
 

 

 

INTRODUCTION 

 

Water is the most important resource on the surface of the 

earth. Wherever water exists, life can be found. It is our 

duty to preserve, maintain and conserve this important 

resource. The water allocation to irrigated agriculture has 

recently decreased in arid and semi-arid regions where water 

is scarce. The Kingdom of Saudi Arabia (KSA) has limited 

water resources. Its geographical and astronomical features 

result in a warm, dry climate with little rainfall. Under the 

circumstances described, improvements to agricultural 

irrigation management and scheduling can greatly contribute 

to water conservation and the maintenance of sufficient levels 

of crop productivity and quality. Irrigation scheduling aims to 

replenish crop water requirements as quantified in 

evapotranspiration (ET) amounts (Ali, 2010). ET can be 

divided into the sub-processes evaporation and transpiration. 

Water passes into the atmosphere by evaporation from soil 

surfaces and by transpiration from plants (Allen et al., 1998; 

Fangmeier et al., 2006). ET can be determined either 

experimentally (directly) or mathematically (indirectly). It 

can be measured directly by using either a lysimeter or a water 

balance in a controlled crop area (Gavilan et al., 2007). 

However, this approach is difficult, time-consuming and 

expensive. Evapotranspiration can be calculated indirectly 

using a crop coefficient (Kc) as determined by the crop type, 

stage of growth, canopy cover and density and soil moisture, 

multiplied by a reference evapotranspiration (ETref) value 

(Allen et al., 1998).  

An accurate estimate of the ETref is crucial for studies on the 

hydrologic water balance, irrigation system design and 

management, crop production, water resources planning and 

management and environmental assessment (Irmak et al., 

2003; Temesgen et al., 2005; Chattopadhyay et al., 2009; 

Kumar et al., 2011). The ETref is affected by the daily 

temperature, relative humidity, wind velocity, sunshine hours, 

atmospheric pressure, amount of matter dissolved in the water 

and the latitude. The ETref can be calculated by several 

methods that use climatological data and empirical 

relationships based on temperature, radiation, mass transfer or 

a combination which based on physical processes. 

Monteith (1965) introduced a surface conductance term to 

account for the response of leaf stomata to their hydrological 

environment. This modified form of the Penman equation is 
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Precisely determined evapotranspiration (ET) is necessary for maximization of water beneficiary use and hydrologic 

applications, particularly in arid and semiarid regions where water source is so limited, such as Saudi Arabia. 

Evapotranspiration is a complex, nonlinear process. However, data driven techniques can be used model it without requiring a 

complete understanding of the physics involved. Therefore, the Artificial Neural Networks (ANN) technique was used to 

estimate the daily reference evapotranspiration (ETref). Eight combinations of eight climatic parameters and crop height were 

used as input. The daily climatic variables were collected by 13 meteorological stations from 1980 to 2010. The ANN models 

were trained on 65% of the climatic data and tested using the remaining 35%. The generalised Penman-Monteith (PMG) model 

was used as a reference target for evapotranspiration values, with hc varies from 5 to 105 cm with increment of a centimeter. 

The developed models were spatially validated using climatic data from 1980 to 2010 taken from another six meteorological 

stations. The results showed that the eight ETref models developed using the ANN technique to estimate ETref varies in 

significance depending on the climatic variables included. The more input climatic parameters included, the more accurate the 

ANN model is. The statistical performance criteria values such as determination coefficients (R2) ranged from as low as 67.6% 

for ANN-MOD1, where air temperature is the only climatic parameter included, to as high as 99.8% for ANN-MOD8 with 

which all climatic parameters included. Furthermore, an interesting founded result is that the solar radiation has almost no 

effect on ETref under the hyper arid conditions. In contrast, the wind speed and plant height have a great positive impact in 

increasing the accuracy of calculating the daily reference evapotranspiration. 

Keywords: Reference evapotranspiration, artificial neural network, Penman-Monteith model, alfalfa, grass, hyper arid. 
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widely known as the General Penman-Monteith (PMG) 

evapotranspiration model (Monteith, 1973). This model is 

used by the United Nations’ FAO (PMFAO) (Allen et al., 

1998) and ASCE-70 (Jensen et al., 1990; Walter et al., 2001; 

ASCE, 2005) as the most accurate method for calculating the 

ETref and to validate other equations. It incorporates 

thermodynamic and aerodynamic aspects, can be applied to a 

wide range of climatic contexts (Smith et al., 1991; Yin et al., 

2008) and requires many climatic data inputs. This is 

especially true in developing countries, which have limited 

reliable climatic data sets of radiation, relative humidity and 

wind speed (Gocic and Trajkovic, 2010; Tabari and Talaee, 

2011). 

Many studies have examined how other ETref equations with 

fewer data requirements perform against the PMG equation, 

to find alternative equations in the absence of some climatic 

data (e.g., George et al., 2002; Xu and Singh, 2002; 

Fooladmand et al., 2008; Sabziparvar and Tabari, 2010; 

Tabari, 2010). Temperature-based models, which are such as 

Hargreaves-Samani, Blaney-Criddle, and Thornthwaite, are 

some of the oldest methods for estimating the ETref (Xu and 

Singh, 2001). Radiation-based models, which are such as 

Priestley-Taylor, Jensen-Haise, Makkink, and Turc, have 

been widely used to estimate evapotranspiration from land 

areas (Xu and Singh, 2001), which is based on the energy 

balance (Jensen et al., 1990). These models require 

calibration before extrapolating them to another environment 

(Kişi, 2006; Fooladmand and Haghighat, 2007). 

Over the past decade, intelligent computational models have 

been developed as alternative methods for estimating the 

ETref, such as the artificial neural network (ANN) technique 

(Gorka et al., 2008). ANNs are effective tools for modeling 

nonlinear processes, as they require few inputs and are able to 

map input-output relationships without any understanding of 

the physical process involved (Haykin, 1999; Sudheer et al., 

2003). Several studies have used ANN to estimate the ETref as 

a function of climatic variables. Kumar et al. (2002) indicated 

that their ANN model predicted the ETref better than the 

PMFAO method. Kumar et al. (2008) developed ANN 

models based on different categories of conventional ETref 

estimation methods, the temperature-based, radiation-based 

and combination models (PMFAO). All of the ANN models 

performed better than their respective conventional methods 

in estimating the PMFAO ETref. Landeras et al. (2008) 

compared seven ANN models with different input 

combinations with ten locally calibrated empirical and semi-

empirical ETref models, using PMFAO daily ETref values as a 

reference. The results showed the ANN models obtained 

better results than the locally calibrated ETref equations. Huo 

et al. (2012) trained and tested ANN models to forecast the 

ETref using 50 years of climatic data from three stations in 

north-west China. They showed that the ANN models 

exhibited high precision compared to the other models 

Our incomplete understanding of the physical 

evapotranspiration process and a lack of the relevant data 

results in inaccurate ETref estimates. Simple, direct 

approaches with limited data requirements are needed. The 

objectives of this study are to: (1) Develop daily ETref models 

using the ANN technique from limited variables, (3) Spatially 

assess the developed daily ETref models, and (2) Assess the 

accuracy of the developed ANN models with PMFAO and 

PMASCE models. 

