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Responses of the wheat commercial cultivar ‘Faisalabad-2008’ to various concentrations of 2,4-D and the effect of water
stress on callus induction and regeneration efficiency were evaluated. For the assessment of responses to water stress,
growing morphogenic calli of 7, 14 and 21 days after culture were exposed to different concentrations of water stress. For
induction of stress wheat calli were exposed to different concentrations of PEG 6000 (0, 4, 8, 12 and 16% (w/v) and mannitol
(0, 0.5, 1, 1.5 and 2% (w/v). The effect of these stresses on shoot and root length, relative water content and electrolyte
leakage were also determined. The results indicated that maximum regeneration was observed at 5Smg/L of 2,4-D, increase or
decrease in 2,4-D concentration resulted a decrease in regeneration efficiency. Maximum regeneration was observed from 21
days old calli. Significant decreases in the number of shoots regenerated per calli; shoot and root length and relative water
contents occurred under both stresses with the highest reduction under mannitol-induced osmotic stress. Electrolyte leakage
increased at higher PEG and mannitol concentrations. Furthermore, both PEG and mannitol induced drought stress
efficiently but mannitol was more severe. The results here will be helpful for improvement of the wheat crop tolerance

against water stress.
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INTRODUCTION

Wheat (Triticum aestivum L.) is the leading cereal crop and
covers more of the earth than any other crop. It also
contributes to vegetable protein and source of calories for
more than 2.5 billion people of the developing world (FAO-
2012). To feed the 9.1 billion populations projected for the
world in 2050 agricultural production needs to be doubled
(Tillmen et al., 2011; FAO, 2012). Wheat like other cereals
is unable to meet the goal as 24-39% of the cropland areas
reported no yield improvement (Ray et al., 2012, 2013;
Wang et al., 2013). The yield ceilings are mostly attributed
to environmental stresses, which cause adverse physiological
changes in plants (Shao ef al., 2008). Among a number of
abiotic factors drought is the most common environmental
constraint that prevent crops attaining their maximum yield
potentials (Edward and Wright, 2008; Johari et al, 2011).
This stress has threatened the world food supply (Nevo and
Chen, 2010; Ahmad et al., 2014).

In crop plants water stress is induced either due to its excess
or shortage (Harb et al., 2010). The most common water
stress encountered by plants is drought. Drought imparts a
negative effect on plants growth and development. These
effects become chronic due to unpredictable weather
conditions in the regions characterized by low annual
rainfall. Drought has remained a challenging issue for plant
scientists and breeders. It is expected that about 65% of the

world population will face water shortage problems in the
year 2025. Thus the situation demands for better
understanding of plant mechanisms to thrive with these
scarcer water resources (Rosegrant and Cline, 2003).
Drought induced osmotic stress, triggers a wide range of
perturbations ranging from growth and development
disruption to the modification of ion transport and uptake
systems (Karimi et al, 2011). In vitro culture technique
serves as a useful tool to study the biochemical and
physiological response of undifferentiated callus to drought
stress at the cellular level (Ghasempour et al, 2007).
Moreover, the distinction between different solutes to induce
stress in culture media, and the relationship between
surviving abilities of cultured cell lines and their growth
properties can be served by in vitro culture techniques.
Undifferentiated cells and callus cultures eliminate
complications associated with genetic and morphological
variability inherent to different tissues in whole plants
(Parida and Das, 2005; Shao et al., 2007; Ghasempour et al.,
2007). Understanding of plants ability to tolerate stresses
opens a way for crops manipulations to improve tolerance,
adaptation or resistance to stresses (Lutts ef al., 2004; Parida
and Das, 2005; Movahhedy-Dehnavy et al., 2009).

Previous studies on wheat tissue culture have shown that
callus induction frequency and regeneration of in vitro plants
is immensely influenced by the genotype (Filippov et al.,
2006), type of explants used for regeneration (Patel et al.,
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2004; Tamas et al., 2004; Shariatpanahi et al., 2006; Liu et
al., 2008), composition of media (Tamas et al., 2004) and
hormones (Friml, 2003). So, needed are highly efficient and
reproducible regeneration protocols for commercial varieties
having essential characters (Kumlehn and Hensel, 2009).
Auxin may act as both morphogen and hormone (Friml,
2003). Auxin signals are transduced resulting into a variety
of responses including changes in growth directions and
differentiation of roots and shoots (Leyser, 2001). Petrasek
et al. (2002) explained that external source of auxin is
required for in vitro culture of most of the cell types and
internal to external auxin ratio is also vital for regulation of
growth cycle. Type and concentration of auxin is crucial
(Mendoza and Kaeppler, 2003) and greatly influences the
morphology of the culture.

