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PATTERN OF POTASSIUM AND SODIUM DISTRIBUTION IN
TWO COTTON VARIETIES

Liagat Ali, Rahmatullah,Tariqg Aziz, M. Aamer Magsood, Shamsa Kanwal and M. Ashraf
Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad

The present investigation was aimed at assessing the ion accumulation and response in two cotton varieties
under hydroponics, grown at K*, Na" levels i.e. 3 mM K, 2.25 mM K +0.75 mM Na, 0.3 mM K+2.7 mM Na and 0.3
mM K using Johnsons’s nutrient solution. Dry matter partitioning and ions (K*, Na") distribution in older leaves
(OL), younger leaves (YL), stem, primary (PR) and secondary roots (SR) were measured and compared between
two cotton varieties at 10, 20, and 30 days of transplanting. The results explained that dry matter, ionic absorption
and K:Na ratio were affected by translocation of K"Na" within different plant parts. Maximum total biomass (6.22 g
plant™) was produced by NIBGE-2 followed by MNH-786 after 30 days of transplanting. Average dry matter of
stem (2.54 g) i.e. 41% of total dry matter (TDM) was noted in NIBGE-2 that was higher than dry matter of OL
(2.24 g), YL (1.0 g), PR (0.22 g) and SR (0.21 g). Maximum mean K:Na ratio was computed in YL of both
varieties as compared to other plant parts at K+Na levels @ 2.25+0.75mM. There was significant relationship
(R*=0.83, 0.90, n=4 i.e. mean of 3 replicates) between stem dry matter and K* contents in stem for NIBGE-2 and
MNH-786 respectively, at 30 days after transplanting.

Keywords: Cotton (Gossypium hirsutum L), K*, Na* levels, Dry matter partitioning and ions (K™ ,Na") distribution

INTRODUCTION al., 1961). The first mechanism is related to high
affinity for K™ and the presence of K prevents the
The potassium (K) is an essential macro-nutrient uptake of Na'. Sodium absorption takes place only
required by both plants and animals. After entering a after K" is completely depleted. The second
plant, K" has to be transported to distant organs mechanism was not highly selective, transported Na
through the xylem. Potassium moves from the root “*as well as K' and operated at high Na* and K"
symplast to the xylem sap and from this to the concentrations. The relatively high translocation rate of
apoplastic space outside the bundle sheath, a process ions found in maize may be due to the higher carbon
that involves many types of cells. Although plants have translocation rate observed for C, plants as opposed to
an absolute requirement for K" whereas, Na' is C,; plants. Approximately 13-36 % of the Na“ and CI
beneficial for vacuolar processes in the cell and the imported into leaves through xylem were exported by
replacement of K* by Na’ in the vacuole does not the phloem (Lohaus et al., 2000).
produce toxicity (Subbarao et al., 2003). The main  Higher K : Na ratio in younger leaves suggests K" re-
feature of the relatively salt tolerant genotype is higher  absorption/translocation from the xylem (Jeschke and
accumulation of Na* in leaves and an apparent Stelter 1983; Pitman 1984). Maintenance of high
capacity for K" redistribution to younger leaves (Leidi  cytosolic K: Na ratio is critical for the function of cells
and Saiz, 1997). The low K" concentration together (Rubio et al., 1995; Zhu et al., 1998). Elevated levels of
with high Na" concentration in older leaves of salt cytosolic Na" or a high Na": K" ratio exerts metabolic
tolerant cotton cultivar indicated vacuolar Na® toxicity by competition between Na“ and K for the
accumulation and active Na'/K* exchange leading to  binding sites of many enzymes (Tester and Davenport,
K" retranslocation (Jeschke, 1984). Salt tolerant lines  2003). Protection of this Na“ sensitive metabolic
have higher concentrations of K" and K*/ Na* ratios in  mechanism under saline conditions partly depends on
the leaves than those of the salt sensitive lines at the ability to keep cytosolic Na* levels low. For plant
higher NaCl concentrations (Ashraf and Ahmad, 2000).  cells, the most important way of keeping the cytosolic
In plant species which hardly translocate Na* to the Na® concentration at a low level is to minimize Na
shoot, some replacement of K with in the root takes influx into the cytosol, and to maximize the Na" efflux
place and makes this K™ available for translocation in  from cytosol, either into the apoplast or into the
to the shoot (El-Sheikh and Ulrich, 1970; EI-Sheikh, vacuole (Nie et al., 1995; Blumwald et al., 2000; Zhu,
1967). Although a very low K content in the root is the  2001; Qiu et al., 2004). Sodium entry into plant cells
result of this replacement (Marschner, 1971). may be restricted by selective ion uptake. In parallel
Absorption of K* and Na* can be attributed to two with the HAK transporters, some HKT transporters
mechanisms (Rains and Epstein, 1967; Jacobson et mediate high affinty Na® uptake  without
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contransporting K'. HKT transporters have two
functions: (i) to take up Na* from the soil solution to
reduce K requirements when K’ is a limiting factor,
and (i) to reduce Na" accumulation in leaves by both
removing Na from the xylem sap and loading Na" into
the phloem sap (Rodriguez-Navarro and Rubio, 2006).
Plants reduces the effects of nutrient deficiency by
changes in their growth characteristics and
morphology, and by increasing biomass allocation to
roots (Poorter and Nagel, 2000; Gorny, 2001). Cotton
cultivars differ in K* translocation within different plant
parts in relation to its ambient concentration in nutrient
solution.