 

MATERIALS AND METHODS 

 

Study area and climatic data: The KSA is situated in the far 

southwest corner of Asia (Fig. 1), between latitudes 

16°22′46″N and 32°14′00″N and longitudes 34°29′30″E and 

55°40′00″E. It is the largest country in Arabia. The KSA 

occupies about 70% of the area of the Arabian Peninsula with 

an approximate area of 1,950,000 km2. It is divided into 

thirteen provinces, as shown in Figure 1. This study considers 

all of the provinces. The provinces are arranged by area in 

descending order in Table 1. The KSA’s climate varies from 

region to region, depending on the terrain. The climate is 

generally characterized by hot summers, cold winters and 

winter rainfall. The central areas experience hot, dry summers 

and cool, dry winters. The coastal areas experience high 

humidity. The air temperature falls moderately with the onset 

of autumn, which lasts from 23 September to 21 December. 

The lowest air temperatures are reported in the northern 

regions (3-7°C). Later in the year, temperatures significantly 

decline in other areas. Temperature variations are noted daily 

and vary from region to region.  

 

 
Figure 1. Map of the KSA, showing its provinces and 

meteorological stations. 
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Collected daily climatic data from 1980 to 2010 
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For this study, climatic data was recorded at 19 

meteorological stations selected from the 13 KAS provinces. 

The spatial distribution of the selected stations within the 

provinces is shown in Figure 1. Each province is represented 

by two stations, except for the provinces of Najran, Ha’il, Al-

Jouf, Bisha, Al-Qasim, Jizan and Al-Baha, which are only 

represented by one station. The Presidency of Meteorology 

and Environment provided the data. The study’s climatic data 

covers 31 years of daily meteorological information recorded 

from 1980 to 2010. The recorded data for all of the stations 

includes the maximum, minimum and mean air temperatures 

(Tx, Tn, and Ta) (°C); maximum, minimum and mean relative 

humidity (Rhx, Rhn and Rha) (%); wind speed at a 2m height 

(U2) (m/s) and solar radiation (Rs) (Mj/m2/d). Table 1 

describes the meteorological stations and lists the annual 

averages of the climatic data from each station. 

The ANN models take at most nine input variables, Tx, Tn, Ta, 

Rhx, Rhn, Rha, U2, Rs and the reference crop height (hc) (m), 

which varies from 5 to 105 cm. This range is selected to cover 

both grass (10 to 15 cm) and alfalfa (30 to 80 cm). A random 

hc value is chosen during training. The ETref is the output 

variable. The input variables are divided into three sets. The 

training set for the ANN models is composed of 65% of the 

daily data collected by 13 of the weather stations, Riyadh 

(North), Al-Qasim, Ha’il, Al-Jouf, Rafha, Dhahran, Najran, 

Jizan, Bisha, Al-Baha, Jeddah, Al-Madina and Tabuk, from 

1980 to 2007. The training set is used to find the patterns 

present in the data. The testing set for the ANN models is 

composed of the remaining 35% of the data from the same 

weather stations and period as the training set. It is used to 

evaluate the generalization abilities of the trained models. The 

ANN models’ performances are checked once more with a 

validation data set. It is composed of the data collected by the 

remaining six weather stations, Turaif, Al-Wajh, Qaisumah, 

Yanba’, Al-Ta’if and Wadi Al-Dawasir, from 1980 to 2010. 

The data is analyzed three times, using hc = 5-105 cm, hc = 12 

cm and hc = 50 cm. 

Input parameters data of the ANN models: The ANN models 

take at most nine input variables, maximum, minimum and 

mean air temperature (Tx, Tn and Ta); maximum, minimum 

and mean relative humidity (Rhx, Rhn and Rha); wind speed 

(U2); solar radiation (Rs) and the reference crop height (hc), 

which varies from 5 to 105 cm. This range is selected to cover 

both grass (8 to 15 cm) and alfalfa (30 to 80cm). A random hc 

value is chosen during training. The ETref is the output 

variable. The input variables are divided into three sets. The 

training set for the ANN models is composed of 65% of the 

daily data collected by 13 of the meteorological stations, 

Riyadh (North), Al-Qasim, Ha’il, Al-Jouf, Rafha, Dhahran, 

Najran, Jizan, Bisha, Al-Baha, Jeddah, Al-Madina and Tabuk, 

from 1980 to 2010. The training set is used to find the patterns 

present in the data. The testing set for the ANN models is 

composed of the remaining 35% of the data from the same 

meteorological stations and period as the training set. It is 

used to evaluate the generalization abilities of the trained 

models.  

The ANN models’ performances are checked once more with 

a validation data set. It is composed of the data collected by 

the remaining 6 meteorological stations, Turaif, Al-Wajh, 

Qaisumah, Yanba’, Al-Ta’if and Wadi Al-Dawasir, from 

1980 to 2010.The data is analysed three times, using hc= 5-

105cm, hc= 12cm and hc=50cm.  

Table 1. Meteorological station sites and climatic parameters. 
Provinces Areas* 

(km2) 

Stations Location Climatic Parameters 

Longitude 

(deg) 

Latitude 

(deg) 

Altitude 

(m) 

Tx 

(°C) 

Tn 

(°C) 

Ta 

(°C) 

Rhx 

(%) 

Rhn 

(%) 

Rha 

(%) 

U2 

(m/s) 

Rs 

(Mj/m2/d) 

Eastern 

region 

540 Qaisumah 46.13 28.31 355 32 19 25 77 30 50 2.6 21 

Dhahran 50.20 26.30 17 33 20 26 75 29 52 4.2 20 

Al-Riyadh 380 Riyadh (North) 46.72 24.93 614 33 20 26 38 16 31 3.9 15 

Wadi Al-Dawasir 45.20 20.50 617 35 22 28 35 17 26 3.4 18 

Al-Madinah 150 Al-Madina 39.60 24.47 619 33 25 19 56 29 44 4.2 26 

Yanba’ 38.10 24.10 1 29 22 17 78 23 50 3.2 29 

Makkah 137 Jeddah 39.17 21.40 12 34 28 22 81 37 60 2.6 23 

Al-Ta’if 40.50 21.50 1449 35 29 23 60 29 39 3.2 27 

Tabuk 136 Tabuk 36.58 28.38 770 29 14 22 53 17 32 2.9 33 

Al-Wajh 36.50 26.20 20 28 10 18 70 22 45 2.2 29 

Najran 130 Najran 44.40 17.60 1214 35 29 25 60 33 44 3.5 28 

Ha'Il 120 Ha’il 41.70 27.40 1013 34 28 22 81 37 60 2.3 14 

Northern 

borders 

104 Turaif 38.65 31.68 854 35 29 23 60 29 39 3.3 29 

Rafha 43.50 29.60 447 29 14 22 53 17 32 2.9 22 

Al-Jouf 85 Al-Jouf 40.10 29.80 689 30 14 22 48 18 31 3.11 25 

Asir 80 Bisha 42.60 20.00 1157 33 17 25 47 15 29 2.4 28 

Al-Qasim 73 Al-Qasim 43.80 26.30 650 32 18 25 44 30 18 2.9 27 

Jizan 13 Jizan 42.60 16.88 3 36 30 25 61 34 44 3.3 36 

Al-Bahah 12 Al-Baha 41.60 20.30 1656 29 16 22 56 22 38 1.3 28 

* Saudi Geological Survey (2012), King Saudi Arabia: Facts and Numbers, edition 1 
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The input combinations: Several combinations of the input 

parameters were used as inputs to estimate the daily ETref 

using the ANN technique. The input parameter combinations 

are listed in Table 2. Eight ANN models were developed to 

test the performance of different combinations of input 

parameters, including climatic parameters and a reference hc 

chosen randomly during the training process. The three 

temperature variables (Tx, Tn, and Ta) and hc were included in 

all of the combinations.  