In cereals synthetic auxin 2,4-D is a kind of essential
component of culture media used widely for induction and
maintenance of callus (Prado et al., 2000) or somatic
embryogenesis if provided in large concentration. Sosa et al.
(2005) called 2,4-D the best hormone used for plant growth.
Polyethylene glycol and mannitol have been used to
stimulate osmotic stress and these neutral polymers are
being widely used to impose water stress in plants (Zgallai et
al., 2005). The non-toxic PEG solution is used because of
high molecular weight, which cannot enter into cell through
plant cell wall (Kaydan et al., 2008) as compared to
mannitol. Mannitol has a low molecular weight sufficient to
enter into cells and cause toxicity. The objective of the
present study was to determine the optimum concentration
of 2,4-D for friable callus induction and to compare the
effect of PEG and Mannitol on regeneration.

MATERIALS AND METHODS

Explant preparation and callus induction: Mature basic
seeds of wheat variety ‘Faisalabad-2008 were collected
from Ayub Agricultural Research Institute, Faisalabad.
Matured seeds were surface sterilized with 70% (v/v)
ethanol for 2 min, followed by 5% (v/v) sodium
hypochlorite for 10 min and thoroughly rinsed for five to six
times with sterile distilled water. Disinfected seeds were
imbibed in autoclaved water for 24 h. Mature embryos were
excised from the imbibed seeds and placed on MS
(Murashige and Skoog, 1962) basal medium plates (pH 5.7)
supplemented with 30 g/L sucrose, 8 g/L. agar and variable
concentration of 2,4-D(1, 2, 3, 4, 5 and 6mg/L). Variable
concentrations of 2,4-D were used in order to optimize the
most suitable concentration for callogenesis and
regeneration. Plates were incubated in the dark under
controlled temperature 25+2°C. Plates were inspected daily
for any contaminations. Calli were transferred to fresh media
plates after every two weeks interval.

Callus induction frequency, proliferation efficiency and
embryogenic efficiency were estimated using following
equations.

Callus induction frequency (%) = (No. of embryos produced
calli) / (No. of embryos cultured) x 100

Proliferation efficiency (%) = (No. of proliferating calli) /
(No. of incubated embryos) x 100

Embryogenesis efficiency (%) = (No. of calli forming shoots)
/ (Total number of calli) x 100

In vitro drought stress: Healthy, friable and embryogenic
calli of 7, 14 and 21 days were transferred to regeneration
media containing MS basal media supplemented with kinetin
(1.5mg/L) and incubated at 16/8 h day and night length,
respectively. One week after incubation on regeneration
media calli were divided into two groups as follows.

Group I= Calli subjected to drought stress using PEG 6000
(0,4, 8, 12 and 16%).

Group II= Calli subjected to drought stress using mannitol (0,
0.5, 1, 1.5 and 2%).

These levels were evaluated in different treatment
combinations (Table 1). Six weeks after drought stress,
regenerated plantlets were placed on MS medium
supplemented with 1.5 mg/L TAA (Indole Acetic Acid) for
root regeneration. Data were recorded for regeneration
efficiency.

Regeneration efficiency (%) = (No. of plantlets) / (Total
number of calli) x 100

Shoot and root length (cm): Shoot length was measured
with the help of meter stick from the point where root begins
to the upper tips of the leaves. Root length was measured
from the point where shoot begins to the total length of root
and data was averaged.

