, members of the genus
Rhodococcus are isolated with diverse physiological and
morphological characteristics and many members of the
Rhodococcus are reported for phenol degradation (Naiem
and Ghosh, 2011). In this study Rhodococcus NCCP-309
and Rhodococcus NCCP-312 degraded 750 mg L™ of phenol
with the average degradation rate of 29.1 mg L*h™ and 12.5
mg L*h™, respectively which showed that the Rhodococcus
NCCP-309 degraded phenol faster than Rhodococcus
NCCP-312. Similarly, NCCP-309 strain showed growth at
all given concentrations of phenol, while 1000 mg L™ of
phenol was toxic for NCCP-312. Increase in degradation rate
could be attributed to an increase in the substrate availability
for cell growth (Yoon et al., 2000) and decrease in the
concentration of phenol is coincided with the increase in
growth as indicated by increase in OD. Our results are in
accordance with Shumkova et al. (2009) with a little
deviation, they reported that the strain Rhodococcus opacus
Strain 1G efficiently degraded 750 mg L™ of phenol in about
20 h. Similarly, Suhaila et al. (2010) observed that
Rhodococcus UKM-P degraded 500 mg L™ of phenol in 21
h. The variation in phenol degrading time might be
acceptable because within genus Rhodococcus, different
strains can degrade different organic compounds even for
single substrate utilization (Larkin et al., 2005).

Comamonas NCCP-314 degraded 750 mg L™ of phenol with
an average degradation rate of 348 mg L'h™. The
degradation completed in 32 h which was fastest among all
the isolated strains. The obtained results are in line with
those of Chen et al. (2003); their strain Comamonas
testosterone ZD 4-1 tolerated 500 mg L™ of phenol and
degraded it in 48 h. Similar results were reported by Arai et
al. (1998) with Comamonas testosterone. Although 16S
rRNA sequence showed similarity with Chen et al. (2003)
but our isolated strain showed more degradation in
comparison with Chen et al. (2003) and Arai et al. (1998).

In comparison, the growth of Stenotrophomonas NCCP-311
at 750 mg L™ of phenol was less than that of Rhodococcus
NCCP-309 and Rhodococcus NCCP-312. The time taken by
Stenotrophomonas NCCP-311 for 750 mg L™ of phenol
degradation was more than that of all the isolated strains.

The present results are in line with study of Liu et al. (2007);
their strain LZ-1 removed p-nitrophenol and 4-chlorophenol
within 14 and 16 days respectively. Similarly,
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Stenotrophomonas sp. NISOC-04 had ability to degrade
dibenzothiophene (Papizadeh et al., 2011).

Lysinibacillus NCCP-313 degraded 750 mg L™ phenol in 96
h which was more than other characterized strains. This
strain shares 99.87% 16S rRNA sequence similarity with
Lysinibacillus sphaericus (AF169495) which is not
previously reported for phenol degradation but is capable of
p-nitrophenol oxidation (Kadiyala et al., 1998). The strain
Lysinibacillus  NCCP-313  showed  similarity — with
Lysinibacillus sphaericus (AF169495) (Claus and Berkeley,
1986) at molecular level as well as physiologically as both
strains showed positive results for gelatinase and negative
for urease, tryptophane deaminase, sodium pyruvate,
fermentation/oxidation of saccharose and NO, production.
Microbacterium species were isolated from diverse sources
like water, plant, air, wastes, insect and sludge etc
(Evtushenko and Takeuchi, 2006). The strain shares 99.15%
16S rRNA sequence similarity with Microbacterium
paraoxydans (AJ491806), which is not reported for phenol
degradation. Microbacterium NCCP-351 is different from
Microbacterium paraoxydons (Laffineur et al., 2003) as
Microbacterium NCCP-351 showed negative results for
fermentation/oxidation glucose, rhamnose and arabinose and
Microbacterium paraoxydons is positive for all the above
substrates.

Conclusion: The identified bacterial strains of Rhodococcus,
Comamonas and Stenotrophomonas can be used for active
phenol biodegradation in a bioreactor. Rhodococcus sp.
NCCP-309 and Rhodococcus sp. NCCP-312 tolerated
resistance up to 1000 mg L™ of phenol, while Comamonas
and Stenotrophomonas strains toxicity of phenol up to 750
mg L™ phenol. The phenol degrading rate of Rhodococcus
sp. NCCP-309 was faster than that of Rhodococcus sp.
NCCP-312 in comparison to other strains. The isolated
strains can be used for bioremediation of phenol in highly
contaminated industrial areas.
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