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A B S T R A C T 

The mathematical analysis and numerical solution for the flow of micropolar fluids owing to shrinking 

boundary is considered in the presence of magnetic field and thermal radiation. The parametric study of 

the problem demonstrates the effects of magnetic field, suction, micropolar material parameter and 
thermal radiation on velocity, microrotation and temperature. The mathematical model of the problem 

is transformed to non-dimensional form to obtain numerical solution. The results have been obtained for 

several representative values of the material parameters d1, d2 and d3, heat source parameter and 
magnetic parameter M, suction/injection parameter S, Eckert number Ec, Radiation parameter Rn and 

Prandtl number Pr . The flow speed and microrotation are slowed with incremented inputs of micropolar 

parameter d1. The fluid temperature increases with radiation parameter but it diminishes against suction. 

 

1. Introduction 

The micropolar fluid theory pioneered by Eringen [1] 

presents relatively a new research field. This model besides 

the generalization of Navier-Stokes model takes into account 

the conservation of angular momentum due to local 

micromotion of the fluid particles. Baag et al. [2] obtained 

numerical solution for magnetohydrodynamic (MHD) flow of 

micropolar fluids near stagnation point on vertical surface 

with chemical reaction and heat source. Takhar et al. [3] 

solved numerically the flow and heat transfer for micropolar 

fluids due to porous disks. The heat and mass transfer for 

electrically conducting micropolar fluids over a stretching 

surface has been examined by Abo-Eldahab and El-Aziz [4]. 

Sajjad et al. [5] investigated hydro-magnetic micropolar fluid 

flow between two parallel plates, the lower plate is stretching. 

Barik and Dash [6] studied the flow of peristaltic motion of 

micropolar fluids in a two-dimensional channel and through a 

porous medium. Vimala and Omega [7] analyzed the 2-

dimensional and steady laminar flow of a micropolar fluids in 

permeable channel. The magnetohyderodynamic viscous flow 

of micropolar fluid due to shrinking boundary has been solved 

numerically by Shafique [8]. Veena [9] discussed the effect of 

change in shape and size of micro molecules of a micro polar 

fluid on the variation of pressure and load capacity in a 

squeeze film bounded by a rigid plate. 

Latterly, heat transfer in micropolar fluids was also 

discussed by Eringen [10]. Ahmad et al. [11] investigated 

unsteady blood flow having micropolar fluid properties with 

heat source through parallel plates channel under the 

influence of a uniform transverse magnetic field. Khilap and 

Manoj [12] analyzed the fluid flow and heat transfer 

characteristics occurring throughout the melting process over 

a moving boundary surface in micropolar fluid with thermal 

radiation. Waqas et al. [13] worked on mathematical analysis 

and numerical solution for micropolar fluids flow due to a 

shrinking porous surface in the presence of magnetic field and 

thermal radiation. Waqas et al. [14] studied the micropolar 

fluids near the stagnation point flow of electrically conducting 

due to a surface with the boundary in motion 

(stretching/shrinking). 

The fluid flows under the effect of magnetic field in the 

presence of heat source and radiation is important. Khalid et 

al. [15] considered MHD fluid flow of thermal radiation and 

viscous dissipation due to porous shrinking sheet. Abdel-

Rahman [16] discussed the effect of magnetohydronamic and 

focused on thin films for study in unsteady micropolar fluid. 

Asghar et al. [17] investigated the effects of Hall current and 

heat transfer on flow due to a pull of eccentric rotating disks. 

Mohyuddin and Goetz [18] studied resonance behavior of 

viscoelastic fluid in Poiseuille flow in the presence of a 

transversal magnetic field. 

In the present study, we considered micropolar fluids flow 

due to a shrinking porous surface in the presence of magnetic 

field and thermal radiation to extend the work of Jeena [19]. 

In the previous work, Newtonian fluid is considered but most 

of the practical situations involve non Newtonian fluids. 