Electrolyte leakage: This technique is based on the increase
of cellular membrane permeability and concomitantly
greater electrolyte diffusion out of cells when leaf tissue is
injured by a stress situation. After harvest, the uppermost
fully expanded leaves of 10 plants per treatment were
immediately cut into discs of 0.8 cm diameter. The discs
were washed briefly three times in deionized water to
remove solutes released during cutting of the discs. Five
discs of each leaf were then placed in a vial filled with 10 ml
de-ionized water and maintained at 20°C for 4h. Electrolyte
leakage was determined by measuring the electrical
conductivity of the vial solution, using a conductivity meter
(High performance laboratory multi-meter CP-500L, BMS,
Medifield, USA) and data were expressed as uS cm'.

Leaf relative water content (RWC): RWC were measured
for five discs (0.8 cm diameter) of each leaf. The leaf discs
were obtained similarly as used for electrolyte leakage.
Relative water content (RWC) was estimated using the
formula of Schonfeld et al. (1988).

RWC= (FW-DW)/ (TW-DW) x100

Where FW, TW and DW represents weight of freshly
collected material, weight after rehydration for 20-24 h at
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4°C in the dark and weight after drying at 80°C for 48h,
respectively.

Table 1. Different treatment combinations for in vitro

drought stress.

Treat. Treatment combinations

T1 Shoot regeneration medium (MS1)+ 0%PEG and 0.0%
mannitol

T2 Shoot regeneration medium (MS1)+ 0%PEG and 0.5%
mannitol

T3 Shoot regeneration medium (MS1)+ 0%PEG and 1.0%
mannitol

T4 Shoot regeneration medium (MS1)+ 0%PEG and 1.5%
mannitol

TS Shoot regeneration medium (MS1)+ 0%PEG and 2.0%
mannitol

T6 Shoot regeneration medium (MS1)+ 4%PEG and 0.0%
mannitol

T7 Shoot regeneration medium (MS1)+ 4%PEG and 0.5%
mannitol

T8 Shoot regeneration medium (MS1)+ 4%PEG and 1.0%
mannitol

T9 Shoot regeneration medium (MS1)+ 4%PEG and 1.5%
mannitol

T10 Shoot regeneration medium (MS1)+ 4%PEG and 2.0%
mannitol

T11 Shoot regeneration medium (MS1)+ 8%PEG and 0.0%
mannitol

T12 Shoot regeneration medium (MS1)+ 8%PEG and 0.5%
mannitol

T13 Shoot regeneration medium (MS1)+ 8%PEG and 1.0%
mannitol

T14 Shoot regeneration medium (MS1)+ 8%PEG and 1.5%
mannitol

T15 Shoot regeneration medium (MS1)+ 8%PEG and 2.0%
mannitol

T16 Shoot regeneration medium (MS1)+ 12%PEG and 0.0%
mannitol

T17 Shoot regeneration medium (MS1)+ 12%PEG and 0.5%
mannitol

T18 Shoot regeneration medium (MS1)+ 12%PEG and 1.0%
mannitol

T19 Shoot regeneration medium (MS1)+ 12%PEG and 1.5%
mannitol

T20 Shoot regeneration medium (MS1)+ 12%PEG and 2.0%
mannitol

T21 Shoot regeneration medium (MS1)+ 16%PEG and 0.0%
mannitol

T22 Shoot regeneration medium (MS1)+ 16%PEG and 0.5%
mannitol

T23 Shoot regeneration medium (MS1)+ 16%PEG and 1.0%
mannitol

T24 Shoot regeneration medium (MS1)+ 16%PEG and 1.5%
mannitol

T25 Shoot regeneration medium (MS1)+ 16%PEG and 2.0%
mannitol

Experimental design and statistical analysis: Drought
experiments were arranged in a completely randomized

design with factorial arrangements, 10 replicates for each
treatment. Data were statistically analyzed using ANOVA
using software Statistix 8.1. Experiments were performed in
triplicate.

RESULTS

Optimization of protocol for regeneration: During
allogenesis calli induced at different concentrations of 2,4-D
were subjected to regeneration (Table 2). Regeneration
efficiency (no. of shoots/ calli) was observed in calli induced
at lower concentration 1mg/L (1.5 shoots per explant) of 2,4-
D and gradually increased at higher concentration 5Smg/L(6
shoots per explant). A decrease in regeneration efficiency
was observed for calli induced at 6mg/L of 2,4-D (Fig. 1).
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Figure 1. Effect of 2,4-D on regeneration response
(average no of shoots/callus). Maximum number
of shoots were produced from calli produced on
callus induction media containing Smg/L 2,4-D. T
bars show the standard error of the means.

