

www.thenucleuspak.org.pk

The Nucleus

ISSN 0029-5698 (Print) ISSN 2306-6539 (Online)

Selection Criteria for Radionuclide of Interest in Neutron Activation Analysis

M. Wasim*

Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad, Pakistan

ARTICLE INFO

Article history:

Received: 04 February, 2020 Accepted: 15 January, 2021 Published: 16 April, 2021

Keywords:

Neutron activation analysis, Sensitivity factors, Experimental conditions, Irradiation time, Selection criteria, Activation products

ABSTRACT

This paper describes general selection criteria for suitable activation products to get maximum signal to noise ratio in minimum time. The detection sensitivities for 71 elements which exist in nature, with respect to neutron activation analysis, have been calculated and presented. The paper defines the sensitivity as log (peak area/weight) produced for different radionuclides suitable for activation analysis using five sets of experimental conditions. Although, the current sensitivity factors have been calculated for miniature neutron source reactor (MNSR) having thermal neutron flux of $10^{12} \, \mathrm{cm}^2 \, \mathrm{s}^{-1}$; however, the general pattern of elemental sensitivities will not be affected drastically by changing reactor type. Normalized peak areas have also been presented for the identification of suitable activation products. These normalized areas are independent of experimental conditions used and are therefore general in nature. Finally, real data have been presented from our previous studies, which confirm present findings and provide actual irradiation times along with useful gamma-rays used in the analysis.

1. Introduction

Nuclear research reactors are powerful tools for the production of neutrons. They are sophisticated devices and used in basic and applied research [1]. Since they are expensive to install and run, therefore, they are mostly purchased and operated by governments or large companies. To make research reactors economically viable, they are mostly intended to support multidisciplinary projects. Activities around research reactors usually involve teaching, radio-isotopes production for medicine and industry, neutron activation analysis (NAA), prompt gamma NAA, neutron diffractometry, silicon transmutation doping, geochronology, material irradiation, material testing, gamma irradiation, gemstone coloration, neutron imaging, positron sources and neutron capture therapy [1]. Among these applications, NAA is the most widely employed activity around a research reactor. NAA has a very good track record of its accuracy, sensitivity, multi-element capability and free from contamination feature [2]. That is the reason for its continued use in the validation of elemental concentrations of reference materials [4].

NAA is performed in three sequential steps: irradiation, decay and counting. Irradiation is performed at a channel having suitable neutron flux. The feasibility of performing the requisite irradiation depends on the physical, chemical and nuclear properties of the material matrix and to a lesser extent, on the concentration of trace level elements. Some samples may not be permitted in some irradiation facilities due to their high macroscopic cross sections, dimensional considerations, or because they are combustible or volatile. After irradiation, the sample is stored in shielding to let undesirable short-lived radionuclides decay down. After decay, the sample container is opened and sample is transferred to a pre-weighed clean

capsule for counting on a gamma-ray detector. The whole experimental scheme involves selecting suitable time intervals for irradiation, decay and counting processes. Full power utilization of NAA depends very much on the optimum experimental scheme, which proves difficult to design [5].

Suitable irradiation, decay and counting times, depend on the half-lives of the selected activation products. For elements forming one activation product, the experimental scheme is simple but for cases when more than one activation product is formed, then setting a suitable experimental scheme is not straight forward. In practical situations, samples usually have many elements, which results in a large number of activation products. Many elements would form more than one activation product then the experimental scheme will totally rely on the selection of activation products. Finally, experimental scheme has to optimise to collect maximum information with minimum numbers of irradiations. The current study focuses on the selection criteria for choosing suitable activation products. The selection criteria are based on the sensitivities of individual activation products. The later part of this work also recommends the most suitable irradiation times for the measurement of different elements in different matrices.

2. Methodology

Consider a target isotope N_1 , after capturing a neutron changes to N_2 , which decays by emitting a particle (alpha or beta) and gamma rays. The formation and decay of N_2 can be written as:

$$N_1 \xrightarrow{\sigma_1 \varphi} N_2 \xrightarrow{\lambda_2} \tag{1}$$

where σ_1 is the effective microscopic neutron cross section (cm²), φ is the conventional reactor neutron flux (cm⁻²s⁻¹) and

 $^{* \} Corresponding \ author: was im 1968@gmail.com$

 λ is the decay constant (s⁻¹). Mathematically, the rate of buildup of N_2 is:

$$\frac{dN_2(t)}{dt} = N_1 \sigma_1 \varphi - \lambda_2 N_2 \tag{2}$$

This is a first order linear differential equation. Its solution in terms of peak area per unit weight produced by the gammaray spectrometry is given as:

$$(N_{2p}/w) = \epsilon \gamma \frac{N_{av}}{M_1 \lambda_2} \theta c \sigma_1 \varphi (1 - e^{-\lambda_2 t_i}) e^{-\lambda_2 t_d}$$

$$(1 - e^{-\lambda_2 t_c}) \tag{3}$$

where N_{2p} is the peak area, w is the weight, ε is the absolute peak efficiency, γ is the emission probability of the gamma ray, N_{Av} is the Avogadro's number, M is the atomic weight of the irradiated element, θ is the natural isotopic abundance of target isotope, t_i is the irradiation time, t_d is the decay time and t_c is the counting time.

In this paper, the sensitivity of detection (s) of N_2 is defined as:

$$s = \log(N_{2p}/w) \tag{4}$$

This equation can be worked out for different activation products (radionuclides) assuming a constant thermal neutron flux and fixed counting conditions.

