
INTRODUCTION

Yield potential of a crop is not known under certain soil and
environmental conditions, which can be of great use in
formulating fertilizer requirements. To get full benefits from
various technological inputs such as fertilizers, improved
crop varieties, pesticides, and better agricultural practices,
the soils must be managed according to the yield potential of
a crop on a particular soil. Potential yield of crops can be
predicted using different variables such as soil properties
and weather data. Crop yield is affected by various factors: i)
nutrients availability in the soil, ii) inputs that are under the
discretionary control of the farmer such as variety, crop
rotation, and weed control, iii) soil properties that are known
or can be measured but which are not under the control of
the farmer, and iv) climatic factors that are not known with
certainty and can not be controlled by the farmer such as
rainfall.
Many research workers established relationship between soil
properties and wheat yields, and used these empirical
relationships to determine potential wheat yield (Legget,
1959; Pawson et al., 1961; Khan and Akbar, 1990; Burleigh
et al., 1991; Bhatti and Mulla, 1992; Bakhsh et al., 1994;
Bhatti et al., 1997; Bhatti et al., 1998a, b, c).
Two review articles dealing with the inclusion of soil
fertility variables in response analysis have been published
by Nelson et al. (1985), and Nelson (1987). Sain and Jaurgui
(1993) also developed a flexible functional form model for
deriving fertilizer recommendations using soil variables,
previous crop and rainfall data (Mombeila et al., 1981).
Makowski et al. (2001) also used different statistical
methods predicting responses to applied nitrogen and
calculating optimal nitrogen rates..

In the previous work, multiple regression models were
developed to predict wheat yield from soil data obtained
from various experimental sites [Bhatti et al., 1998c]
However these lack a complete diagnostic analysis, and do
not consider the other prediction and classification models
such as Classification and Regression Trees (CART) and
Random Forests. Keeping in view the of importance of
knowledge of potential wheat yield for specific site fertilizer
management, the present study was carried out to compare
various regression models to predict potential wheat yield
from some measured soil properties.

MATERIALS AND METHODS

Yield data from 55 simple fertilizer trials conducted on
farmers’ fields using Pirsabak-85 wheat variety in different
irrigated areas of Khyber Pakhtunkhwa province of Pakistan
(Table 1) were used for modeling.

Table 1. Detail of Fertilizer Trials
District Number of Trials

1992-93 1993-94 Total
Mardan 5 6 11
Swat 7 6 13
D.I. Khan 11 11 22
Peshawar 3 - 3
Kohat 3 - 3
Bannu 3 - 3
Total 32 23 55

Two fertilizer rates were used: 120-90-60 and 60-45-0 kg N-
P2O5-K2O ha-1 respectively. The area of each field trial was
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1000 m2. Grain yield was recorded on hectare basis in each
trial after threshing of wheat.
Soil data obtained from these trials included organic matter
(0.09 to 1.7 %), soil pH (5.97 to 8.88), lime content (3.1 to
24.2 %), AB-DTPA extractable P (1.6 to 15.6 mg kg-1), K
(42 to 250 mg kg-1, and total mineral soil N (5.6 to 53.76
mg kg-1).
Different regression models viz., Multiple regression, CART
and Random Forest Models (Kunter et al., 2004) were
developed to predict [Bhatti et al., 1998c]ict and classify
yield based on measured soil properties. All the Regression
models presented in this paper have been created using the
open source software R Ver. 2.10. The graphs and table
presented have also been created using R.

RESULTS AND DISCUSSION

Residual analysis of previous models: In this Section we
will present the residual analysis of the model presented in
Bhatti et al., (1998c) which is given in equation 1.
Equation 1
We shall call this model as Model 1. The R2adj for Model 1 is
approx. 25 %. Some of the Diagnostic plots are shown in
Fig. 1.

Figure 1Diagnostic Plots for Model 1

Figure 1 and some other statistical tests (results not
shown),reveal no significant anomalies in the model in terms
of normality of error terms, and constancy of error variance.
To get an insight into the independence of error terms, the
time series plot and the Auto-correlation plot for the
residuals is shown in figure 2. Figure 2 shows that there is
some autocorrelation among the residuals. To get further
insight the Durbin-Watson test was performed on the

residuals which gives us a test static of 1.3585, which at a
significance level of 0.05 % proves that the residuals are
auto-correlated. This autocorrelation leads to a number of
problems including inefficient regression coefficients,
inaccurate estimates of error variance etc. The auto-
correlation is usually due to an important predictor that is
missing in the model, we will explore additional predictor
options in section 2.