The first combination used the three temperature elements 

and crop height. The second combination added the three 

humidity variables (Rhx, Rhn, and Rha) to the first 

combination. The third combination added U2 to the first 

combination. The fourth combination added Rs to the first 

combination. The fifth combination was formed by inserting 

u2 into the second combination. The sixth combination was 

formed by inserting Rs into the second combination. The 

seventh combination consisted of all inputs parameters except 

the relative humidity data. The eighth combination consisted 

of all the input parameters.  

Output/targeted data of the ANN models: The performances 

of the ANN models are compared to the PMG method. The 

PMG method is considered the standard procedure when 

measured lysimeter data is not available (Irmak et al., 2003; 

Gavilan et al., 2006). The PMG method gives optimal results 

over all climatic zones (De Souza and Yoder, 1994; Chiew et 

al., 1995; Hupet and Vanclooster, 2001; Naoum and Tsanis, 

2003; Irmak et al., 2003; Alazba, 2004; Gavilan et al., 2006) 

and has advantages over many other mathematical equations. 

It can be used globally without any local calibrations due to 

its physical basis, is well-documented and has been validated 

with a significant amount of lysimeter data (Gocic and 

Trajkovic, 2010). Many researchers (Kumar et al., 2002; 

Trajkovic, 2005; Kisi and Ozturk, 2007; Zanetti et al., 2007; 

Landeras et al., 2008; Jain et al., 2008; Dai et al., 2009; Traore 

et al., 2010) have used the PMG equation as a reference and 

standard equation to evaluate the results of their mathematical 

models. The daily ETref values from the PMG equation are 

used as the output/target variables in the ANN and GEP 

models. A generalized form of the Penman-Monteith model 

can be written as (Alazba, 2004): 

            (1) 

Where 

λ = latent heat of vaporization, (MJ.kg-1); 

Δ = slope of the saturation vapour pressure-temperature 

curve at the mean air temperature (kPa.°C-1); 

γ = psychometric constant (kPa.°C-1); 

Rn = net radiation (MJ.m-2
.day-1); 

G = soil heat flux (MJ.m-2
.day-1); 

γ* = modified psychometric constant (kPa.°C-1); 

K = 

parameter equal to (MJ.m-2 day. kPa) 

ra = aerodynamic resistance (s.m-1); 

T = air temperature (°C); 

es = saturation vapour pressure at the air temperature 

(kPa); and 

ea = actual vapour pressure (kPa). 

 

Description of artificial neural network ANN: ANN usually 

consists of layers of neurons, weights representing the 

connection strengths and a transfer or activation function. An 

ANN model of multilayer perception with a universal 

function approximator is used. Figure 2 depicts the model 

layers.  

 
input layer                      hidden layer                  output layer 

Figure 2. Architecture of the ANN used to model the ETref. 
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Table 2. The input variables combinations used in the ANN technique. 
Model Input Parameters 

Temperature(°C)  Relative Humidity (%) u2 

(m/s) 

Rs 

(Mj/m2/d) 

hc 

(m) Tx Tn Ta  Rhx Rhn Rha 

ANN-MOD1           

ANN-MOD2           

ANN-MOD3           

ANN-MOD4           

ANN-MOD5           

ANN-MOD6           

ANN-MOD7           

ANN-MOD8           
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The input layer (i) is connected to the hidden layer (j), which 

is in turn connected to the output layer (k) by means of the 

connection weights (W) and biases (B). The W is used to 

change the throughput parameters and vary the connections to 

the neurons. The B is used as additional elements inside the 

hidden and output layer neurons. The neuron (processing 

element) in the hidden layer consists of aggregating weighted 

inputs, resulting in a quantity-weighted input (activation 

value). In the hidden layer, the neuron’s activation value (hj) 

is mathematically characterized using the following equation 

(Haykin 1999):  

                 (2) 

Where (W1)ji is weights from the input layer to the hidden 

layer; Xi is input parameters; N is number of input neurons; 

(B1)j is biases in the hidden layer; f(--)is activation (transfer) 

function. 

Then, the output layer neuron (Yk) is given by the following 

equation: 

                  (3) 

Where (W2)kj is weights from the hidden layer to the output 

layer; n is number of output neurons; (B2)k is biases in the 

output layer. 

The most common activation (transfer) functions in 

hydrological modeling are the sigmoid and hyperbolic tangent 

functions (Dawson & Wilby, 1998; Zanetti et al., 2007). The 

hyperbolic tangent is similar to the sigmoid but can exhibit 

different learning dynamics during training. The sigmoid 

function is used in this study. Its general functional form is: 

                     (4) 

A feed-forward ANN that uses a back-propagation learning 

algorithm was employed in this study; as such ANNs are 

commonly used to estimate the ETref. The back-propagation 

learning algorithm optimizes the error function to modify the 

link weight. More than 70% of the existing studies that 

applied ANN techniques to hydrological processes used the 

back-propagation learning algorithm because of its simplicity 

and robustness (Kumar et al., 2011). It controls the rate at 

which learning takes place using a momentum term and the 

learning rate. The momentum term is generally used to 

accelerate convergence and avoid local minima. A learning 

rate of 0.01 and a momentum factor of 0.8 are used. 

Developing the ANN architecture: Software Multiple Back-

Propagation version 2.2.4 was used to develop the ANN 

models to estimate the ETref. Nine input variables were used 

(the maximum input set of the ANN). The output as one 

neuron was in the output layer. The number of hidden neurons 

depended on several factors, such as the number of input and 

output neurons, the number of training cases, the amount of 

noise in the targets, the complexity of the function or 

classification to be learned, the architecture, the type of 

hidden unit activation function and the training algorithm 

(Kumar et al., 2011). The training data must be automatically 

normalized before they are exported to the ANN’s feed-

forward neural networks for training. Normalization is 

commonly between 0.15 and 0.85 in ANN modeling. The 

input data can flow after it is normalized. They undergo 

unidirectional processing from the input layer, through the 

hidden layer, to the output layer. In the hidden layer, each 

neuron receives input signals from the input layer through the 

weights (Izadifar, 2010). The data are processed separately by 

each hidden layer neuron and the outputs are passed to the 

output layer neuron. 

The network output and target outputs are computed at the 

end of each forward pass in the forward-propagation stage. If 

an error is higher than a selected value, a reverse pass is 

performed to modify the connection weights by minimizing 

the error between the target and computed outputs (back-

propagation stage). Otherwise, the training stops. The best 

number of hidden neurons in the hidden layer is found by 

training many ANNs and repeating the trial and error 

procedure (Jain et al., 2008), taking into account the error 

values. The hidden layer initially has two nodes. The number 

of nodes increases in each trial by between one and four 

nodes, to a maximum of 20 nodes. 