In deciding suitable irradiation, decay and counting times, half-life is the major limiting factor. Short lived activation products require relatively shorter irradiation/decay/counting times and long-lived activation products usually require longer timing schemes. Some studies involving other parameters such as type of neutron flux [6] or other parameters have also been performed [7].

3. Results and Discussion

This study included all natural 71 elements, covering from fluorine to uranium. These elements have 137 natural isotopes, which on irradiation form 168 activation products. These 168 radionuclides have been divided into five experimental schemes depending on the half-lives of individual radionuclides. The five schemes involved irradiation for 10 sec, 1 min, 5 min, 1 hour and 5 hours. The same timings have been set for decay and counting intervals. It is assumed that the five schemes are sufficient for the estimation of sensitivities for all 168 activation products. The five irradiation schemes are presented in Table 1. Each category contains radionuclides according to their half-lives. The first category 10s/10s/10s covers radionuclides having half-lives in the range 10 s to 1 min. For non-automated activation analysis, 10 sec is the lower limit for practical reasons. The second category 1m/1m/1min includes radionuclides with half-lives in the range 1 min to 5 min. The third category 5m/5m/5m involves radionuclides with halflives varying from 5 min to 1 hr. The fourth category 1h/1h/1h has radionuclides having half-lives varying from 1 h to 1 day. The fifth and last category 5h/5h/5h is comprised of all radionuclides having half-lives greater than 5 d. It should be

noted that these schemes have been created only to calculate sensitivities. These are not optimized for practical purposes. Although, it seems a simplified scheme but it works well in the selection of suitable activation products. The study assumed a miniaturised neutron source reactor (MNSR) [3] having thermal neutron flux 1×10¹² cm⁻² s⁻¹ and epithermal neutron flux 5×10¹⁰ cm⁻² s⁻¹. For counting, a p-type HPGe detector with relative efficiency of 60% was assumed. The absolute efficiency curve for the detector is shown in Fig. 1 for 25 cm counting geometry. According to the detector's profile, the gamma-ray selection was made within the 61 -3103 keV energy range. For each radionuclide, the gammaray selected was having maximum emission probability. Sensitivity given by Eq. (4) was calculated for all 168 activation products. All calculations were performed in Microsoft EXCEL and the nuclear data was taken from NUCDATA [4]. This paper also discusses the relative sensitivity, which makes these calculations independent of reactor flux and detector efficiency to a good approximation.

On the basis of sensitivities (s), elements were arranged in 10 groups. Starting from highest sensitivity (s=11) to the lowest (s=2), as given below:

s = 11: Au, Eu, Ho, Mn

s = 10: As, Br, Dy, In, Ir, La, Lu, Re, Sb, Yb

s = 9: Ar, Cd, Cs, Er, Ga, Hf, Na, Sc, Ta, Tb, U, W

s = 8: Ag, Ba, Ce, Co, Gd, Hg, I, Kr, Nd, Pr, Rh, Ru, Se, Sm, Sr, V, Xe

s = 7: Al, Cl, Cu, Ge, K, Mo, Ni, Os, P, Pt, Rb, Sn, Te, Ti, Y, Zn

s = 6: Cr, Fe, Mg, Pd, Zr

s = 5: Ca, F

s = 4: Ne, S, Si

s = 3: Nb

s = 2: T1

Similarly, the distribution of radionuclides according to their sensitivities are presented in Table 2. This listing explains why NAA is the most desirable technique for some elements than the others due to the following advantages.

- i. Volatile elements such as As, Cl, Br and I, all have very high sensitivities. That is the reason for their quick detection by activation technique as compared to other competitive techniques such as atomic absorption spectrophotometry (AAS), inductively coupled plasma optical emission spectrometry (ICP-OES) and X-ray fluorescence spectrometry (XRF).
- ii. Detection of noble gases Ar, Xe and Kr by NAA is feasible by activation analysis because their activation products have higher sensitivities.
- iii. Out of seventeen rare earth elements (REEs), twelve elements (La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb

and Lu) have relatively higher sensitivities for activation analysis. The only technique which is comparable to NAA in the detection of REEs is inductively coupled plasma mass spectrometry (ICP-MS).

iv. The detection limit of uranium by NAA is below microgram per gram level due to its relatively higher sensitivity.

The optimization of experimental conditions would require a list of all possible activation products. Table 3 provides the normalized peak areas of all the possible activation products formed by different elements. The areas have been normalized by dividing all peak areas with the minimum peak area formed in a group. Table 3 is very useful and proposes the most sensitive radionuclides for different element. It lists 32 elements that produce single activation product. These are given below:

The selection of irradiation time is set according to the half-life of activation product. For elements forming more than one activation product, the radionuclide having maximum value of sensitivity will give the lowest detection limit and highest precision. For instance, silver produces four radionuclides (108 Ag, 108 mAg, 110 Ag and 110 mAg) on activation. For quantification purposes, 110 mAg will produce the highest sensitivity and the lowest detection limit. After selecting 110 mAg for quantification, Table 1 then gives the approximate irradiation time, which is 5 hour. The rest of timings (decay and counting) will depend on the actual composition of the material. In any case, a combination of Table 3 and Table 1 can be used effectively to set irradiation times for a suitable activation product.