Age of calli for successful regeneration: Reliable plant
regeneration from sufficient number of calli enhances the
efficiency and use of tissue culture techniques in plant
molecular biology. The age of callus is a significant factor
that affects differentiation of cells during regeneration.
During the present study calli of 7, 14 and 21 days were used
and varying levels of regeneration was observed. Seven days
old calli showed maximum regeneration. Calli older than 14
days became non-embryogenic (yellowish and wet in
appearance (Fig. 2) and kept on proliferating without any
regeneration when cultured on regeneration medium.
Maximum callus weight (1.46+0.03) was observed in three
weeks old calli at Smg/L of 2,4-D (Table 2). Statistical
analysis revealed a significant difference in regeneration for
calli of different ages. The maximum regeneration (8
shoots/callus) was observed from 7 weeks old calli initially
incubated on medium containing 5Smg/L 2,4-D whereas
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Table 2. Effect of different concentrations of 2,4-D on callus induction.

2,4-D concentration

Average fresh weight of calli (g)

Callus induction

(mg/L) 7 days 14 days 21 days frequency
0 Control Control Control 0%
1 0.15+0.02 0.33+0.02 0.30+0.03 71%
2 0.41+0.03 0.69+0.03 0.79+0.03 83%
3 0.94+0.02 1.04+0.05 1.24+0.03 85%
4 1.02+0.03 1.19+0.02 1.3610.04 89%
5 1.1540.03 1.38+0.03 1.46+0.03 96%
6 0.52+0.05 0.64+0.03 0.714+0.05 76%

Figure 2. Non-embryogenic and embryogenic callus.

1A: Non-embryogenic callus (at normal resolution) induced from immature embryos, 1B: magnified image, 2A:
Embryogenic callus of wheat variety Faisalabad-2008, 2B: magnified image.

minimum (3 shoots/callus) was obtained from 21 days old
calli (Fig. 3).

Seven days old calli were highly embryogenic in nature and
produced maximum shoots per calli. With increase in calli
age number of shoots decreased and minimum number of
shoots regenerated from 21 days old calli. T bars show the
standard errors.

Effect of drought on regeneration: Use of polyethylene
glycol and mannitol in the media significantly decreased
regeneration. No regeneration was observed at the highest
concentration of polyethylene glycol or mannitol. On the
basis of average regeneration response mannitol highly

reduced the regeneration rate compared to the PEG6000
(Table 3).

Shoot and root length: Maximum shoot length was recorded
in control treatment T1 (8cm) as compared to other
treatments while minimum shoot length (2.5cm) was
observed at T14 treatment combination and no shoot
regeneration was evident at highest level of mannitol (2%)
and PEG (16%).

Similarly, root regeneration was also affected by drought
stress. Highest root length was observed in T1 treatment
(10cm) while minimum at T12 (3cm). At higher treatment
levels (T14 to onward) no root regeneration was observed.
Both mannitol and PEG induced stress decreased shoot and
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root length. Mannitol induced osmotic stress seemed to be
more harmful as compared to PEG.

Table 3. Effect of drought stress on root/shoot length,

electrolyte leakage and leaf relative water
contents.
Treat. Shoot Root  Electrolyte Leaf relative
length length leakage (uS water
(cm) (cm) cm™) contents (%)
T1 8.0 10 30 95
T2 7.0 8 75 94
T3 6.8 6.5 150 90
T4 6.5 5.5 200 88.5
T5 0 0 0 0
T6 7.5 8 40 93
T7 6.8 6.5 100 90
T8 6.2 4 180 88
T9 5.8 3.5 205 86
T10 0 0 0 0
T11 6.2 6 70 93
T12 5.0 3 135 88
T13 4.0 0 190 85
T14 2.5 0 220 81
T15 0 0 0 0
T16 6.0 0 80 90
T17 4.8 0 150 86
T18 3.0 0 215 83
T19 0 0 0 0
T20 0 0 0 0
T21 3.5 0 85 82
T22 0 0 0 0
T23 0 0 0 0
T24 0 0 0 0
T25 0 0 0 0
M 7days W14 days W21 days
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Figure 3. Effect of age of calli on regeneration response.