Performance criteria of ANN models: After training the 

ANN models, the ETref values were estimated and compared 

to the daily values from the PMG model. The comparisons 

were made using the following statistical parameters. 

                              (5) 

                                    (6) 

                     (7) 

                                             (8) 

Where Ei is value of ETref  estimated by the PMG; Ci is 

corresponding value calculated by mathematical ETref  

models; n’ is number of observations;   is average of the 

estimated values;  is average of the calculated values; Ex is 

maximum estimated value; En is minimum estimated value. 
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RESULTS AND DISCUSSION 

 

Choosing the ANN architecture: The optimal number of 

neurons in the hidden layers of an ANN must be determined 

through a trial and error procedure, as shown in Figure 2. Of 

the eight ANNs tested, the simplified construct N-2-1 (where 

N is the number of neurons or input variables in the input 

layer) exhibits the poorest ANN performance, as reflected by 

the statistical indicators (Figs. 3 and 4). High values of R² and 

OI and low values of RMSE and MAE, indicating good model 

 

 

 

 
Figure 3. Accuracy of ANN-MOD1, ANN-MOD2, ANN-MOD3, and ANN-MOD4 in modelling the ETref using 

different numbers of hidden neurons during training, measured with R², OI, RMSE and MAE. 
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performance, are obtained by increasing n (where n is the 

number of neurons in the hidden layer) to more than two.  

It can be noted that a greater number of neurons in the hidden 

layer increases the structure complexity and does not improve 

the network behaviour. The optimum number of hidden layers 

represents the ETref nonlinear complex relationship (Kumar et 

al., 2002; Zanetti et al., 2007). The numbers of neurons in the 

hidden layer of the ANN models used for the various training 

models were 2, 3, 4,....., 20. The networks were trained over 

up to 20,000 iterations, as there were negligible 

improvements (increases in the R² and decreases in the RMSE) 

after 20,000 iterations.  

For example, ANN-MOD1 was trained using up to 20 

processing elements. The optimum results are found using 20 

 

 

 

 
Figure 4. Accuracy of ANN-MOD5, ANN-MOD6, ANN-MOD7, and ANN-MOD8 in modeling the ETref using 

different numbers of hidden neurons during training, measured with R², OI, RMSE and MAE. 
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neurons, generating the maximum R² (68.0 %) and OI 

(80.7%) values and the minimum RMSE (2.95 mm/d) and 

MAE (2.13 mm/d) values for the training set, as shown in 

Figure 3. The best ANN-MOD1 model for forecasting the 

daily ETref is composed of one input layer with four input 

variables, the daily maximum, mean, and minimum air 

temperature and the crop height, one hidden layer with 20 

neurons and one output layer with one output variable. The 

rest of the ANN models were also tested to determine the 

optimum number of neurons in their hidden layers. The best 

ANN models for each input combination and their 

performance statistics on the training data set are shown in 

Figures 3 and 4. 

The following steps were used to formulate the ANN 

models: 

     (9) 

where is the normalized value and is 

the actual value for the ETref in any model. The is 

45.72 mm/day and the  is 0.46 mm/day. 

         (10) 

Eq. 14 is further simplified to:  

                           (11) 

                          (12) 

where the weights ( ) and the biases ( ) are given in 

Table A1. The parameter is computed from: 

                            (13) 

where the weights (wij) and the biases (bj) are given in Tables 

A2-A9 and xi is the input variable. The subscripts i, j and k 

represent the number of input, hidden and output neurons, 

respectively. The mathematical formulations are easily 

programmed in a spreadsheet (i.e. Microsoft Excel) or in the 

Visual Basic programming language to predict the ETref using 

Equations 9-13, along with Tables A1 and A2-A9.

 

Table A1. Biases and Weights for ANN models at the output layer. 
Model

, K 

Biase

Bk 
Weights from the hidden layer to the output layer 

wk1 wk2 wk3 wk`4 wk5 wk6 wk7 wk8 wk9 wk10 wk11 wk12 wk13 wk14 wk15 wk16 wk17 wk18 wk19 wk20 
1 1.60 -1.95 0.77 -0.02 0.37 1.44 -0.96 -0.12 -0.95 -4.44 0.20 2.07 1.53 -0.87 1.98 -0.01 0.76 2.02 2.36 -0.07 -7.13 

2 4.87 -0.48 0.12 -0.21 0.35 -10.96 0.31 -0.32 -0.52 -6.62 -0.63 -0.10 -0.33 -0.90 -0.66 0.68 -3.26 - - - - 

3 0.59 -0.29 1.24 -1.16 -1.77 -1.11 0.78 -0.66 1.51 -1.13 -2.74 -0.66 -0.12 -0.56 -1.00 -2.68 1.30 - - - - 

4 0.06 0.70 -0.16 -2.35 0.31 -4.90 -2.58 4.61 1.45 -1.39 0.16 -0.64 -0.73 -0.51 - - - - - - - 

5 -0.11 0.26 -4.75 -0.63 -0.83 -0.65 -0.48 0.09 -2.30 -0.68 0.50 2.49 -0.70 -0.88 -1.58 -1.23 -0.31 -0.14 1.29 0.81 -0.90 

6 0.78 -8.75 -0.64 -1.55 -3.03 1.16 3.15 -0.47 2.83 0.32 2.17 1.90 -6.84 2.10 1.66 0.37 0.52 1.69 -3.48 0.27 -0.69 

7 0.35 -0.43 -1.08 -1.24 -0.58 -4.32 0.44 -0.74 0.44 3.02 -1.09 -2.50 0.81 -1.78 2.33 -2.97 0.88 - - - - 

8 0.77 7.27 -1.83 -0.39 -1.01 -0.48 -0.60 -5.70 -0.64 -2.29 1.54 -0.37 -10.96 -0.92 -0.72 0.76 -0.34 -1.71 1.02 0.41 -0.86 

 

Table A2. Biases and Weights for ANN-MOD1. 
No. of hidden 

neuron, j 

bias (bj) Weights from the input layer to the hidden layer 

wj1 wj2 wj3 wj4 

1 -1.967 9.021 -0.438 4.496 0.087 

2 -6.203 -0.198 0.977 0.188 0.932 

3 -0.322 -0.709 2.298 -0.104 -0.009 

4 -0.700 -1.197 0.180 3.473 0.342 

5 -1.443 -0.058 0.130 1.210 1.615 

6 -0.559 -1.852 4.163 -0.428 4.257 

7 2.706 -0.498 2.699 -0.409 -0.107 

8 4.147 0.148 8.311 -0.590 0.933 

9 -3.496 0.116 -0.469 0.524 -2.731 

10 0.095 1.585 0.491 0.157 2.623 

11 5.305 -0.423 0.247 0.566 0.211 

12 1.750 0.306 0.854 -0.713 0.416 

13 -1.992 5.337 -12.615 5.084 0.119 

14 -1.339 0.020 0.608 -0.043 0.852 

15 -1.714 0.003 1.735 0.100 0.762 

16 -0.052 3.913 1.203 1.420 0.955 

17 0.043 2.345 5.230 4.710 0.301 

18 0.250 -4.001 2.533 0.615 1.075 

19 1.961 -0.336 1.998 -0.348 0.148 

20 5.628 -1.053 1.013 -0.751 -0.120 

 ref
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Table A3. Biases and Weights for ANN-MOD2. 
No. of 