In real situation, when many elements are present in a sample, a lot of activation products will be formed on irradiation. Then an optimized scheme will extract maximum information from a minimum number of irradiations and countings. Then, the total number of irradiations required depends on the elements

of interest, their amounts and the presence of other elements along with their concentrations. Although, the actual timing scheme will be different than those used in this study but the relative sensitivity of activation product will remain more or less the same as given in Table 3. Based on these relative sensitivity values, we analyzed a large number of samples. Table 4 presents irradiation time for the determination of 45 elements in geological samples. The list includes soils, sediment, ceramic, sewage sludge and uranium ores. Table 5 presents irradiation times for 32 elements in different biological samples. These include fish, milk, herbs, fruit and brain tissues. Similarly, Table 6 gives irradiation time for the determination of 26 elements in various alloys (Ni-based and other alloys). The irradiation times given in these tables are slightly different for all three types of materials due to their different elemental compositions. However, Table 4, Table 5 and Table 6 show that the activation products chosen in quantification for all cases are consistent with those presented in this study.

4. Conclusions

This paper presents the mathematical definition of sensitivity for radionuclides produced by (n, γ) reactions. Sensitivities for 168 activation products produced by 137 natural isotopes have been calculated using data form NUCDATA. On the basis of sensitivities, 71 naturally occurring elements have been categorized into ten groups. These groups explained the rationale behind the higher sensitivities observed for some elements such as halogens, noble gases and rare earth elements. The relative sensitivity factors for different elements may help in selecting the right activation products and suitable irradiation timings in neutron activation analysis. These relative factors are independent of reactor types and detector characteristics, to a good approximation. This paper compares the findings with the most suitable activation products employed in different studies. Finally, irradiation timings for different matrices have been included as a quick reference for geological, biological and alloy matrices. The list of materials includes soil, sediment, ore, ceramic, sewage sludge, fish homogenate, milk, herbs, fruit, animal tissues and alloys.

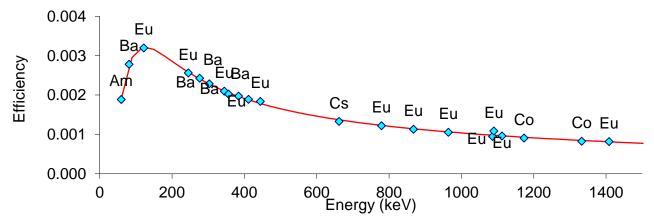


Fig. 1: Full peak absolute efficiency calibration curve at 25cm distance from HPGe_detector.

Table 1: Irradiation, decay and counting scheme used in this study.

Scheme $(t_{irr}/t_d/t_c)$ (Half-life range)	Scheme $(t_{irr}/t_d/t_c)$	Activation product
10s/10s/10s (11 s – 57 s)	10s/10s/10s (11 s – 57 s)	$^{110} Ag, ^{20} F, ^{75m} Ge, ^{77m} Ge, ^{179m1} Hf, ^{115m} In, ^{79m} Kr, ^{81m} Kr, ^{23} Ne, ^{107m} Pd, ^{199m} Pt, ^{46} Sc, ^{77m} Se, ^{125m} Xe, ^{125m} Xe, ^{115m} He, ^{115m} He, $
1m/1m/1m (1 m – 4.7 m)	1min/1min/1min (1 m – 4.7 m)	$^{108}Ag,\ ^{28}Al,\ ^{137}mBa,\ ^{161}Gd,\ ^{109m}Pd,\ ^{86m}Rb,\ ^{122m}Sb,\ ^{124m1}Sb,\ ^{83m}Se,\ ^{206}Tl,\ ^{52}V,\ ^{127m}Xe,\ ^{137}Xe,\ ^{71}Zn,\ ^{127m}Xe,\ ^{12$
5m/5m/5m (5 m – 57 m)	5min/5min/5min (5 m – 57 m)	$^{131m}Ba, ^{80}Br, ^{49}Ca, ^{111m}Cd, ^{38}Cl, ^{60m}Co, ^{66}Cu, ^{70}Ga, ^{177m^2}Hf, ^{199m}Hg, ^{205}Hg, ^{128}I, ^{116m^4}In, ^{27}Mg, ^{101}Mo, ^{151}Nd, ^{190m}Os, ^{199}Pt, ^{88}Rb, ^{37}S, ^{81}Se, ^{81m}Se, ^{83}Se, ^{155}Sm, ^{123m}Sn, ^{125m}Sn, ^{125m}Sn, ^{131}Te, ^{51}Ti, ^{239}U, ^{135m}Xe, ^{69}Zn, ^{125m}Sn, ^{125m}Sn,$
1h/1h/1h (1 h – 23 h)	1h/1h/1h (1 h – 23 h)	$^{41}Ar,^{139}Ba,^{117}Cd,^{117m}Cd,^{64}Cu,^{157}Dy,^{165}Dy,^{171}Er,^{152m1}Eu,^{152m2}Eu,^{72}Ga,^{159}Gd,^{75}Ge,^{77}Ge,^{180m}Hf,^{197m}Hg,^{194}Ir,^{42}K,^{85m}Kr,^{87}Kr,^{56}Mn,^{93m}Mo,^{24}Na,^{149}Nd,^{65}Ni,^{111m}Pd,^{142}Pr,^{197m}Pt,^{188}Re,^{105}Ru,^{31}Si,^{85}Sr,^{87m}Sr,^{127}Te,^{129}Te,^{187}W,^{135}Xe,^{90m}Y,^{177}Yb,^{69m}Zn,^{71m}Zn,^{97}Zr,^{71m}Zn,^{97}Zr,^{11m}Zn,^{11m}Rh,^{$
5h/5h/5h (> 1 d)	5h/5h/5h (> 1 d)	^{108m} Ag, ^{110m} Ag, ⁷⁶ As, ¹⁹⁸ Au, ¹³¹ Ba, ⁸² Br, ⁴⁷ Ca, ¹¹⁵ Cd, ^{115m} Cd, ¹³⁹ Ce, ¹⁴¹ Ce, ¹⁴³ Ce, ⁶⁰ Co, ⁵¹ Cr, ¹³⁴ Cs, ¹⁶⁹ Er, ¹⁵² Eu ¹⁵⁴ Eu, ⁵⁹ Fe, ¹⁵³ Gd, ¹⁸¹ Hf, ²⁰³ Hg, ¹⁶⁶ Ho, ^{166m} Ho, ^{114m} In, ¹⁹² Ir, ^{194m} Ir, ⁸⁵ Kr, ¹⁴⁰ La, ¹⁷⁷ Lu, ⁹⁹ Mo, ⁹⁴ Nb, ¹⁴⁷ Nd, ¹⁸⁵ Os ¹⁹¹ Pt, ⁸⁶ Rb, ¹⁸⁶ Re, ¹⁰³ Ru, ⁹⁷ Ru, ¹²² Sb, ¹²⁴ Sb, ⁴⁶ Sc, ⁷⁵ Se, ¹¹³ Sn, ^{117m} Sn, ^{119m} Sn, ¹²³ Sn, ¹²⁵ Sn, ⁸⁵ Sr, ⁸⁹ Sr, ¹⁸² Ta, ¹⁶⁰ Tb ^{121m} Te, ^{123m} Te, ^{131m} Te, ¹²⁷ Xe, ¹³³ Xe, ¹⁶⁹ Yb, ¹⁷⁵ Yb, ⁶⁵ Zn, ⁹⁵ Zr