Electrolyte leakage: The clectrolyte leakage was determined
from only those treatments where stress allowed shoot
regeneration (T1 to T18). No shoot regeneration was evident

at TS, T10, T15, T19, T20, T22, T23, T24 and T25 treatment
combinations. Solute leakage of leaves under different stress
treatment levels differed between regenerated plants ranging
from 30 uS cm! in control plants to 220 uS cm™! at T14
treatment level due to combined effect of PEG and mannitol.
The highest level of PEG (T21) proved to be less drastic (85
uS cm™') as compared to mannitol (T5 , no regeneration was
observed).

Leaf relative water content (RWC): Decrease in leaf relative
water contents was observed under both mannitol and PEG
induced stress. The highest reduction was noticed under T14
treatment combination. Leaf relative water contents were
evaluated in plants with shoot regeneration. Maximum RWC
(95%) were measured in leaves obtained from control plants
and minimum value (81%) was recorded in T14 treatment
combination. At highest level of PEG (16%) RWC were
reported to be 82% as compared to 81% at 1.5% of mannitol
concentration.

DISCUSSION

Optimization of regeneration protocol for regeneration:
Wheat transformation is still a bottleneck in the application
of genetic manipulation to this important crop and
improvement of efficiency is a priority. Poor tissue culture
performance due to wheat recalcitrant behavior in vitro is
one of the focal reason limiting transformations. As shown
by Kumlehn et al. (2009) in vitro wheat performance is
attributed to its genetics. In view of genotypic dependent
variation to regeneration in wheat, development of proficient
and highly repeatable plant regeneration methodology for
each genotype is a pre-requisite (Neelakandan and Wang,
2012) for the successful application of available genetic
transformation methods. Therefore, a regeneration protocol
was independently optimized for commercial wheat variety
Faisalabad-2008 because this variety is among the best as
compared to other cultivars on the basis of yield related
parameters (Anwar et al., 2005; Sultana et al., 2013) and
commercially grown on large areas of the Punjab Province.
As genotypic effects are unavoidable (Al-Khayri et al,
1996), any strategy to improve plant regeneration must
involve the use of apposite explants for initiation of callus
cultures and management of culture conditions. In monocots,
especially wheat, selection of source material is the major
obstacle for Agrobacterium-mediated transformation.
Regeneration is possible only by using limited number of
regenerable and actively dividing cells. In the totipotent
cells/ tissues, induction of somatic embryogenesis and
regeneration leads to development of transgenic plants.

In wheat, mature embryos derive somatic embryos were
amenable to regeneration due to their efficient response to in
vitro induced stimuli (Chen et al., 2003; Hu et al., 2003;
Shewry and Jones, 2005; Jones et al., 2007; Xia et al., 2012).
Although other explants have been used for the same
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purpose such as shoot tips (Sharma et al, 2005),
inflorescences (Ozias-Akins et al., 1982; Caswell et al.,
2000; He and Lazzeri, 2001), anthers (Ou et al., 1973),
microspores (Liu et al, 2002), immature and mature
embryos (Ozias-Akins et al, 1982; Yin et al., 2011), from
which some transgenic wheat plants have been generated
successfully (Cheng et al., 1997, Wang and Altman, 2009;
Li et al., 2012). These tissues varied in regeneration ability
in vitro; among them the mature embryos were proved to be
the most responsive tissues and their availability throughout
the year made them more reliable source for in vitro
manipulation. Elhiti and Stasolla (2011) and Tahir et al.
(2011) reported that in recent years, most preferred choice of
explant for angiosperm and conifer have been mature
embryos.

In this study, we illustrated the establishment of regenerable
cell cultures in the commercially valuable wheat crop,
mature embryos were subjected to exogenously applied
auxin 2,4-D, to initiate and maintain undifferentiated growth
in plant cell cultures and similar findings have already been
reported by Feher (2006). Somatic embryos were formed on
nutrient medium with different concentrations of 2,4-D
(Delporte et al., 2001). Previous findings have reported that
2,4-D induce the development of embryonic cells by hyper
methylation of nuclear DNA (Xiao ef al., 2006; Legrand et
al., 2007).