hidden 

neuron, j 

bias (bj) Weights from the input layer to the hidden layer 

wj1 wj2 wj3 wj4 wj5 wj6 wj7 

1 -8.628 2.955 5.786 1.159 2.147 -2.737 -0.852 0.405 

2 -5.142 0.533 6.747 -2.948 -0.170 2.776 -10.320 1.744 

3 -6.543 0.753 7.173 2.473 8.572 2.090 1.329 -0.758 

4 -7.595 1.591 5.997 7.982 5.857 4.222 -2.187 0.135 

5 -1.152 -0.028 -0.159 -0.488 0.066 -0.011 0.107 -0.148 

6 -4.225 -0.890 4.904 1.961 -3.746 4.431 -1.934 0.284 

7 -11.651 2.166 11.014 -5.425 -4.370 1.192 -10.048 -0.274 

8 -16.890 16.192 5.106 -5.225 -0.271 -1.131 -2.424 1.968 

9 -5.193 -0.324 1.448 -0.933 -0.088 -0.050 -0.408 -2.499 

10 -7.185 15.265 -1.438 2.879 -4.531 8.553 0.996 0.419 

11 11.237 -11.098 -12.585 -9.846 -12.125 1.294 -13.789 0.287 

12 -5.550 4.283 4.924 3.156 -0.894 4.329 7.202 0.365 

13 -3.454 0.067 -0.179 -0.506 3.865 1.801 -0.912 0.579 

14 3.222 -1.194 -11.912 13.334 0.901 3.244 0.009 -0.155 

15 -4.070 11.519 -1.951 -0.794 -2.194 4.208 0.534 0.278 

16 6.846 -3.020 -3.736 1.332 1.243 0.027 -0.041 -1.252 

 

Table A4. Biases and Weights for ANN-MOD3. 
No. of hidden 

neuron, j 

bias (bj) Weights from the input layer to the hidden layer 

wji wj2 wj3 wj4 wj5 

1 -3.280 29.503 10.441 -37.704 0.967 0.262 

2 1.583 1.501 -1.059 1.229 1.915 -0.634 

3 -0.858 -8.260 12.099 -5.928 0.614 0.484 

4 3.669 0.939 -2.374 -2.779 -2.658 -0.813 

5 -0.305 -1.965 3.844 -5.192 2.304 -0.244 

6 -0.830 -0.652 -0.434 0.958 0.905 2.295 

7 -1.035 -4.925 -13.450 14.654 1.127 0.322 

8 -0.898 0.596 -0.800 1.424 -1.310 0.638 

9 -1.687 -1.350 0.638 0.726 -1.050 0.223 

10 -4.001 0.027 -0.519 0.114 0.856 -3.464 

11 -0.752 -1.603 0.780 0.385 0.054 -0.023 

12 -0.444 -3.693 0.085 -1.394 2.125 0.642 

13 -0.068 -0.562 -0.113 -0.723 -0.208 0.312 

14 -1.014 -0.788 0.550 -0.208 -0.938 -0.093 

15 -3.035 0.980 0.110 -0.457 -2.718 -0.124 

16 -0.849 -3.939 12.736 -12.426 1.889 -0.089 

 

Table A5. Biases and Weights for ANN-MOD4. 
No. of hidden 

neuron, j 

bias (bj) Weights from the input layer to the hidden layer 

wji wj2 wj3 wj4 wj5 

1 -2.057 -1.846 0.778 0.950 -0.108 2.967 

2 -8.766 -5.698 21.721 2.622 -1.565 1.678 

3 -1.799 -3.122 0.668 0.634 -1.097 0.408 

4 -1.006 -1.253 2.222 -1.074 1.454 3.587 

5 -3.871 0.371 -0.274 -0.204 -0.284 -2.557 

6 -1.223 -0.030 -1.915 -0.115 0.944 0.339 

7 -8.255 -2.636 4.681 -1.770 5.936 0.451 

8 -4.047 -2.072 3.937 5.138 -1.865 0.375 

9 -3.578 -4.865 9.281 -2.484 0.068 0.680 

10 11.504 6.039 -14.710 -14.474 -2.430 -0.062 

11 1.072 4.420 -0.997 -0.401 -5.181 -0.033 

12 2.889 -10.626 4.170 -3.928 1.292 0.461 

13 -2.892 3.218 1.706 7.044 -0.372 -0.169 
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Table A6. Biases and Weights for ANN-MOD5. 
No. of 

hidden 

neuron, j 

bias (bj) Weights from the input layer to the hidden layer 

wj1 wj2 wj3 wj4 wj5 wj6 wj7 wj8 

1 -1.967 6.977 -0.332 2.074 -0.554 2.946 0.347 0.082 -0.065 

2 -6.203 0.444 0.599 -1.098 -0.626 0.137 -0.059 -4.585 0.245 

3 -0.322 -1.587 -0.008 0.075 0.657 -0.085 -0.462 -0.443 0.306 

4 -0.700 -0.597 0.353 -0.428 0.564 1.242 -0.558 0.444 0.066 

5 -1.443 -0.551 -0.410 0.264 -0.776 0.492 -0.500 0.503 -1.415 

6 -0.559 -1.609 -0.884 2.820 -0.352 1.215 -0.367 0.420 -0.129 

7 2.706 6.443 -2.903 3.604 -0.188 2.328 7.614 3.931 0.469 

8 4.147 -2.855 -1.590 1.856 1.159 0.562 0.000 -2.617 -1.311 

9 -3.496 -3.850 -1.301 -1.107 0.418 0.009 0.755 -0.136 -0.279 

10 0.095 -1.374 -0.645 0.719 0.650 0.451 2.266 0.007 -0.134 

11 5.305 -0.387 -0.113 0.680 0.297 0.119 -0.277 -0.993 5.807 

12 1.750 -0.952 -1.248 -0.735 0.432 0.198 0.877 1.831 -0.054 

13 -1.992 -0.891 -0.702 1.225 0.353 -0.414 -0.934 -0.788 -0.189 

14 -1.339 0.971 -1.548 -0.197 1.700 0.737 -0.298 1.958 0.490 

15 -1.714 1.391 0.415 -2.335 0.301 -0.299 1.522 -0.640 -0.394 

16 -0.052 -4.411 -2.231 0.170 -0.201 0.222 0.884 -1.446 -0.229 

17 0.043 -1.668 1.638 0.694 -1.079 1.470 0.578 0.197 -0.735 

18 0.250 0.013 0.776 -1.331 -0.501 -0.442 -0.391 2.080 0.880 

19 1.961 -0.359 -0.852 -0.607 -0.309 0.016 -0.809 1.836 0.242 

20 5.628 0.045 0.167 0.312 0.274 0.010 -0.252 -1.047 7.787 

 

 