 $\overline{t_{irr}}$: irradiation time, t_d : decay time, t_c : counting time

Table 2: Activation products presenting maximum sensitivity (s=11) to the lowest sensitivity (s=2).

11	10	9	8	7	6	5	4	3	2
⁹⁸ Au	¹⁹⁴ Ir	⁴⁶ Sc	¹⁵⁴ Eu	¹⁵⁷ Dy	^{86M} Rb	^{75M} Ge	^{127M} Xe	^{81M} Se	⁶⁹ Zn
^{52M1} Eu	76 As	^{41}Ar	¹⁴³ Ce	⁹⁹ Mo	111MCd	^{124M1} Sb	²³ Ne	79M Kr	⁸⁵ Kr
⁶⁶ Ho	¹⁶⁵ Dy	⁷² Ga	¹⁵⁵ Sm	^{197M} Hg	¹⁹¹ Pt	¹³⁹ Ce	^{121M} Te	⁹⁴ Nb	119MSn
⁶ Mn	¹⁸⁶ Re	¹⁸² Ta	¹³⁹ Ba	¹⁸⁵ Os	97 Zr	⁴⁹ Ca	^{77M} Ge	123 Sn	⁸⁹ Sr
	¹²² Sb	187 W	^{87M} Sr	¹³⁵ Xe	^{123M} Te	^{125M} Xe	^{83M} Se		²⁰⁶ Tl
	¹⁴⁰ La	¹⁶⁰ Tb	¹⁷⁷ Yb	¹⁵³ Gd	⁸⁷ Kr	¹³⁷ Xe	^{190M} Os		
	¹⁹² Ir	²⁴ Na	²⁰³ Hg	^{197M} Pt	115M In	71M Zn	71 Zn		
	¹⁷⁷ Lu	^{239}U	^{46M} Sc	85M Sr	¹¹⁷ Cd	20 F	^{31}Si		
	82 Br	¹⁷¹ Er	⁶⁰ Co	69M Zn	¹⁹⁹ Pt	^{199M} Pt	108M Ag		
	116M1 In	$^{181}\mathrm{Hf}$	$^{128}\mathbf{I}$	^{77M} Se	¹⁶⁹ Er	^{115M} Cd	37 S		
	¹⁸⁸ Re	¹²⁴ Sb	⁹⁷ Ru	⁸⁶ Rb	¹²⁷ Te	²⁰⁵ Hg			
	¹⁷⁵ Yb	¹³⁴ Cs	^{179M1} Hf	42 K	^{109M} Pd	^{166M} Ho			
	^{152M2} Eu	¹¹⁵ Cd	^{177M2} Hf	¹¹⁰ Ag	27 Mg	^{135M} Xe			
		¹⁶⁹ Yb	¹³³ Xe	¹²⁹ Te	⁷⁰ Ga	137M Ba			
		¹⁵² Eu	^{52}V	²⁸ Al	¹¹³ Sn	⁴⁷ Ca			
			85M Kr	⁶⁶ Cu	^{81M} Kr	¹²⁵ Sn			
			¹⁴⁹ Nd	¹³¹ Te	123M Sn	^{107M} Pd			
			$^{104\mathrm{M}}\mathrm{Rh}$	108 Ag	101 Mo				
			110M Ag	^{131M} Te	⁵¹ Cr				
			194M Ir	^{60M} Co	⁸⁸ Rb				
			¹⁴¹ Ce	111MPd	^{93M} Mo				
			¹⁰³ Ru	⁶⁴ Cu	⁸³ Se				
			$^{180\mathrm{M}}\mathrm{Hf}$	¹⁵¹ Nd	¹²⁷ Xe				
			¹⁴⁷ Nd	65 Zn	⁹⁵ Zr				
			⁷⁵ Ge	⁶⁵ Ni	^{131M} Ba				
			$^{80}\mathrm{Br}$	¹³¹ Ba	⁸⁵ Sr				
			⁷⁵ Se	125MSn	117MCd				
			¹⁴² Pr	⁷⁷ Ge	⁵⁹ Fe				
			¹⁵⁹ Gd	^{122M} Sb	⁸¹ Se				
			¹⁰⁵ Ru	¹⁶¹ Gd	^{199M} Hg				
			^{114M} In	⁵¹ Ti	-				
				^{90M} Y					
				117MSn					
				³⁸ Cl					

Table 3: List of elements producing multi-activation products.

