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Abstract.: In this research, a new probability distribution named Trans-
muted Inverted Kumaraswamy (TIK) distribution based on quadratic rank
transmutation map has been proposed. The newly proposed distribution
is an extension of the inverted Kumaraswamy distribution. Several sta-
tistical properties such as moments, probability weighted moments, mo-
ment generating function, incomplete moments and entropy measure are
investigated. The parameters of the proposed distribution are estimated by
using the maximum likelihood approach under type-II censoring, and the
performance has been evaluated through mean squared error and bias by
conducting Monte Carlo simulations. The proposed distribution showed,
based on various goodness of fit indices, better suitability as compared to
competitive distributions when applied on four real life datasets.
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1. INTRODUCTION

Many probability distributions that are capable of reliability framing in life data analysis
are called lifetime distributions. All distributions are explained by their density functions.
Lifetime data comprises the life expectancy of any living organism mechanical system.
Inverted distribution and its several formations are used in other areas like medical, en-
gineering, and economics. This family of distributions contains the Lomax (Pareto type
II) probability distribution, Inverted Kumaraswamy Distribution, Log-Logistic probability
distribution, Beta type-II probability Distribution, and many more. Many generalization of
the distribution used in life time testing are proposed. One such generalization is obtained
by using the quadratic rank transmuted map proposed by [32]. Using this idea, many
transmuted distributions have been proposed in the literature. For example,transmuted
Weibull distribution [10], transmuted modified inverse Rayleigh distribution [15], trans-
muted Weibull-Rayleigh distribution [37], transmuted weighted exponential distribution
[6], transmuted Weibull power function distribution [12], etc., and investigated their statis-
tical properties. For more details on various transmuted distribution developed so far, we
refer the reader [28] to [35], and references therein.

The well-know Kumarsawamy distribution proposed by Poondi Kumarswamy (1980)
is applicable in hydrology where the processes are usually double bounded. A detailed
investigation on Kumaraswamy distribution is done by [14]. Since the development of
this distribution, a lot its variants have been proposed. For example, the Kumaraswamy
modified Weibull distribution by [4], Kumaraswamy marshal-Olkin family of distributions
by [2], Kumaraswamy exponentiated inverse Rayleigh distribution [11], Kumaraswamy
transmuted exponentiated additive Weibull distribution [25], etc, and many other variants.
For more variants of Kumaraswamy distribution, we refer [28], [18], [30],and references
therein. In this study, we purpose transmuted inverted Kumarswamy (TIK) distribution.
We further investigate its statistical properties including its special cases. Moreover, sim-
ulation study and real life applications is also given. The rest of the article is as follows:
The statistical investigation of TIK distribution is given in Section 1. The estimation of
proposed distribution under type-II censoring is given in Section 2. The performance is
evaluated through simulation studies in Section 3 whereas the real life applications are
given in Section 4. Finally, Section 5 covers the concluding remarks.

sectionTransmuted Inverted Kumaraswamy Distribution and Properties
In this section, the statistical properties of TIK distribution are derived together with the

special cases of TIK distribution and entropy measures. The generalized transmuted family
of distributions based on a cumulative distribution function (CDF), see [32], is defined by

F (t) := (1 + λ)Gt(t)− λ(Gt(t))2 , (1. 1)
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whereGt(t) is the generalized CDF of any given continuous distribution andλ is the trun-
cated parameter. The corresponding probability density function (PDF) can be written as

f(t) := gt(t)[(1 + λ)− 2λGt(t)] , (1. 2)

whereλ is the transmuted parameter andgt(t) is the generalized density function of any
given continuous distribution. In order to develop the TIK model, we consider the inverted
Kumaraswamy distribution as the baseline model. Therefore, the PDF and the CDF of
inverted Kumaraswamy distribution are

G(t, α, β) = ((1− (1 + t)−α)β , (1. 3)

for α, β > 0 and
g(t) = αβ(1 + t)−(α+1[1− (1− t)−α]β−1. (1. 4)

By using ( 1. 1 ), the CDF of TIK distribution is

F (t, α, β) = [(1− (1 + t)−α)β ][(1 + λ)− λ{1− (1 + t)−α}β ] ,

= (1 + λ){1− (1 + t)α}β − λ{1− (1 + t)−α}2β
(1. 5)

whereα, β > 0. Analogously, the PDF of TIK distribution by using ( 1. 2 ) is

f(t, α, β, λ) =
αβ

(1 + t)α+1

(
1− (1 + t)−α

)β−1
(
1 + λ− 2λ

(
1− (1 + t)−α

)β
)

=
αβ(1 + λ)

(1 + t)(α+1)

{
1− (1 + t)−α

}β−1

− 2λαβ

(1 + t)(α+1)

{
1− (1 + t)−α

}2β−1

,

(1. 6)
whereα andβ are the scale andλ is the transmuted parameter.