Table A7. Biases and Weights for ANN-MOD6. 
No. of 

hidden 

neuron, j 

bias (bj) Weights from the input layer to the hidden layer 

wj1 wj2 wj3 wj4 wj5 wj6 wj7 wj8 

1 -4.521 0.504 1.616 -1.945 -0.181 -0.293 -0.088 0.058 -1.836 

2 -4.231 3.227 5.027 -5.084 3.567 0.047 1.003 -0.308 0.415 

3 -23.004 3.234 5.148 3.960 -1.325 -0.413 -3.751 8.852 1.194 

4 -10.916 1.017 8.772 4.385 -5.703 5.515 2.598 -0.105 0.281 

5 -9.806 -2.830 5.234 7.152 -0.539 1.491 -0.930 1.043 0.316 

6 -12.175 3.544 12.067 -11.253 -5.974 -0.085 -0.196 1.139 1.157 

7 -10.787 -0.007 4.443 1.237 -6.313 2.815 -8.010 -0.570 0.297 

8 -15.188 -5.425 10.754 3.024 1.562 1.127 -4.302 3.193 1.603 

9 -3.177 -11.991 -1.004 14.030 -0.293 -0.338 -1.751 -1.286 2.557 

10 -4.109 4.714 -2.094 0.505 -2.083 1.590 1.404 -0.748 1.386 

11 -12.182 -3.961 6.104 6.575 0.177 0.961 -1.691 1.717 0.872 

12 -0.975 -0.153 -0.930 0.126 0.301 0.199 0.029 -0.277 -0.104 

13 -9.110 -0.035 3.205 5.347 0.550 2.434 1.341 -0.943 -1.222 

14 -12.911 2.982 7.076 -3.213 -3.648 -1.816 4.177 3.374 1.107 

15 -3.717 11.371 21.022 -29.622 -1.075 -0.438 -1.332 0.606 0.421 

16 -9.532 -5.748 4.206 5.290 -10.150 0.397 0.022 -0.408 -0.498 

17 -10.297 -1.288 4.792 5.413 -0.938 1.546 -0.554 1.218 0.187 

18 -5.218 0.791 -0.612 0.706 -0.476 -0.029 -1.289 -0.830 -0.152 

19 -7.188 14.386 -14.106 5.796 2.538 -2.205 -2.629 -8.715 0.531 

20 15.850 -1.972 -2.721 1.864 1.445 1.321 -0.397 -11.818 -0.871 
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Table A8. Biases and Weights for ANN-MOD7. 
No. of hidden 

neuron, j 
bias (bj) Weights from the input layer to the hidden layer 

wj1 wj2 wj3 wj4 wj5 wj6 

1 4.887 -2.879 4.062 -1.826 7.762 -0.037 -0.359 

2 -0.531 -1.191 -6.410 3.966 1.640 -0.601 0.323 

3 -3.696 0.823 -0.329 2.014 3.153 1.943 -1.195 

4 -2.638 17.962 3.787 -17.283 2.877 -0.232 0.471 

5 -2.500 0.151 -0.337 -0.156 -2.241 -0.239 -0.077 

6 -4.915 -19.695 22.119 -10.330 -2.032 1.781 -0.008 

7 0.801 -6.742 0.693 5.204 4.953 -0.130 -0.453 

8 0.071 0.225 0.481 0.198 1.506 -0.932 1.364 

9 -4.077 -1.204 3.695 2.641 1.449 -1.233 0.901 

10 5.236 2.197 -4.159 -0.979 -2.776 -4.461 -0.100 

11 -6.899 0.413 -0.266 -0.429 1.021 -0.461 -6.169 

12 0.816 -0.118 -0.318 0.587 2.514 -0.121 0.482 

13 -1.159 -3.847 4.591 -2.535 0.097 -0.358 0.107 

14 -0.742 0.862 1.114 0.018 1.950 -0.099 0.410 

15 -2.521 -2.534 4.128 0.442 0.549 -0.009 0.837 

16 -0.547 0.451 -0.764 -0.594 -0.187 0.418 0.701 

 

Table A9. Biases and Weights for ANN-MOD8. 
No. of 

hidden 

neuron, j 

bias 

(bj) 

Weights from the input layer to the hidden layer 

wj1 wj2 wj3 wj4 wj5 wj6 wj7 wj8 wj9 

1 -5.361 2.163 1.185 -1.071 -1.072 -0.388 -0.083 1.978 0.229 1.037 

2 -2.492 1.283 -1.196 -0.424 1.558 0.034 -0.241 0.111 -0.467 0.249 

3 -0.805 0.426 -0.152 -1.311 0.871 0.297 0.670 -1.253 0.601 -0.556 

4 -1.065 -0.662 -0.726 1.182 0.910 0.668 -0.216 -2.551 0.848 -0.723 

5 -0.928 0.318 0.283 1.037 -0.402 0.120 0.449 -2.206 -0.925 -0.416 

6 0.264 -1.054 -0.703 0.488 0.899 0.377 -0.519 -1.709 -0.544 0.881 

7 -7.374 0.203 0.337 -0.571 -0.588 -0.273 0.154 -5.405 -0.465 0.206 

8 -1.336 -0.949 -0.301 -0.869 -0.247 0.712 -0.513 0.048 -0.864 -0.230 

9 -3.748 0.989 -0.913 -0.101 1.622 2.107 0.071 0.719 -0.362 0.294 

10 -1.658 1.356 0.450 -1.637 -0.915 -0.513 0.126 1.220 -1.511 0.466 

11 -0.488 0.214 -0.928 -0.594 0.246 0.143 0.330 0.024 -1.448 0.133 

12 -9.374 0.111 0.039 -0.337 -0.024 -0.014 -0.026 0.524 -0.044 -7.406 

13 10.179 -0.074 -0.001 0.251 -0.308 -0.154 0.324 0.195 -0.115 10.418 

14 -0.676 0.516 -0.137 -0.540 -0.056 -0.007 -0.248 1.862 -0.195 -1.662 

15 0.857 1.481 -0.755 0.036 0.931 0.509 0.289 2.129 0.554 0.204 

16 -1.094 0.700 -0.557 -1.030 0.494 0.353 1.428 0.567 0.334 -0.730 

17 -0.740 -0.657 -0.772 -0.178 0.311 0.018 0.124 1.827 -0.191 0.196 

18 -1.937 1.308 0.983 -0.411 -0.805 -0.276 0.139 -1.887 0.333 0.331 

19 -0.362 -0.995 -2.051 0.267 1.578 0.365 -0.302 -0.125 -0.342 -0.653 

20 -3.082 0.235 0.474 0.293 -1.213 -0.762 0.147 -1.064 -0.522 -0.528 
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Figure 5. Comparison of the daily ETref estimated using the ANN models with different input combinations during 

training process and the PMG equation, using 65% of the data collected from 1980 to 2010 Jby 13 

meteorological stations. 
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ANN Models Performance: 

Training and testing processes: Figure 5 shows that the daily 

ETref values estimated by the ANN models that used U2 during 

the training process matched well with each other and the 

values estimated by the PMG model. The effectiveness of 

these models is clear. The scatter plots for the training process 

in Figure 5 also show that the ANN-MOD5 and ANN-MOD8 

data mostly follow the 45° line. However, many points in the 

ANN models that do not use U2 are located above and below 

this line. 