Element	Product	$t_i = t_d = t_c$	Normalized peak area	Element	Product	$t_i = t_d = t_c$	Normalized peak area
Ag	¹⁰⁸ Ag	60	1336	Hg	^{197M} Hg	3600	265
	108M Ag	18000	1		^{199M} Hg	300	3
	^{110M} Ag	18000	13089		203 Hg	18000	1500
	¹¹⁰ Ag	10	1656		205 Hg	300	1
Ba	131 Ba	18000	89	Но	¹⁶⁶ Ho	18000	530220
	131M Ba	300	9		^{166M} Ho	18000	1
	137M Ba	60	1	In	$^{114\mathrm{M}}\mathrm{In}$	18000	14
	¹³⁹ Ba	3600	3440		^{116M1} In	300	1713
Br	$^{80}\mathrm{Br}$	300	1		^{115M} In	10	1
	$^{82}\mathrm{Br}$	18000	76	Ir	¹⁹² Ir	18000	134
Ca	⁴⁷ Ca	18000	1		$^{194\mathrm{M}}\mathrm{Ir}$	18000	1
	⁴⁹ Ca	300	4		$^{194}\mathrm{Ir}$	3600	324
Cd	111MCd	300	24	Kr	^{79M} Kr	10	5
	¹¹⁵ Cd	18000	3015		81M Kr	10	3695
	^{115M} Cd	18000	1		85M Kr	3600	450142
	¹¹⁷ Cd	3600	20		⁸⁵ Kr	18000	1
	^{117M} Cd	3600	4		⁸⁷ Kr	3600	9734
Се	¹³⁹ Ce	18000	1	Mo	101 Mo	300	1
	¹⁴¹ Ce	18000	467		^{93M} Mo	3600	1
	¹⁴³ Ce	18000	1221		⁹⁹ Mo	18000	40
Co	⁶⁰ Co	18000	20	Nd	¹⁴⁷ Nd	18000	11
	^{60M} Co	300	1		¹⁴⁹ Nd	3600	18
Cu	⁶⁴ Cu	3600	1		¹⁵¹ Nd	300	1
	⁶⁶ Cu	300	2	Os	¹⁸⁵ Os	18000	2071
Оу	¹⁵⁷ Dy	3600	1		^{190M} Os	300	1
	¹⁶⁵ Dy	3600	798	Pd	^{107M} Pd	10	1
Ξr	¹⁶⁹ Er	18000	1		^{109M} Pd	60	40
	¹⁷¹ Er	3600	282		111MPd	3600	197
Eu	^{152M2} Eu	3600	12	Pt	¹⁹¹ Pt	18000	20
	^{152M1} Eu	3600	287		^{197M} Pt	3600	125
	¹⁵² Eu	18000	1		¹⁹⁹ Pt	300	16
	¹⁵⁴ Eu	18000	1		^{199M} Pt	10	1
Ga	⁷⁰ Ga	300	1	Rb	⁸⁶ Rb	18000	19
	⁷² Ga	3600	1326		^{86M} Rb	60	4
Gd	¹⁵³ Gd	18000	5		⁸⁸ Rb	300	1
	¹⁵⁹ Gd	3600	12	Ru	¹⁰³ Ru	18000	2
	161 Gd	60	1		¹⁰⁵ Ru	3600	1
Ge	⁷⁵ Ge	3600	3533		⁹⁷ Ru	18000	3
	^{75M} Ge	10	13	Sb	¹²² Sb	18000	61529
	⁷⁷ Ge	3600	277		^{122M} Sb	60	22
	^{77M} Ge	10	1		¹²⁴ Sb	18000	1898
Hf	^{177M2} Hf	300	2		^{124M1} Sb	60	1
	^{179M1} Hf	10	2	Sc	⁴⁶ Sc	18000	15
					^{46M} Sc	10	1
	$^{180\mathrm{M}}\mathrm{Hf}$	3600	1				
	¹⁸¹ Hf	18000	6				