Figure 2 . TS Plot and ACF Plot of Residuals for Model 1

A partial F-test was carried out to see if the other predictors
can be dropped from the model and it was observed that the
other predictors can be dropped from the model. The partial
F-test is used to test the hypothesis of whether the
interaction terms are significant or not. The test indicated
that the interaction terms are significant and can not be
ignored. So based on this result, the interaction term i.e.,
lime content* soil pH was included in the model.The
interaction, and polynomial terms are also explored in
section 2.
The variance inflation factors for the coefficients are given
in Table 1, which shows that there is no significant
multicolinearity among the predictors.

Table 2 Variance Inflation Factors for Model 1
Lime Content Soil PH

VIF 1.035 1.035

This diagnostic analysis shows that model 1 is doing a poor
job in terms of predictions (25 %) as well as in terms of
inferences.
An improved multiple regression model: In this section we
develop a new model based on the data given in Bhatti et al.,
[1998c]. The new model has better prediction power and
inference capabilities than model 1.
Added variable plots for Model 1 were created, figure 3
shows some of these plots.
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Figure 3. Added Variable Plots for Model 1

The added variable plots show that an interaction term of
Lime Content and Soil pH, seems to have some useful
additional information. To confirm this result a partial F-
Test was performed using the extra sum of squares. The
hypothesis that were tested are

H0 = Coefficient of Interaction term is zero
H1= Coefficient of Interaction term is not zero

The Partial F-test concludes H1 (Calculations not shown).
Thus this shows that an interaction regression model should
be used. Due to the interaction term observations that are
centered around their mean were used i.e , where xi is the ith
centered observation. Centering is used as it reduces the
multicollinearity substantially.
Adding the interaction term (Lime Content x Soil PH) to
model 1 leads to the regression relation given in equation 2.
Equation 2
We shall call this model as Model 2. Model 2 has an R2adj of
approximately 30 %. Some of the diagnostic plots for Model
2 are shown in Fig. 4.
The residuals Vs Fitted plot in Fig. 4 shows that the variance
of error terms is constant. A Levene test on the residuals
gives us a p-value of 0.9755. Figure 4 and the Levene test
show that the equal-variance assumption seems reasonable
for these data.
A normal q-q plot for the residuals is shown in Fig. 4. The
Anderson Darling (AD) normality test on the residuals gives
us a p-value of 0.8992. Figure 4 and the AD normality test
show that the normality assumption for the residuals is
reasonable for model 1.

The variance inflation factors for the predictors of Model 2
are given in table 2, which shows that there is no significant
multicollinearity among the predictors.

Figure 4. Diagnostic Plots for Model 1

Table 3 .Variance Inflation Factors for Model 2
Lime

Content*
Soil PH* Lime Content* x

Soil PH*

VIF 1.122 1.116 1.198

The times series plot and ACF plot for the residuals of
model 2 are shown in Fig. 5.

Figure 5 TS and ACF Plot for Residuals of Model 2

Fig. 5 shows that there is still autocorrelation among the
residuals. Although we are concerned with accurate
predictions rather than inferences, we further looked into the
data for some extra information which can solve the problem
of auto-correlation and give us better predictions. The data
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points have been collected from seven cities of Khyber
Pakhtunkhwa province. Furthermore, six indicator variables
were included to get more insight of the effect of cities on
the regression relation. Significant improvement was
observed just by using one indicator variable. The indicator
variable is set to 1 if the data point was collected from the
city Kohat, otherwise it is set to 0. We call this indicator
variable as Kohat, which is defined as follows

The new regression relation by adding the indicator variable
Kohat is given in equation 3.
Equation 3:
Model 3 has an R2adj of approximately 45 %. Thus, a
significant improvement in the predictive power of our
model was observedl. Some of the diagnostic plots for
Model 3 are shown in Fig. 6.

