
Pak. J. Agri. Sci., Vol. 46(2), 2009

158

ENHANCEMENT OF MULTIPROCESSING ENVIRONMENT FOR THE
E POULTRY SYSTEM

Ahsan Raza Sattar1*, Muhammad Younus Javed2, Tasleem Mustafa1 and Sugra Bibi1

1Departmet of Computer Science, University of Agriculture, Faisalabad
2Department of Computer Engineering, College of E&ME, NUST, Peshawar Road, Rawalpindi

*Corresponding author’s e-mail: uaf_raza@hotmail.com

The complete precision poultry system works over the number of multiple logical processes used inside the
processors. The efficiency and accuracy can be enhanced by simply optimization of these processes used in
processors. This high speed computing requires multitasking and parallel processing to increase the throughput
of the system and optimizes use of system resources. In the multitasking environment, when a great number of
processes execute in parallel, there may be some data structures like semaphores which are common or shared
between different numbers of processes. Due to this sharing, different critical sections are produced. The
research work presented in this paper resolves the critical section problem of multiple processes using
semaphore implementation.
The development of a simulator for the resolution of critical section problem is presented. It is a comprehensive
tool which runs a simulation in real time and generates useful data for evaluation. A user friendly and mouse-
driven GUI has also been integrated. The developed system has been put through extensive experiments.
Results are taken using different sets of processes for different number of common variables on a number of
processes. The evaluation results are very promising and could be used to further enhance performance of multi-
user and multitasking operating systems under different processors to deal with common semaphores.
Keywords: Multiprocessing, E poultry, precision, optimization, simulator

INTRODUCTION

One of the major objectives of multiprogramming and
parallel processing is to maximize the resource
utilization which is achieved by sharing system
resources among multiple users/processes
(Silberschatz, 2002). Shared memory solves the inter-
processes communication problem. Concurrent access
to shared data may result in data inconsistency.
Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes
(Ferleson and Rodolph, 1990). The overlapping portion
of each process where the shared variables are being
accessed is known as Critical Section (CS). A solution
to the critical section problem must satisfy the following
three requirements (Silberschatz, 2002): mutual
exclusion, progress and bounded waiting.
This work focuses on the development of a simulator
for resolution of CS problem for multiple common
semaphores using multiple processes. This simulator
can be used for measuring the performance of the
system with different number of processors in terms of
throughput of the system. It simulates concurrent
execution of various processes on different data sets. It
demonstrates managing of a number of queues and
scheduling of processes for different processors. It not
only successfully resolves CS problem but also
provides in-depth understanding of parallel processing
that avoids race condition and handles multiple
common semaphores in the multiprocessor
environment. Performance in a simulated scenario
where sender is constrained by the multiprocessor that

if two paths are used for processing, the lower quality
(i.e., higher loss rate) path degrades overall throughput
of an system (Lyengar, 2004).

Simulator Design
The system is designed to mimic the dynamic behavior
of the system over time. It runs self driven simulation
and uses a synthetic workload that is artificially
generated to resemble the expected conditions in the
modeled system. The data of processes (i.e process
name, process priority number, processes burst time,
processes arrival time) is taken as input from the user.
It simulates the creation of processes, their assembling
in different waiting queues, concurrent execution and
their termination. A user friendly simulator generates
useful data that represents the behavior of the system
to handle multiple semaphores for different tasks of the
user. The data is recorded in a data file for analysis
and archival purposes. The Graphical User Interface
(GUI) of the simulator provides the user an opportunity
to either get a pictorial view of concurrent execution of
processes related to different common variables or
present a console-based view of the running
processes. The GUI displays the real time view of the
waiting queues related to different common variables
and number of tasks used for the simulation. An entry
of the number of processes along with their arrival
time, priority and burst time is made from the keyboard
or from the file. These features make the system
attractive for obtaining experimental results and to
demonstrate behavior of the system as the processes
increase or decrease.