M. Wasim / The Nucleus 57, No. 3 (2020) 90-99

Element	Product	$t_i = t_d = t_c$	Normalized peak area	Element	Product	$t_i = t_d = t_c$	Normalized peak area
Se	⁷⁵ Se	18000	25279		¹²⁹ Te	3600	636
	^{77M} Se	10	7298		^{131M} Te	18000	416
	⁸¹ Se	300	177		¹³¹ Te	300	543
	^{81M} Se	300	1	Xe	^{125M} Xe	10	6
	^{83M} Se	60	7		¹²⁷ Xe	18000	22
	⁸³ Se	300	317		^{127M} Xe	60	1
Sn	¹¹³ Sn	18000	5896		¹³³ Xe	18000	4423
	117M S n	18000	22887		¹³⁵ Xe	3600	775
	^{119M} Sn	18000	1		^{135M} Xe	300	2
	¹²³ Sn	18000	2		¹³⁷ Xe	60	5
	^{123M} Sn	300	5820	Yb	¹⁶⁹ Yb	18000	2
	¹²⁵ Sn	18000	239		¹⁷⁵ Yb	18000	18
	^{125M} Sn	300	32883		¹⁷⁷ Yb	3600	1
Sr	⁸⁵ Sr	18000	6142	Zn	65 Zn	18000	24108
	85M Sr	3600	196004		69M Zn	3600	63073
	^{87M} Sr	3600	2340673		69 Zn	300	1
	⁸⁹ Sr	18000	1		71M Zn	3600	576
Ге	^{121M} Te	18000	1		71 Zn	60	42
	^{123M} Te	18000	135	Zr	95 Zr	18000	1
	¹²⁷ Te	3600	84		$^{97}\mathrm{Zr}$	3600	4

Table 4: Irradiation conditions for geological materials.

E(keV)	RN	Soil-7 [5]	SL-1 [6]	Ceramics [7]	Sewage Sludge [8]	U-ores [9]	Soil [10]
657.8	^{110m} Ag			-	5 h		
1779	²⁸ Al	30 s	-	3 m	3 m	30 s	30 s
559.1	76 As	1 h	5 m	2 h	5 h	1 h	5 h
496.3	131 Ba	-	1-5 h	5 h	5 h	5 h	5 h
165.8	¹³⁹ Ba	-	-	10 m	10 m		10 m
616.3	$^{80}\mathrm{Br}$	-	-	-	10 m		
554.4	82 Br	1 h	1 h	-	5 h		
1297.1	⁴⁷ Ca	-	-	-	5 h		5 h
145.4	¹⁴¹ Ce	5 h	1-5 h	5 h	5 h	5 h	5 h
293.27	¹⁴³ Ce	1 h	1 h	-	-		1 h
1642.7	³⁸ C1	-	-	-	3 m		
1173.2	⁶⁰ Co	5 h	1-5 h	5 h	5 h	5 h	5 h
320.1	⁵¹ Cr	5 h	1-5 h	5 h	5 h	5 h	5 h
795.8	¹³⁴ Cs	5 h	1-5 h	5 h	-	5 h	5 h
1345.8	⁶⁴ Cu	-	-	-	5 h		
1039	⁶⁶ Cu	-	-	-	3 m		
94.7	¹⁶⁵ Dy	-	-	10 m	10 m	3 m	10 m
1408	¹⁵² Eu	-	-	-	5 h	5 h	5 h
841.6	^{152M} Eu	-	-	-	5 h		

M. Wasim / The Nucleus 57, No. 3 (2020) 90-99

E(keV)	RN	Soil-7 [5]	SL-1 [6]	Ceramics [7]	Sewage Sludge[8]	U-ores [9]	Soil [10]
1099.2	⁵⁹ Fe	5 h	1-5 h	5 h	5 h	5 h	5 h
630	⁷² Ga	1 h	-	2 h	5 h	1 h	5 h
264.4	⁷⁷ Ge	1 h	-	-	-		-
345.9	¹⁸¹ Hf	5 h	1-5 h	5 h	5 h	5 h	5 h
279.2	²⁰³ Hg	-	-	-	5 h		
442.9	$^{128}{ m I}$	-	-	-	10 m		
1097.3	^{116M} In	-	-	10 m	-		
1524.6	42 K	1 h	5 m	10 m	10 m	1 h	10 m
328.8	140 La	1 h	5 m	10 m	5 h	1 h	5 h
208.4	¹⁷⁷ Lu	-	1-5 h	-	-		
843.8	27 Mg	-		3 m	3 m	3 m	3 m
846.8	⁵⁶ Mn	1 h	5 m	3 m	10 m	3 m	10 m
1368.6	²⁴ Na	1 h	5 m	3 m	10 m	3 m	10 m
91.1	¹⁴⁷ Nd	1 h	-	5 h	5 h	5 h	5 h
1076.6	⁸⁶ Rb	5 h	1-5 h	5 h	5 h	5 h	5 h
197.1	¹⁰³ Ru	5 h	-	-	-		
564.2	¹²² Sb	1 h	1-5 h	-	5 h		5 h
1691	¹²⁴ Sb	5 h	1-5 h	5 h	5 h	5 h	
389.3	⁴⁶ Sc	5 h	1-5 h	2 h	5 h	5 h	5 h
264.7	⁷⁵ Se	-	1-5 h	-	5 h	5 h	
103.2	¹⁵³ Sm	1 h	5 m	2 h	5 h	1 h	5 h
388.4	^{87M} Sr	-	-	-	10 m	1 h	
1189	¹⁸² Ta	5 h	1-5 h	5 h	5 h	5 h	5 h
379.4	¹⁶⁰ Tb	5 h	1-5 h	5 h	5 h	5 h	5 h
312	Th(²³³ Pa)	1 h	1-5 h	5 h	5 h	5 h	5 h
320.1	⁵¹ Ti	-	-	3 m	-		
106.1	$U(^{239}Np)$	1 h	1 h	2 h	5 h	30 m	5 h
1434.1	⁵² V	-	-	3 m	3 m	3 m	3 m
179.6	$^{187}\mathrm{W}$	1 h	-	2 h	5 h	1 h	
177.2	$^{169}\mathrm{Yb}$	1 h	-	-	5 h		5 h
396.3	¹⁷⁵ Yb	-	1-5 h	5 h	5 h	1 h	5 h
1115.6	⁶⁵ Zn	5 h	1-5 h	5 h	5 h	5 h	5 h
438.6	^{69M} Zn	-	-	-	5 h	-	-
724.2	⁹⁵ Zr	-	1-5 h	-	-	-	5h

Table 5: Irradiation conditions for biological materials.