Table 3 presents the statistical results of the optimum ANN 

models using different input combinations to estimate the 

ETref. In training, it can be observed that the absence or 

presence of some of the input variables in the input sets 

significantly affects the models’ performances. The ANN-

MOD1 temperature-based model only took the three 

temperature variables. ANN-MOD1 performed worst, with R² 

of 67.9%, OI of 80.6%, RMSE of 2.95 mm/d and MAE of 2.12 

mm/d (Table 3). The ANN-MOD2 performed better than 

ANN-MOD1 that had a R² and OI values that were about 18% 

and 8.4% increase, due to the presence of the three humidity 

variables. While the ANN-MOD2 had an RMSE and MAE 

values that were about 21.4% and 25%, respectively, more 

accurate than that from the ANN-MOD1. This is confirmed 

by the Figure 6 that shows an importance ratio analysis of 

each input parameter used in the calculation of the daily ETref. 

The figure shows that Tn of 37.66% and 22.31% were the 

most significant parameters affecting ANN-MOD1and ANN-

MOD2, respectively. As the average importance ratio of three 

humidity variables was 12.72% in ANN-MOD2. 

Additionally, ANN-MOD3 predicative accuracy increased, 

whereas the R² was 87.1%, a 28.3% and 8.6% increase over 

the R² values of ANN-MOD1 and ANN-MOD2, respectively. 

The rest of statistical criteria for the ANN-MOD3 confirm 

that ETref performs poorly without U2. The importance ratio 

of U2 and Tn were also the second most influential variables, 

both nearly 19%. Moreover ANN-MOD4, which added Rs to 

the ANN-MOD1 combination, improved slightly on 

estimating ETref than ANN-MOD2. This is evident in Figure 

6 that Tn of 28.55% and Tx of 24.28% were the dominant input 

variables. 

However, inserting U2 into ANN-MOD2, as in ANN-MOD5, 

resulted in a dramatic increase in R² from 80.2% to 99.1%, i.e. 

a 19.98% increase. The RMSE and MAE values indicate that 

the ANN-MOD5 performs better than the ANN-MOD2, 

indicating a decrease of 78.4% and 74.7%, respectively. The 

value of OI is close to one which supports the argument that 

the ETref can perform well without Rs. The Tx of 20.32% and 

U2 of 17% had also the largest effect on ANN-MOD5 (Fig. 

6). As, switching ANN-MOD5’s Rs for U2, as in ANN-

MOD6, resulted in a intense decrease in the values of R² and 

OI that were 16.6% and 10.2% less accurate than that from 

the ANN-MOD5. The RMSE and MAE for ANN-MOD6 were 

almost three times that of the values for the ANN-MOD5. 

This is in accordance with Kişi and Ozturk (2007).  

Comparing ANN-MOD7’s results with those of the other 

ANN models shows that the accuracy of the ANN-MOD4 was 

significantly improved by the inclusion of U2, as ANN-

MOD7 had a 22.7% and 11.2% increase in the R² and OI over 

ANN-MOD4, receptivity. The RMSE and MAE for ANN-

MOD7 had also 36.1% and 37.2% % more accurate than that 

from the ANN-MOD4. U2 (24.49%) was the most significant 

parameters affecting ANN-MOD7. This is in agreement with 

Hupet and Vanclooster (2001). U2 is likely to be an effective, 

powerful variable for accurately modelling the nonlinear 

complex process of ETref (Fisher et al., 2005; Xiaoying and 

Erda, 2005; Li and Beswick, 2005; Traore et al., 2010). On 

the other hand, the statistical criteria in Table 3 indicate that 

slight difference between the ANN-MOD6 and the ANN-

MOD2, also between the ANN-MOD7 and the ANN-MOD3. 

This shows that Rs had an insignificant influence (about of 

8.5%) on estimating ETref. Finally, ANN-MOD8, which has 

the full input set similar to the PMG model, performs better 

than the rest of the ANN models, whereas the R² value 

indicated a strong fit to the data. The ANN-MOD8 yielded a 

highest OI and a lowest RMSE and MAE. 

In testing, Table 3 show the results of adding either the three 

humidity variables (ANN-MOD2), U2 (ANN-MOD3) or Rs 

(ANN-MOD4) to ANN-MOD1. ANNMOD2 and ANN-

MOD3 performed better than ANN-MOD1. A slightly worse 

performance was obtained for ANN-MOD4. This result 

indicates that Rs had a slight effect on modelling the ETref, as 

the R² value increased by 6.65% only when Rs was added to 

ANN-MOD1.  

Table 3. Statistical performance of the optimized ANN models during training and testing. 
Model Inputs Training  Testing 

R2 

(%) 

OI 

(%) 

RMSE 

(mm/d) 

MAE 

(mm/d) 

 
 

R2 

(%) 

OI 

(%) 

RMSE 

(mm/d) 

MAE 

(mm/d) 

ANN-MOD1 Tx, Tn, Ta, hc 67.9 0.806 2.95 2.12  67.6 0.803 3.00 2.20 

ANN-MOD2 Tx, Tn, Ta, Rhx, Rhn, Rha, hc 80.2 0.874 2.32 1.59  80.4 0.875 2.33 1.61 

ANN-MOD3 Tx, Tn, Ta, u2, hc 87.1 0.914 1.87 1.35  87.1 0.914 1.89 1.33 

ANN-MOD4 Tx, Tn,Ta, Rs, hc 72.2 0.830 2.74 1.96  72.1 0.827 2.78 2.04 

ANN-MOD5 Tx, Tn, Ta, Rhx, Rhn, Rha, u2, hc 99.1 0.989 0.50 0.40  99.1 0.989 0.51 0.41 

ANN-MOD6 Tx, Tn, Ta, Rhx, Rhn, Rha, Rs, hc 82.6 0.888 2.17 1.45  82.3 0.885 2.22 1.53 

ANN-MOD7 Tx, Tn, Ta, u2, Rs, hc 88.6 0.923 1.75 1.23  88.8 0.924 1.76 1.19 

ANN-MOD8 Tx, Tn, Ta, Rhx, Rhn, Rha, u2, Rs, hc 99.8 0.996 0.21 0.15  99.8 0.997 0.19 0.14 
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The relative humidity variables seemed to be more effective 

than Rs in the modelling of the ETref, as the R² increased by 

18.93% when the humidity variables were added to ANN-

MOD1. Adding U2 to the input combination improved the 

estimation accuracy significantly, due to its advection effects 

on the ETref  (Kişi, 2007), as the R² increased by 28.84% when 

U2 was added to ANN-MOD1. 

Similarly, U2 and Rs were separately added to ANN-MOD2. 

The R² increased drastically from 80.4 to 99.1%, i.e., a 23.56 

% increase, when U2 was added to ANN-MOD2. However, 

the inclusion of Rs in ANN-MOD2 did not significantly 

increase the R² value (a 2.36% increase results). Furthermore, 

Rs increased the R² slightly by 2.36% when it was added to 

ANN-MOD3. This result indicates that Rs had an insignificant 

effect on ETref modelling. The ANN-MOD8 model 

 

 

 

 
Figure 6. Importance ratio analysis of the input variables in the ANN models. 
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outperformed all of the other models on all of the performance 

criteria.  