Thus the present study was planned to evaluate
K*,Na" translocation within different plant parts in two
cotton varieties at 10, 20, and 30 days after
transplanting.

MATERIALS AND METHODS

The experiment was conducted in hydroponics in a
wire house of the Institute of Soil and Environmental
Sciences, University of Agriculture, Faisalabad during
May, 2006. The cotton seeds of two selected cotton
varieties i.e. NIBGE-2 and MNH-786 were sown in
thoroughly washed river-bed sand taken in
polyethylene lined iron trays. Distilled water was used
for maintaining optimum moisture for germination. One
week after germination, uniform seedlings were
transplanted in foam-plugged holes of thermopal
sheets floating on continuously aerated 2 L half
strength modified Johnson’ s nutrient solution (Johnson
et al., 1957) in polyethylene lined plastic beakers. The
solution contained 6 mM N, 2mM Ca, 0.25mM P, 1mM
Mg, 2mM S, 50uM CI, 25uM B, 2uM Mn, 2uM Zn, 1uM
Cu, 0.5uM Mo and 50uM Fe. Four treatments of K+Na
in mM were: 3+0, 2.25+0.75, 0.3+2.7 and 0.3+0. There
were three replicates of each treatment. Hydrogen ion
activity (pH) of nutrient solution was monitored daily in
all the twenty four beakers and adjusted daily at
5.5+0.5. Plants were harvested thrice at 10, 20 and 30
days after transplanting. After each harvest, K" and
Na® levels were maintained to their original level by
replacing the existing nutrient solution. Plants were
washed in distilled water and blotted dry by using filter
paper sheets and separated into younger leaves, older
leaves, stem, primary roots and secondary roots before
air drying after each harvest. The samples were stored
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in paper bags. Top four leaves were considered as
younger leaves. The plant samples were air dried in
wire house for two days. Air dried samples were then
oven dried at 72°C for 48 hours in a forced air driven
oven to record dry matter yield (g plant™) of all plant
parts using top loading balance. Dried samples of first,
second and third harvests were ground to fine powder
in a mechanical grinder (MF 10 IKA, Werke, Germany)
by passing through a 1 mm sieve. Ground samples
were homogenized. A 0.5 g portion of plant sample
was digested in diacid mixture of nitric acid and
perchloric acid (3:1) at 150°C (Miller, 1998). The
digested samples were diluted with distilled water as
per requirement and K™ and Na" in different plant parts
were determined by flame photometer (Jenway PFP 7).
The data were subjected to statistical analysis using
computer software “MSTAT-C” (Russell and Eisensmith
(1983) and following the methods of Gomez and
Gomez (1984). Completely randomized factorial design
was employed for analysis of variance (ANOVA).
Duncan’s multiple range tests was used for mean
separation (Duncan, 1955).

RESULTS
Biomass production (g plant™)

Dry matter of all plant parts (older leaves, younger
leaves, stem, primary roots & secondary roots) for both
varieties differed significantly (p<0.01) due to K*,Na®
levels, varieties and time interval (Table 1, 2, 3) at the
three harvests. Dry matter of both varieties was highest
at third harvest i.e. 30 days after transplanting (DAT).
Maximum biomass was accumulated by NIBGE-2 and
minimum was observed in MNH-786 at each harvest.
Average dry weight of stem (2.54 g plant™) i.e. 41% of
total dry weight (6.22 g plant™) increased over other
plant parts by NIBGE-2 as compared to that of MNH-
786 at 30 days after transplanting. Many scientists
reported significant variations among varieties of
several crops for dry matter production grown with
varying levels of K*,Na" supply (Leidi and Saiz, 1997;
Jeschke, 1984; Ashraf and Ahmad, 2000; Lohaus et
al., 2000; Kader and Lindberg, 2005; Subbarao et al.,
2003). Interaction between varieties, levels of Na and
K and time interval was found non-significant (p<0.01)
for dry matter of older, younger leaves, stem, total dry
matter, primary and secondary roots.
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Fig.1 Correlation of stem dry matter (g/plant) with K contents (mg/plant)
of stem of both genotypes at 30 DAT
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Fig. 2 Relationship between relative growth rate of shoot and total dry matter of
both genotypes at 10-20 DAT

Relative growth rate of shoot (RGR) (g g™ SDW day™)

Relative growth rate (RGR) of shoot differed
significantly (p<0.01) due to treatments and varieties
(Table 7). NIBGE-2 had the highest RGR followed by
MNH-786. RGR of shoot increased by 29% and 39% at
20 to 30 DAT in NIBGE-2 and MNH-786 respectively
as compared to that at 10 to 20 DAT. There were
significant variations observed in plants with regard to
RGR of shoot when grown at various proportions of K
and Na. Maximum RGR (1.653 g g'SDW day™)
revealed at adequate K i.e. 3.0 mM and it increased by

30

19% at 20 to 30 DAT as compared to 10 to 20 DAT.
Whereas, minimum RGR (1.382 g g*SDW day™) was
observed at deficient K (0.3 mM). Growth responses to
nutrient limitation are well documented (Poorter and
Nagel, 2000; Gorny, 2001).