Figure 6. Diagnostic Plots for Model 3

The residuals Vs Fitted plot in Fig. 6 shows that the variance
of error terms is constant. A Levene test on the residuals
gives us a p-value of 0.9955. Figure 6 and the Levene test
show that the equal-variance assumption seems reasonable
for the residuals.
A normal q-q plot for the residuals is shown in figure 6. The
Anderson Darling (AD) normality test on the residuals gives
us a p-value of 0.623. Figure 6 and the AD normality test
show that the normality assumption for the residuals is
reasonable for model 1.
The variance Inflation factors for the predictors in Model 3
are given in table 4, which shows that there is no significant
multicollinearity among the predictors.

Table 4 .Variance Inflation Factors for Model 3
Lime

Content*
Soil
PH*

Kohat Lime Content*
x Soil PH*

VIF 1.217 1.120 1.092 1.198

The Time Series Plot and ACF plot for the residuals of
model 3 are shown in Fig. 7.

Figure 7 TS and ACF plots for Model 3

Figure 7 shows that adding the indicator variable Kohat did
not help in terms of resolving the autocorrelation problem.
To compare Model 1 with Model 3 and to validate the
models, the data set is divided into a training data set and a
validation data set. Sixty seven percent of the observations
were randomly selected as the training data set and rest as
the validation data set. The results are shown in table 5.

Table 5. Comparison of Model 1 and Model 3
Statistic Model 1

Training
Data Set

Model 1
Validation
Data Set

Model 3
Training
Data Set

Model 3
Validation
Data Set

b0 9511.39 9988.58 4246.96 4361.10
s{b0} 2030.61 5326.55 121.30 252.73
b1 -67.54 -65.26 -64.89 -49.40
s{b1} 23.50 42.00 21.54 47.93
b2 -590.17 -643.63 -774.47 -608.34
s{b2} 268.18 692.74 245.96 663.62
b3 -- -- -1669.57 -1942.66
s{b3} -- -- 535.42 1020.71
b4 -- -- -102.22 -287.72
s{b4} -- -- 49.76 279.19
R2adj 0.2714 0.1025 0.4513 0.2467
RMSE 831.5 943.6 721.6 864.5
*MSPR 471009.3 -- 359227.4 --
*The Mean Squared prediction error which is defined as
follows. Where: Yi is the value of the response variable in
the ith validation case is the predicted value for the ith
validation case based on the model-building data set n* is the
number of cases in the validation data set.
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Model 3 gives us much better prediction power than the
model put forward by Bhatti et al. (1998c). The results
reveal that there is still some important predictor missing in
the model. Inclusion of rain fall data in the future may result
in getting better results.
Classification and Regression Trees: This section explores
the classification and regression trees (CART).
Classification and regression trees were used to classify the
Yield into three categories (High, Medium, and Low) based
on the following:
High: Yield > 4000
Medium: 3000 < Yield ≤ 4000
Low: Yield ≤ 3000
The training and validation data sets of section 2 are used to
create the classification trees. A classification tree using the
training data set is shown in figure 8. We shall call this
model as Tree 1.

Figure 8 Classification Tree – Tree 1

The confusion matrix for Tree 1 is given in table 6.

Table 6.Confusion Matrix for Tree 1 on Training data
set

Predicted
Low Medium High Error Rate

True Low 3 0 1 25%
Medium 2 5 0 28.5%
High 2 0 23 8.0%

Table 7.Confusion Matrix for Tree 1 on Validation data
set

Predicted
Low Medium High Error Rate

True Low 1 3 1 80.0%
Medium 3 0 0 100.0%
High 2 1 8 27.3%

Table 6 shows that the three classes have unbalanced miss-
classification error rates. After applying the model on the
validation data set, very high miss-classification error rates
for “Low” and “Medium” classes were observed as shown in
Table 7. To give importance to the Minority classes i.e.,
“Low” and “Medium”, a weighted classification tree was
created with the following weights

High = 1, Medium = 2, Low = 2
A Weighted classification tree (Tree 2) using the training
data set is shown in figure 9.

Table 8.Confusion Matrix for Tree 2 on Training data
set

Predicted
Low Medium High Error Rate

True Low 4 0 0 0.0%
Medium 1 5 1 28.5%
High 3 1 21 16.0%

Figure 9. Weighted Classification Tree – Tree 2

The Confusion matrices for Tree 2 are given in table 8 and 9.
These tables show a significant improvement over Tree 1.