Spatial assessment of ANN models: The effectiveness of the 

ANN models can be demonstrated by estimating the ETref at 

other sites, validating the reliability and stability of these 

models. As mentioned previously, the validation process used 

three crop height values. Using hc=5-105 cm gave a maximum 

ETref  value of 40 mm/day. The ANN models’ R² values 

ranged from 66.6 to 99.8%, OI values from 79.2 to 99.7%, 

RMSE values from 0.21 to 3.19 mm/day and MAE values 

from 0.15 to 2.23 mm/day as shown in Table 4. Comparing 

the model performance criteria with hc=5-105 cm showed 

little difference between the training and validation processes. 

The ratio of variation in the R² between the training and 

validation processes for ANN-MOD1 (1.95%), ANN-MOD5 

(0.20%) and ANN-MOD8 (0.0%) indicated that these models 

have good network activity. In contrast, the ratio of variation 

in the R² increased slightly for ANN-MOD2 (3.48%), ANN-

MOD3 (3.82%) and ANN-MOD6 (2.93%). The ratio 

increased drastically for ANN-MOD4 (8.57%) and ANN-

MOD7 (6.61%). 

The ANN models were tested using hc = 50 cm to validate 

their feasibility on alfalfa and hc=12 cm to validate their 

feasibility on grass. The maximum ETref was 35 mm/day on 

alfalfa and 25 mm/day on grass. The ANN models on alfalfa 

had R² values ranging from 61.2 to 99.8%, RMSE values from 

0.29 to 2.87 mm/day, OI values from 76.1 to 99.3% and MAE 

values from 0.22 to 2.12 mm/day (Table 4). The ANN models 

on grass had R² values from 68.4 to 99.4%, RMSE values from 

0.38 to 1.84 mm/day, OI values from 76.2 to 98.2% and MAE 

values from 0.30 to 1.32 mm/day. 

The R² value decreased on alfalfa for ANN-MOD1 (11.76%), 

ANN-MOD2 (1.64%), ANN-MOD3 (2.77%), ANN-MOD4 

(17.81%), ANN-MOD6 (3.64%) and ANN-MOD7 (5.48%), 

indicating that these models performed better on grass than on 

alfalfa (Table 4). However, the R² value decreased on grass 

for ANN-MOD5 (2.84%) and ANN-MOD8 (0.40%), 

indicating that these models performed slightly better on 

alfalfa than on grass.   

ANN vs. PMFAO and PMASCE: In both cases grass and 

alfalfa, a comparison between the best models has been made 

which is ANN-MOD8. The 1:1 line in Figure 7 shows the 

ETref values predicted by the data driven models and the 

observed values (PMFAO and PMASCE), using the data set 

collected by six stations from 1980 to 2010 (not used in the 

training and testing process).  

 

 

 
Figure 7. Comparison of the alfalfa (ETr) and grass (ETo) 

ETref estimates by ANN-MOD8-12 and ANN-

MOD8-50, and the values from the PMG 

equation. 

 

The figure shows that ANN-MOD8 on basis of grass (ANN-

MOD8-12) had higher deviation compared to ANN-MOD8 

on basis of alfalfa (ANN-MOD8-50), implying that it caused 

Table 4. Statistical performance of the optimized ANN models during validation, using data collected from 1980 to 

2010 by six meteorological stations. 
Model Inputs hc5-105 hc50 hc12 

R2 (%) OI 

(%) 

RMSE 

(mm/d) 

MAE 

(mm/d) 

R2 

(%) 

OI 

(%) 

RMSE 

(mm/d) 

MAE 

(mm/d) 

R2 

(%) 

OI 

(%) 

RMSE 

(mm/d) 

MAE 

(mm/d) 

ANN-MOD1 Tx,Tn,Ta,hc 66.6 79.2 3.19 2.23 61.2 76.1 2.87 2.12 68.4 76.2 1.84 1.32 

ANN-MOD2 Tx,Tn,Ta,Rhx,Rhn,Rha,hc 83.1 87.5 2.41 1.61 79.1 85.5 2.17 1.50 80.4 81.9 1.58 1.16 

ANN-MOD3 Tx,Tn,Ta,u2,hc 83.9 89.2 2.22 1.59 82.8 87.4 2.01 1.50 85.1 89.3 1.17 0.88 

ANN-MOD4 Tx,Tn,Ta,Rs,hc 66.5 79.9 3.13 2.19 62.3 77.1 2.81 2.08 73.4 81.0 1.63 1.14 

ANN-MOD5 Tx,Tn,Ta,Rhx,Rhn,Rha,u2,hc 98.9 98.8 0.56 0.44 98.4 98.3 0.59 0.47 95.6 94.8 0.77 0.60 

ANN-MOD6 Tx,Tn,Ta,Rhx,Rhn,Rha,Rs,hc 85.1 88.8 2.27 1.45 82.2 87.4 2.01 1.32 85.2 85.2 1.41 1.03 

ANN-MOD7 Tx,Tn,Ta,u2,Rs,hc 83.1 88.3 2.32 1.63 82.1 86.3 2.11 1.54 86.6 90.8 1.08 0.78 

ANN-MOD8 Tx,Tn,Ta,Rhx,Rhn,Rha,u2,Rs,hc 99.8 99.7 0.21 0.15 99.8 99.3 0.29 0.22 99.4 98.2 0.38 0.30 
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greater underestimation. Table 5 shows that ANN-MOD8-50 

performed better than ANN-MOD8-12 with lower error 

measure values and higher correlation coefficients. The R² 

and OI for ANN-MOD8-50 had also 0.4% and 0.9% more 

accurate than that from the ANN-MOD8-12. The ANN-

MOD8-50 had a 2.4% and 2.7% decrease in the RMSE and 

MAE under ANN-MOD8-12, receptivity.  

 

Conclusions: Eight ANN models were developed to estimate 

the daily ETref under arid and hyper arid conditions. The 

climatic data were collected from 19 meteorological stations 

covering the period of 1980 to 2010. While data obtained 

from the 13 metrological stations were used to develop the 

ANN models, the data from the other six stations were used 

for spatial validation of the eight developed ANN models. 

The best performed ANN model, i.e. ANN-MOD8, was that 

included all climatic parameters in comparison with PM 

model. On the other hand, the ANN model with the 

temperature as the only input climatic parameter performed 

the least. Compared to PM model, the ANN-MOD8 with its 

simple algebraic equation can perfectly predict ETref for a 

wide range of hc varying from 5 cm to 105 cm. An interesting 

result of the current study revealed that the ANN-MOD5, 

ANN model with no Rs, can compete with ANN-MOD8 

considered the most accurate model to predict the daily ETref 

under the hyper arid environment. This inserting outcome 

leads to a possible conclusion that the climatic parameter U2 

is more important than Rs under the circumstances of this 

study. Furthermore, it is observed that ANN model consisting 

of all the input parameters with hc=50 cm was found to 

perform better than with hc=12 cm. Therefore, the ANN 

technique can be very helpful when applying in irrigation 

scheduling and management of agriculture water resources. 
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