Sattar, Javed, Mustafa and Bibi

 159

Software Development
The Critical Section Solution Simulator (CSSS) has
been developed with a view to develop a software tool
which can be used to study concurrent execution and
resolution of CS problem for multiple common
semaphores using a number of processors. CSSS is,
in fact, a comprehensive software package which runs
a simulation in real time by creating an interactive
environment due to powerful facility of its GUI. The
generated data and results provide complete
understanding of its design and various parameters
related to concurrency.
Software design strategy is function-oriented and
modular in nature. The CSSS is built to run on a PC
under WINDOWS environment using Java language.
First of all, user selects the file to get the stored data
which he/she wants to use for the simulation. In the
initialization portion of the system, user gives the
values of different processes such as processes name,
process burst time (time to run that process), process
priority token, process common file to share etc.
Initialization of processes takes place against every
common semaphore. At the end user can press the
start button to make this simulator in working position.

Simulator and Gui Modules
A number of simulation modules have been utilized in
the design and development of CSSS. The first module
uses one waiting queue and one semaphore.
Two queues along with semaphores are used in the
second module. Third module is more complex which
uses three waiting queues along with their
semaphores. The graphical user interface for the
multiprocessor Simulator application consists of five
major components. These components are the
reader/writer queue information, set control panel
(start, save and load options), component panel, title
bar and status panel.
The title bar consists of a monogram and the caption of
the multiprocess simulator. The control panel, just
present in the bottom left corner of the screen, is a
panel of save, load and start buttons which can be
depressed to select functions. All control panel buttons
duplicate functionality that is available in the menu bar,
but provides more convenient access to these
functions. The result panel is the output information
area for the multiprocess simulator, in the bottom right
of the screen, just adjacent to the control panel. It is
made up of a text boxes and label boxes, where
multiprocess simulator components can be placed on
the middle and upper portion. The component panel is
just below the title bar. It provides an easy interface for
selecting options and for data entering for multiprocess
simulator components. Finally, the status panel is a
message board at the bottom of the window where the
multiprocess simulator application relays important
information to the user regarding errors, hints for

operation, and the basic status of the multiprocess
simulator methods. To overcome the need for busy
waiting, the definition of the wait and signal semaphore
operations has been modified. When a process
executes the wait operation and finds that the
semaphore value is not positive, it must wait. However,
rather than busy waiting, the process can block itself.
The block operation places a process into a waiting
queue associated with the semaphore and the state of
the process is switched to the waiting state. Then
control is transferred to the CPU scheduler which
selects another process to execute.
A process that is blocked, waiting on a semaphore,
should be restarted when some other process
executes a signal operation. The process is restarted
by a wakeup operation which changes the process
from the waiting state to the ready state. The process
is then placed in the ready queue (The CPU may or
may not be switched from the running process to the
newly ready process depending on the CPU-
scheduling algorithm).

RESULTS AND DISCUSSION

The developed system runs a simulation in the real
time and generates useful results to see effectiveness
and efficiency of the system. The following processes
have been used to obtain results through simulation,
as shown in Table 1. And the detailed results are
shown in Table 2.
Table 1. Processes along with their initial values

used for simulation
1 Rdr1 5000 1000
2 Rdr2 5000 2000
3 Rdr3 5000 1000
4 Rdr4 5000 2000
5 Rdr5 5000 1000
6 Rdr6 5000 1000
7 Rdr1 5000 2000
8 Rdr1 5000 1000
9 Rdr1 5000 2000
10 Rdr1 5000 1000
11 Rdr1 5000 1000
12 Rdr1 5000 2000
13 Wtr1 5000 1000
14 Wtr2 5000 2000
15 Wtr3 5000 1000
16 Wtr4 5000 1000
17 Wtr5 5000 2000
18 Wtr6 5000 1000
19 Wtr7 5000 2000
20 Wtr8 5000 1000
21 Wtr9 5000 1000
22 Wtr10 5000 2000
23 Wtr11 5000 1000
24 Wtr12 5000 2000

Multiprocessing environment

 160

Single queue along with single semaphore

Throughput of the system is less because only single
queue is used for the simulation of mutual exclusion. In
this case, throughput of the system totally depends
upon the nature and burst time of the processes.
Average Waiting Time (AWT) of the processes
increases, as shown in Figure 1.

Two queues along with their semaphores

When two queues are used, half of the processes will
go to one queue and the remaining half of the
processes will use 2nd queue for the waiting purpose
and are then loaded into the ready queues respectively.
Overall throughput of the system is 119.43 processes
per minute when writers have priority over reader
processes and 129.64 processes per minute when
readers have priority over writer processes. All these
processes execute as per their burst timings resulting
different Average Waiting Times (AWTs) and
throughputs. The AWT of the processes is low and less
starvation of low priority processes has been observed.
Throughput increases as shown in Figure 2. The burst
time and throughput are shown in Table 2.