E(keV)	RN	Fish [11]	Milk [12]	Herbs [13]	Straw Berry[14]	Fruits [15]	Brain [16]
559.1	⁷⁶ As	5 h	-	-	5 h	30 m	-
496.3	¹³¹ Ba	-	-	-	5 h	-	-
554.4	$^{82}\mathrm{Br}$	-	1 h	1 h	5 h	30 m	1 h
3084.5	⁴⁹ Ca	-	3 m	3 m	3 m	3 m	-
145.4	¹⁴¹ Ce	-	-	1 h	5 h	1 h	-
1642.7	³⁸ C1	5 m	3 m	3 m	3 m	3 m	-
1173.2	⁶⁰ Co	5 h	1 h	1 h	5 h	1 h	1 h
320.1	⁵¹ Cr	5 h	1 h	1 h	5 h	1 h	1 h
795.8	¹³⁴ Cs	-	1 h	-	5 h	1 h	
121.8	¹⁵² Eu	-	-	-	-	-	1 h
1099.2	⁵⁹ Fe	5 h	1 h	1 h	5 h	1 h	1 h
345.9	$^{181}{ m Hf}$	-	1 h	1 h	1 h	1 h	-
279.2	203 Hg	5 h	-	-	-	1 h	1 h
442.9	$^{128}\mathbf{I}$	-	30 m (Ep)	30 m (Ep)	-	30 m	-
1524.6	42 K	5 m	3 m	1 h	3 m	30 m	1 h
328.8	¹⁴⁰ La	-	-	-	1 h	30 m	-
843.8	27 Mg	5 m	3 m	3 m	3 m	3 m	-
846.8	⁵⁶ Mn	5 m	-	10 m	3 m	10 m	-
1368.6	²⁴ Na	5 m	3 m	10 m	3 m	10 m	1 h
1076.6	⁸⁶ Rb	-	1 h	1 h	5 h	1 h	1 h
497.1	103 Ru	-	-	-	5 h	-	-
564.2	¹²² Sb	-	-	-	1 h	-	-
1691	¹²⁴ Sb	5 h	-	1 h	5 h	1 h	1 h
889.3	⁴⁶ Sc	-	1 h	1 h	5 h	1 h	1 h
264.7	⁷⁵ Se	5 h	-	-	5 h	1 h	1 h
103.2	¹⁵³ Sm	-	-	-	5 h	30 m	-
514	⁸⁵ Sr	5 h	1 h	30 m (Ep)	5 h	1 h	-
1189	¹⁸² Ta	-	-	-	5 h	1 h	-
74.6	¹⁶⁰ Tb	-	-	-	-	-	1 h
312	Th(²³³ Pa)	-	-	-	1 h	1 h	-
106.1	$U(^{239}Np)$	-	-	-	-	30 m	-
1434.1	^{52}V	5 m	-	-	-	-	-
1115.6	⁶⁵ Zn	5 h	1 h	1 h	5 h	1 h	1 h

Ep: Epithermal neutron activation analysis

Table 6: Irradiation conditions for alloys.

E(keV)	RN	Ni-based [17]	Mixed_alloys [18]	
657.8	^{110m} Ag	-	5 h	
1779	28 Al	1 m	10 s	
559.1	⁷⁶ As	1 h	5 h	
1173.2	⁶⁰ Co	1 h	5 h	
1332.5	^{60M} Co	1 m	-	
320.1	⁵¹ Cr	1 h	5 h	
795.8	¹³⁴ Cs	-	5 h	
1345.8	⁶⁴ Cu	1 h	5 h	
1039	⁶⁶ Cu	1 m	10 s	
1099.2	⁵⁹ Fe	1 h	5 h	
630	⁷² Ga	1 h	5 h	
279.2	203 Hg	-	5 h	
1097.3	^{116M} In	-	1 m	
328.8	140 La	-	1 h	
843.8	27 Mg	3 m	-	
846.8	⁵⁶ Mn	1 m	10 s	
140.5	⁹⁹ Mo	1 h	5 h	
191.9	101 Mo	1 m	-	
871.0	^{94M} Nb	1 m	-	
91.1	¹⁴⁷ Nd	-	1 h	
1481.8	⁶⁵ Ni	-	10 s	
564.2	¹²² Sb	-	1 m	
1691	¹²⁴ Sb	-	5 h	
264.7	⁷⁵ Se	-	5 h	
158.56	^{117M} Sn	1 h	5 h	
1189	¹⁸² Ta	1 h	-	
312	$Th(^{233}Pa)$	1 h	5 h	
1434.1	$^{52}\mathbf{V}$	1 m	1 m	
479.6	$^{187}\mathrm{W}$	1 m	5 h	
1115.6	⁶⁵ Zn	1 h	5 h	