Micropolar fluids theory provides substantial generalization 

to the Navier-Stokes model. Thus our interest aroused to 

present dynamics of micropolar fluids for the problem 

considered. In addition to the velocity vector, a new quantity 

microrotation and four coefficients of viscosity are taken in to 

account. It resulted an additional equation on the basis of 

angular momentum. If microrotation vector and vortex 

viscosity k are omitted, the problem is reduced to Newtonian 
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fluid flow. The numerical solution of the problem has been 

sought to examine the nature of fluid flow, microrotation and 

heat transfer. The flow with shrinking surface and the effect 

of material constants and radiative heat source give new 

dimension to the problem. 

2. Methodology 

Consider micropolar fluid flow towards the stagnation 

point on a porous stretching surface. The fluid is 

incompressible and electrically conducting. The flow is 

steady and two-dimensional. The magnetic field of strength 

Bo is applied perpendicular to the surface that stretches or 

shrinks along x-axis. The horizontal component of velocity 

varies proportional to a specified distance x. The velocity of 

flow in the region exterior to the boundary layer is U=cx. The 

surface temperature is T. The temperature in the region 

exterior to the boundary layer is 𝑇∞. The body couple is 

absent. The velocity vector is 𝑽 = 𝑉(𝑢, 𝑣) and spin vector is 

𝝎 = 𝝎(0,0, 𝜔3). 

Under the above assumptions the equations, governing the 

problems are [1]: 
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Here ⍴ is density, µ is dynamic viscosity, 𝜎 is the electrical 

conductivity, K is the thermal conductivity, 𝐶𝑝 is the specific 

heat capacity at constant pressure, 𝑇∞ is the stream 

temperature, 𝑄
0
 is the volumetric rate of heat generation, k 

and γ are additional viscosity coefficients for micropolar fluid 

and j is micro inertia, Stefan Boltzmann constant is 𝛼∗ and 

Roseland mean absorption coefficient is denoted by 𝛽∗.  

The boundary conditions are: 

   

𝜔3(𝑥, 0) = 0, 𝑢(𝑥. 0) = 𝑈𝑤 = −𝑐𝑥,

𝑣(𝑥. 0) = −𝑣𝑤 , 𝑇(𝑥. 0) = 𝑇𝑤 ,

𝜔3(𝑥,∞) = 0, 𝑢(𝑥.∞) = 0,

𝑇(𝑥.∞) = 𝑇∞ }
 

 
    (5) 

Here 𝑐 > 0 (0 < 𝑐 < 1) stands for shrinking of the 

sheet. 𝑇𝑤  is the wall temperature, 𝑣𝑤(𝑣𝑤 > 0) is a prescribed 

distribution of wall mass suction through porous sheet, 𝜅 is 

vortex viscosity.  . 

By using similarity transformations, the velocity 

components are described below in terms of the stream 

function 𝜓 (x,y): 

𝑢 =
 𝜕𝜓

𝜕𝑦
, 𝑣 = −

 𝜕𝜓

𝜕𝑥
, 𝜓 (x,y)=x√𝑐𝜈 𝑓(𝜂) 

𝜂 = 𝑦√
𝑐

𝜈
     ,    𝑢 = 𝑥𝑐𝑓′, 𝑣 = −√𝜈𝑐𝑓 

𝜔3 =√
𝑐

𝜈
 cxL(𝜂) ,       𝜃(𝜂) =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
 

Equation of continuity (1) is identically satisfied. 

Substituting the above appropriate relation in equations (2), 

(3) and (4), we get: 

    (1 + 𝑑1)𝑓
′′′ + 𝑑1𝐿

′ −𝑀𝑓′ = 𝑓′
2
− 𝑓𝑓′′      (6) 

     𝑑3𝐿
′′ + 𝑑1𝑑2(𝐿 − 𝑓

′′) = 𝑓′𝐿 − 𝑓𝐿′     (7) 

   (4 + 3𝑅𝑛) = 𝜃
′′+3𝑅𝑛𝑃𝑟  (𝑓𝜃

′+λ 𝜃 + 𝐸𝑐𝑓
′′2 +𝑀𝐸𝑐𝑓

′2)  (8) 

and the boundary conditions (5) become: 

    
𝑓′(0) = −1,   𝑓(0) = 𝑆, 𝐿(0) = 0, 𝜃(0) = 1

𝑓′(∞) = 0, 𝐿(∞) = 0, 𝜃(∞) = 1
}    (9) 
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2
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
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are dimensionless material constants. 