Table 9.Confusion Matrix for Tree 2 on Validation data
set

Predicted
Low Medium High Error Rate

True Low 2 2 1 60.0%
Medium 1 2 0 33.3%
High 4 2 5 54.5%

These results show that a weighted CART is doing a better
job. The Weighted CART using the complete data set is
shown in figure 10.
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Figure 10

For Tree 3, a plot of the fitted Vs Actual is shown in figure
11. The Standard error for this regression tree is 535.43. It
was observed that the regression tree is doing a poor job in
predicting the Yield.

Figure 11. Fitted Vs Actual for Tree 3

We can conclude that classification and Regression trees are
not doing a good job.
Random Forests: In this section it was examined how
Random Forests perform in predicting/classifying our
response variable – Yield.
Plain Random Forests for classification gave us greatly
unbalanced miss-classification error rates (results not
shown), for this reason, weighted Random Forests (WRF)

was developed. We used 500 trees and 3 variables are
sampled at each split of the tree. The confusion matrix for
WRF is given in table 10. The OOB error rate for WRF is
5.45 %.

Table 10 .Confusion Matrix for WRF
Predicted

Low Medium High Error Rate
True Low 7 2 0 22.2%

Medium 1 9 0 10.0%
High 0 0 36 0.0%

A Random Forest for Regression was developed and termed
as Reg_RF. This model uses 200 trees and 2 variables are
sampled at each split of the trees. The plot for Fitted Vs
Actual for Reg_RF is shown in Figure 12.

Figure 12. Fitted Vs Actual for Reg_RF

The standard error for Reg_RF is 780.41. Figure 11 shows
that Reg_RF is doing a poor job in terms of prediction.
We can conclude from this section that using Random
Forests for classification is giving us good results; however
using Random Forests for regression is giving us poor
results.
Comparison of the three Methods: This section compares
the models created in sections 2, 3, and 4 using Multiple
Regression, CART and Random Forests respectively. Initial
comparison of the models was based on prediction power,
and then based on classification.
Model 3 created in section 2 was the best model in terms of
prediction using multiple regression, we compare model 3
with the regression models created in section 3, and 4 using
CART and Random Forests. The plots for the Fitted Vs
Actual for these three models are shown in Fig. 13.
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Figure 13. Comparison of Three Regression models

Figure 13 shows us that Multiple Regression is doing a
better job than CART and Random Forests in terms of
predictions. The standard errors for the three methods are
given in table 11.

Table 11.Standard Errors of the Three Regression
Models

Multiple
Regression
(Reg 3)

CART
(Tree 3)

Random
Forests

(Reg_RF)
RMSE 725.7 535.44 794.10

Models created in section 5 and 6 based on CART and
Random Forests to classify Yield into the three classes are
compared in table 12.. The miss-classification error rates
using for the two models are given in table 12.Table 12.
Comparison of CART and Random Forests

Table 12.
Miss-Classification Error Rates

CART (Tree 2) Random Forests (WRF)
Low 22.2% 22.2%
Medium 100.0% 10.0%
High 8.3% 0.0%

Table 12 shows that Random Forests give us better results in
terms of classification.
For efficient nutrient management , knowledge of yield
potential of wheat at a particular site is very important.
Mullen et al. (2003) suggested from their results that
recognizing yield potential of crop is very important for

obtaining a response to N fertilization. Similarly, Fowler
(2003) observed that for high yield potential , N fertilizer
rate was very high. In the present study, various regression
models were compared with Forest Random model for
determining yield potential of wheat for different sites using
soil data. The Random Forest model was found better which
can be used for this purpose. Yield potential of wheat has
been very successfully used for fertilizer management of
wheat in a spatially variable large field (Mulla et al., 1992;
Bhatti et al., 1998a) as well as for formulating site- specific
N rate for a particular site (Bhatti et al., 1998c). Our next
step will be to develop a computer program for determining
N rate for a particular site using soil data and potential yield.

Conclusion: Based on the poor predictions by Regression
and the preceding discussion/results we conclude that using
Random Forests to classify Yield into three categories gives
us very small misclassification error rates and the best
results.
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