References

- IAEA, "Use of research reactors for neutron activation analysis, IAEA-TECDOC-1215", Vienna, (1998).
- [2] IAEA, "Applications of research reactors, Report No. NP-T-5.3", Vienna, (2014).
- [3] IAEA, "Practical aspects of operating a neutron activation analysis laboratory, IAEA-TECDOC-564", Vienna, (1990).
- [4] R.M. Lindstrom, "Nuclear analysis at NBS and NIST", J. Radioanal. Nucl. Chem., vol. 318, pp. 1465-1471, 2018.
- [5] R.R. Greenberg, P. Bode and E.A. De Nadai Fernandes, "Neutron activation analysis: A primary method of measurement", Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 66, pp. 193-241, 2011.
- [6] G.M. Kolesov, N.A. Shubina and A.Y. Lyul, "Optimizing instrumental neutron activation analysis of extraterrestrial materials: Fragments of

- lunar rocks, meteorites, chondrules, and ultrarefractory inclusions", J. Anal. Chem., vol. 56, pp. 1022-1028, 2001.
- [7] D.D. Burgess, "Optimization of neutron activation analysis by interactive computer graphics", J. Radioanal. Nucl. Chem., vol. 110, pp. 51-60, 2005.
- [8] M. Wasim, J.H. Zaidi, M. Arif and I. Fatima, "Development and implementation of k₀-INAA standardization at PINSTECH", J. Radioanal. Nucl. Chem., vol. 277, pp. 525-529, 2008.
- [9] M. Wasim and J.H. Zaidi, "NUCDATA: a useful database for NAA lab", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 481, pp. 760-764, 2002.
- [10] M. Wasim, W. Zafar, M. Tufail, M. Arif, M. Daud and A. Ahmad, "Elemental analysis of topaz from northern areas of Pakistan and assessment of induced radioactivity level after neutron irradiation for

- color induction", J. Radioanal. Nucl. Chem., vol. 287, pp. 821-826, 2011.
- [11] M. Wasim, M. Arif, J.H. Zaidi and Y. Anwar, "Development and implementation of k_0 -INAA standardization at 10 MW Pakistan research reactor-1", Radiochim. Acta, vol. 97, pp. 651-655, 2009.
- [12] M. Wasim, M. Arif, J.H. Zaidi and I. Fatima, "Quantitative analysis of ancient Chinese ceramic using k₀-instrumental neutron activation analysis", Radiochim. Acta, vol. 96, pp. 863-866, 2008.
- [13] M. Wasim, M. Arif, S. Iqbal and M. Daud, "Provisional elemental values for IAEA-Sewage Sludge by instrumental neutron activation analysis", Geostand. Geoanalytical Res., vol. 37, pp. 87-93, 2013.
- [14] M. Asim, M. Wasim and B. Mohammad, "Development of methodologies for the analysis of uranium ores by k₀-instrumental neutron activation analysis and inductively coupled plasma atomic emission spectrometry", J. Radioanal. Nucl. Chem., vol. 311, pp. 1963-1969, 2017.
- [15] M. Wasim, S. Iqbal and M. Ali, "Radiological and elemental analysis of soils from Hunza in Central Karakoram using gamma-ray spectrometry and k₀-instrumental neutron activation analysis", J. Radioanal. Nucl. Chem., vol. 307, pp. 891-898, 2015.
- [16] M. Wasim, A. Rahman, J. Zaidi, S. Waheed and S. Ahmad, "Neutron activation analysis of IAEA proposed certified reference material IAEA-407 (North Sea Fish Homogenate)", J. Radioanal. Nucl. Chem., vol. 254, pp. 219-222, 2002.
- [17] M. Wasim, S. Rehman, M. Arif, I. Fatima and J.H. Zaidi, "Neutron activation analysis and atomic absorption spectrometry for the analysis

- of fresh, pasteurized and powder milk", Radiochim. Acta, vol. 100, pp. 51-56, 2012.
- [18] M. Wasim, M. Daud, M. Arif, S. Iqbal and Y. Anwar, "Characterisation of some exotic fruits (Morus nigra, Morus alba, Salvadora persica and Carissa opaca) used as herbal medicines by neutron activation analysis and estimation of their nutritional value", J. Radioanal. Nucl. Chem., vol. 292, pp. 653-659, 2012.
- [19] M. Wasim, N. Khalid, A. Asif, M. Arif and J.H. Zaidi, "Elemental characterisation of strawberry grown in Islamabad by k_0 -instrumental neutron activation analysis and atomic absorption spectrophotometry and its dietary assessment", J. Radioanal. Nucl. Chem., vol. 292, pp. 1153-1159, 2012.
- [20] M. Wasim, S. Iqbal and S. Rahman, "Fruit of Morus nigra and Morus alba as environmental biomonitor: an elemental analysis by koinstrumental neutron activation analysis", J. Radioanal. Nucl. Chem., vol. 310, pp. 777-784, 2016.
- [21] M. Wasim, M. Arif and M.S. Iqbal, "Determination of elements in different parts of goat brain using k_0 instrumental neutron activation analysis", J. Radioanal. Nucl. Chem., vol. 300, pp. 249-254, 2014.
- [22] M. Wasim and S. Ahmad, "Comparison of two semi-absolute methods: k₀-instrumental neutron activation analysis and fundamental parameter method X-ray fluorescence spectrometry for Ni-based alloys", Radiochim. Acta, vol. 103, pp. 533–540, 2015.
- [23] N. Khalid, M. Wasim, N.A. Lodhi and M. Arif, "Performance evaluation of k₀-instrumental neutron activation analysis and flame atomic absorption spectrophotometry in the characterization of various types of alloys", J. Radioanal. Nucl. Chem., vol. 297, pp. 153-159, 2013.