3. Results and Discussion 

The non-linear differential Eqs. (6) to (9) have been solved 

numerically as such systems are difficult to be solved 

analytically [20, 21]. The higher order derivatives are reduced 

to set of first order differential equations to implement Runge 

Katta method with shooting technique as described in various 

studies [22, 23]. The resulting equations are coded in the 

environment of Mathematica software. Several computations 

have been made for viable ranges of the physical parameters 

involved in the study. The fixed values of parameters are 

taken arbitrarily asSPrcand 

RnThe results of the physical quantities namely 

tangential velocity 𝑓′, micromotion L and temperature 

function 𝜃(𝜂) have been presented in graphical form. Fig. 1 

indicates the effect the magnetic force field on velocity 𝑓′. It 
is observed that velocity decreases in magnitude with increase 

of M. It happens due to the incremented resistive force, known 

as Lorentz force which comes in to play during the interaction 

of electric and magnetic fields. The progressive suction 

parameter S decelerates the flow in horizontal direction and 

magnitude of 𝑓′ depreciates against S as noticed in Fig. 2.  

However, the velocity 𝑓′ increases in the magnitude with 

increase in the value of micropolar parameter
 
𝑑1 as depicted 

in the fig. 3. Similarly, fig. 4 reveals that the micromotion 

function L reduces with 𝑑1 because vortex viscosity is 

intensified in this situation and hence the micromotion is 

strengthened. Fig. 5 demonstrates the effect of Prandtl 
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number 𝑃𝑟  on heat function 𝜃(𝜂). It is noticed that higher 

inputs of 𝑃𝑟 causes to decline the temperature curve. It can be 

justified by the fact that thermal diffusivity decreases with 

increments of 𝑃𝑟 . Fig. 6 delineates the impact of heat source 

index ) on 𝜃(𝜂) and it is seen that fluid temperature 

rises directly with . However, temperature distribution 

decreases with increase of the values of suction parameter S 

as depicted in fig. 7.

Fig. 8 demonstrates that the temperature function 𝜃(𝜂) 

rises with increment of radiation parameter 𝑅𝑛 because the 

radiative mode of heat transportations is enhanced. Eckert 

number 𝐸𝑐  corresponds to thermal dissipation which results 

in conversion of mechanical energy into heat energy. The 

increments in 𝐸𝑐  raise the temperature 𝜃(𝜂) as shown in 

fig. 9. 

 

Fig. 1: The plot for curves of 𝑓
′
under the effect of magnetic parameter M. 

 

Fig. 2: The plot for curves of 'f  under the effect of suction parameter S. 

 

Fig. 3: The plot for curves of 𝑓
′
under the effect of micropolar parameter d1.  

 

Fig. 4: The plot for curves of microrotation L under the effect of 𝑑1.

 

Fig. 5: The plot for curves of θ under the effect of Prandtl number Pr 

andRn
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Fig. 6: The plot for curves of θ under the effect of  

 

Fig. 7: The plot for curves of θ under the effect of suction parameter S. 

 

Fig. 8: The plot for curves of θ under the effect of radiation parameter Rn. 

 

Fig. 9: The plot for curves of θ under the effect of Eckert number Ec

4.  Conclusions 

This work examined the MHD boundary layer flow of 

micropolar fluids due to porous shrinking surface with 

viscous dissipation and radiation effects. The results of the 

physical quantities namely tangential velocity 𝑓′, momentum 

of micromotion L and temperature function  𝜃(𝜂) have been 

computed for viable ranges of pertinent parameters of 

physical importance involved in the model of the problem. 

 The velocity 𝑓′decreases in magnitude with increase of the 

magnetic force field and suction at the surface. 

 The velocity 𝑓′and micromotion function L increase in the 

magnitude with increase in the value of micropolar 

parameter
 
𝑑1. 

 The heat function 𝜃(𝜂) decreases with increase of the 

values of Prandtl number 𝑃𝑟, heat source or sink index 

and suction parameter S. 

 The temperature function 𝜃(𝜂) increases with increase in 

the values of radiation parameter 𝑅𝑛 and Eckert number 

𝐸𝑐. 
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