Three queues along with their semaphores
When three queues are used, one third processes will
be processed by each queue and then the overall
throughput of the system is 158.36 processes per
minute when writers have priority over reader
processes. It is 174.92 processes per minute when
readers have priority over writer process. These
processes execute as per their burst timing, resulting
different AWTs and throughputs. The AWT of the
processes is low and it provides less starvation of low
priority processes. Table 2 shows that the throughput
increases from 119.43 to 158.38 processes per minute
when writers have priority. Similarly, it reaches to
174.92 from 129.64 processes per minute when
readers have priority over writer processes. Detailed
results are shown in Table 2 and Figure 3 provides
throughput with three queues.

Fig. 3. Throughput with three queues

CONCLUSIONS

Parallel processing is the technique which can be used
for the high speed computing in a multi-user
environment. Parallel processing results in increasing
the throughput of the system and optimizes use of
system resources. In the multitasking environment,
when a large number of processors execute in parallel,
there may be some resources which are common or
shared between different numbers of processes. Due
to this sharing different critical sections are produced.
These critical sessions provide inconsistency in a
multiuser and multitasking environment. Critical
session problem can be solved using different
algorithms. CSSS guards against the race condition.
The developed system guarantees synchronization of
processes to resolve CS problems of using
semaphores.

Fig. 1. Throughput with one queue

Fig. 2. Throughput with two queues

Sattar, Javed, Mustafa and Bibi

 161

The CSSS has been developed in such a way that
when one process is executing in its critical section, it
does not allow any other process to execute in its
critical section. For this purpose, separate queues are
created and maintained by the system and it blocks
other processes in the appropriate queues when one
or more than one process are executing in their critical
sections. The major feature of the CSSS is to provide
mutual exclusion for process synchronization and to
resolve CS problem and finally this enhancement is
implemented in a small model and then handed over to
Poultry Department, University of Agriculture for further
experiments and results.

REFERENCES

Caro, A.L., J.R. Lyengar, P.D. Amer, G.J. Heinz and R.

Stewart. 2002. Using SCTP Multihoming for Fault
Tolerance and Load Balancing, ACM SIGCOMM
Computer Communication Review 32(3).

Ferleson, D. and L. Rodolph. 1990. Mapping and
Scheduling in a shered Parallel Environment Using
Distributed Hierarchical Control. Proceedings of
the International Conference on Parallel
Processing.

Lyengar, J.R., K.C. Shah, P.D. Amer and R. Stewart.
2004. Concurrent Multipath Transfer Using SCTP
Multihoming in SPECTS 2004. Protocol Engg.
Lab., CIS Dept., University of Delaware. pp.9.

Lyengar, J.R., P.D. Amer and R. Stewart. 2005.
Receive Buffer Blocking in Concurrent Multipath
Transfer. Global Telecommunications Conference,
GLOBECOM '05, 1: pp. 6.

Lyengar, J.R., P.D. Amer and R. Stewart. 2007.
Performance Implications of a Bounded Receive
Buffer in Concurrent Multipath Transfer. Computer
Communications 30(4): 818-829.

Silberschatz, A., P.B. Galvin and G. Gagne. 2002.
Operating System Concepts, 6th Edition. John
Wiley & Sons.

Tanenbaum, A.S. 1996. Modern Operating Systems,
2nd Edition. Prentice-Hall.

Tanenbaum, A.S. and A.S. Woodhull. 1998. Operating
Systems, 2nd Edition. Prentice-Hall.

Table 2. Detailed results of simulator

Sr.
No.

Module
No. Queues Priority

Average waiting
time (m secs)

CPU execution time
(m sec)

Total
time
(sec)

Throughput
Wrt Rdr Wrt Rdr

1 1 1 Wrt 7501 17123 17024 2013 19037 75.642
2 1 1 Rdr 9261 0 17025 2073 19098 75.400
3 2 2 Wrt 3410 8518 9023 3034 12057 119.432
4 2 2 Rdr 5674 2 9034 2073 11107 129.648
5 3 3 Wrt 1988 5924 6018 3074 9092 158.380
6 3 3 Rdr 4141 1 6029 2203 8232 174.927