Relative growth rate of root (RGR) (mg mg‘RDW
day™)

Both the treatments and varieties significantly (p<0.01)
varied relative growth rate (RGR) of root (Table 7).
NIBGE-2 manifested highest RGR followed by MNH-
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Fig. 3 Relationship between RGR of shoot and RGR of root in both genotypes

at 20-30 DAT

786. An increase of 6% and 7% in RGR of root was
observed at 20 to 30 DAT in NIBGE-2 and MNH-786
respectively as compared to that at 10 to 20 DAT.
Significant differences were observed in plants with
respect to RGR of root when grown at various
proportions of K and Na. Maximum RGR (5.590 mg
mg'RDW day™) was obtained at adequate K i.e. 3.0
mM and it increased by 8% at 20 to 30 DAT as
compared to 10 to 20 DAT. Whereas, minimum RGR
(5.260 mg mg™ RDW day™) was revealed at deficient K
(0.3 mM).

K:Na ratio

Influence of K*,Na" levels and time interval varied K:Na
ratio in older leaves, younger leaves , stem, primary
roots, and secondary roots significantly (p<0.01) (Table
4, 5 and 6). K: Na ratio in younger leaves of both
varieties varied non-significantly. Maximum K: Na ratio
(1.86) was measured in younger leaves of MNH-786 at
K*,Na" levels of 2.25+0.75 mM. K: Na ratio in younger
leaves decreased with increasing time intervals from
10 to 30 days in both varieties. Minimum K:Na ratio
(0.28) measured in primary roots of NIBGE-2 at K*,Na"
levels of 2.25+0.75 mM. Interaction did not influence
K:Na ratio significantly in primary roots and secondary
roots.

DISCUSSION

It can be conceived from data presented in Table 2 that
40% of total dry matter was partitioned in the stem of
the variety NIBGE-2. The proportion of total K
concentration partitioned in stem progressively
increased from 9.58 to 15.55 and from 15.55 to 19.60
mg g™ at 10 to 20 and 20 to 30 days after transplanting
in NIBGE-2, higher (62 % and 26%) than that of MNH-
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786, respectively followed by in younger leaves. Two
mechanisms were implicated in the absorption of K"
and Na' (Rains and Epstein, 1967; Jacobson et al.,
1961). The first mechanism attributed to high affinity for
K" and was not effective for Na* in the presence of K.
This mechanism was available for Na™ absorption after
K" was completely depleted. The second mechanism
was not highly selective in transporting Na" as well as
K" and operated at high Na® and K" concentrations.
The results for K:Na ratio are in conformity with (Rubio
et al., 1995; Zhu et al., 1998; Tester and Davenport,
2003). Higher K: Na ratio was observed in younger
leaves of cultivar MNH-786 at 10 and 20 days after
transplanting (Table 4). Higher K: Na ratio in younger
leaves was interpreted as an indication of potassium
re-absorption/translocation from the xylem (Jeschke
and Stelter 1983; Pitman 1984). Thus variation in K/Na
selectivity of xylem transport from roots to the leaves
proved to be one important cause of inter-specific
differences in cotton varieties. NIBGE-2 effectively
retained Na™ in primary roots, suggesting preference
for K* towards leaves during xylem transport.

Nutrient stress resulted in a reduction of relative growth
rate (RGR) of shoot and root of both varieties. Na
addition to K caused increase in RGR of shoot as
compared to that at deficient K only. It was due to
replacement of K by Na in some non-specific functions.
There was significant relationship (R?=0.83 and 0.90,
n=4) of stem dry matter with K contents in stem for
NIBGE-2 and MNH-786 respectively (Fig. 1). A
substantial increase in total dry matter of both varieties
significantly (R?= 0.99 and 0.99, n=4) related with
increase in RGR of shoot (Fig. 2). An increase in
relative growth rate of shoot of both varieties caused
increase in relative growth rate of root (R°= 0.75 and
0.88, n=4) (Fig. 3).
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CONCLUSION

Both the cotton varieties behaved differently with
respect to growth and K”Na" distribution pattern within
different plant parts when grown at different levels of K
and Na, at 10, 20, and 30 days after transplanting. Due
to low Na concentration in leaves, more Na was
retained in the primary roots. Higher K accumulation
was found in different plant parts e.g. in stem, younger
leaves and older leaves of the shoot. It resulted more
dry matter of stem out of total dry matter of the cotton
varieties.
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