In the present study callus mass proliferated with increase in
concentration of 2,4-D up to 5 mg/L but with further
increase in its concentration negative growth trend was
observed. Our findings are in line with Afzal et al. (2010)
they reported 76.04% callus induction frequency at Smg/L of
2, 4-D. Further increase or decrease in its concentration
resulted in lower callus induction frequency. Rashid et al.
(2009) reported that an increase in 2,4-D concentration from
4mg/L to 5mg/L increased calli mass of wheat varieties
Inqlab-91, Chakwal-50 and Manthar. At higher
concentration of 2,4-D calli mass increased but ratio of non-
embryogenic calli was high compared to embryogenic calli.
Munazir ef al. (2010) reported maximum callus proliferation
in Sehar and GA-02 at 2 and 4mg/L 2,4-D using mature
seeds as explants. Haliloglu (2006) reported that MS media
supplemented with 2mg/L  2,4-D  produced 96%
embryogenic calli in Bobwhite. These results do not match
with our findings probably due to difference in genotypes
and suggest that genotypic factor operate in response to
particular concentrations of growth regulators.

As far as effect of 2,4-D initially used for callus induction is
concerned, it has a significant effect on regeneration
efficiency. Mendoza and Kaeppler (2003) reported that
concentration and type of auxin used for callus induction
also effects regeneration. These results are in agreement with
our findings that increase in 2,4-D concentration during
callogenesis decreased regeneration efficiency. Nasircilar et
al. (2006) reported that T. aestivum cultivar, Yakar and T.

durum, Kiziltan gave the highest regeneration response on
MS media containing 2mg/L 2,4-D using mature embryos as
explant.

Age of calli also depends on the amount of 2,4-D (used for
callus induction) for regeneration. Many studies have
demonstrated that the use of 2,4-D is critical for induction of
somatic embryogenesis (Choi ef al.,2000; Wang et al,, 2004).
However, in some species and genotypes, continuous long-
term auxin treatment can inhibit somatic embryogenesis and
organogenesis completely. The response of explants cultured
on media containing 2,4-D depends not only on the
concentration of the phytohormone but also, and to a great
extent, on the duration of exposure to growth regulators. The
meristematic sites probably could develop in roots or shoots
only when transferred to regeneration medium. Continuous
long term auxin treatment inhibited the morphogenic
response of explants, a phenomenon which should be
considered when experiments are planned.

The present study was also conducted to investigate the
effect of drought on regeneration of plantlets. Drought or
water deficit impose many agronomic and physiological
effects on plants. This abiotic factor severely limits plant
growth and development. Wheat yield is severely limited by
drought (Blanco et al., 2004) resulting a decrease in shoot
and root length (Wardlaw and Willenbrink, 2000). Results of
direct exposure to PEG and mannitol revealed that
increasing water stress caused a sharp reduction in shoot and
root length and they proved to be a good indicator of plant
growth.

There are a number of physiological indices for drought
tolerance in wheat. Leaf relative water contents (RWC) have
been used by many researchers (Chandrasekar et al., 2000;
Rampino et al., 2006) as an efficient parameter for screening
drought tolerant wheat genotypes. Control treatment showed
highest RWC as compared to other treatment combinations.
RWC reflects plant metabolic activity and water status as
reported by Nayyar and Gupta, (2006). Siddique et al. (2000)
reported that water deficit conditions can be tolerated by
wheat genotypes with higher RWC. Thompson, (1988)
reported that drought also effect cell membrane integrity in
the subject plants and estimated through electrolyte leakage
from membrane. Membrane damage decrease RWC and this
might accelerate senescence. Hadi et al. (2004) reported that
high water content was noted in progressive mild stress than
severe stress indicating that plants have the ability to sustain
their water content under mild stress, whereas this ability is
lost under severe stress.

Conclusion: In the present study effect of concentration of
2,4-D and water stress on callus induction and regeneration
efficiency was investigated for wheat variety Faisalabad-
2008. Our results indicate that Smg/L of 2,4-D and 21 days
old calli is the best combination for the maximum
regeneration. Mannitol and PEG were used to impose
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drought stress. PEG and mannitol induced drought stress
efficiently but mannitol were more severe. These findings
will be helpful to improve tolerance of wheat against water
stress.
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