1.1. Survival Function. Let T ∈ R with CDF F (t)on the interval[0, ∞], then the
survival function for TIK distribution is

R (t) = 1− F (t)

= 1− (1 + λ)
{

1− (1 + t)−α
}β

− λ
{

1− (1 + t)−α
}2β (1. 7)

Hazzard Function. The hazard rate function of TIK distribution denoted byhTIkum(t) is
obtained as

h (t) =
αβ(1 + t)−(α+1)

{
1− (1 + t)−α

}β−1
[
1 + λ− 2λ

{
1− (1 + t)−α

}β
]

1− (1 + λ)
{

1− (1 + t)−α
}β

− λ
{

1− (1 + t)−α
}2β

(1. 8)

Colloray: Let t follows TIK distribution, then for t>0, the following holds

lim
t→0




∞ when β < 1
α (1 + λ) when β = 1
0 when β > 1

(1. 9)

Proof:
We know that

h (t) = Pr (T < t) =
f(t)

1− F (t)
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FIGURE 1. Cumulative hazard rate curves of TIK distribution for differ-
ent values of parameters

lim
t→0

h (t) = lim
t→0

f (t)
1− F (t)

= lim
t→0

f(t) lim
t→0

1
1− F (t)

As we know thatlimt→0 F (t) = F (0) = 0
Therefore,limt→0 h (t) = limt→0

f(t)
1−F (t) = limt→0 f(t)

1.2. Cummulative Hazzard Rate Function. It is important to note that the the cumula-
tive hazard rate can obtained by hazard rate function for the interval [0,t]. As compared
to the hazard rate function, the cumulative hazard rate function is not probability density
but it measures the risk which is infact is the risk of failure. Let H(t) denotes the hazar rate
function att, then H(.) for TIK distribution is

H (t) = −ln

∣∣∣∣1− (1 + λ)
{

1− (1 + x)−α
}β

− λ
{

1− (1 + x)−α
}2β

)
(1. 10)

Figure 1 shows the cumulative hazard rate curves of TIK distribution for different para-
meters. Clearly, ast approaches to zero,H(t) approach to zero too. Similarly,H(t)
approaches to infinity whent approaches to infinity.



Transmuted Inverted Kumaraswamy Distribution: Theory and Applications 33

1.3. Probability Weighted Moments. The probability weighted moments (PWMs) in the
case of TIK distribution can be obtained by using

βk = Lλ(1 + λ)k+1
B (k + 1, α (j + 1 + k + l)− k)−2λαβMB (k + 1, α (i + 1)− k)

(1. 11)
for all k = 0, 1, 2, 3, 4, 5, . . . . Here we have

L = 2λαβ

∫ ∞

0

tk(1 + t)−(α+1)
∞∑

k=0

(−1)k

(
2β − 1

i

)
(1 + t)−αi

andM =
∑∞

k=0 (−1)k

(
2β − 1

i

)
(1 + t)−αi

1.4. Moment Generating Function. Let t follows the TIK Distribution with parameters
α, β > 0 and|λ| ≤ 1, then the moment genering function for TIK distribution is defined
by

Mt (z) = αβ (1 + λ)
∞∑

i=0

(−1)i

(
β − 1

i

) ∞∑

k=0

(z)k

k!
B (1 + k, α (i + 1)− k)

− 2αβλ

∞∑

i=0

(−1)i

(
2β − 1

i

) ∞∑

k=0

(z)k

k!
B (1 + k, α (i + 1)− k)

(1. 12)

1.5. Incomplete Moments. Let t is randomly distributed variable follows the TIK Dis-
tribution with parametersα, β > 0 and |λ| ≤ 1, then the incomplete moment of TIK
Distribution is can be obtained by.

E (tr) = αβ (1 + λ)
∞∑

i=0

(−1)i

(
β − 1

i

)
B

x
1+x

(r + 1, α (i + 1)− r)

− 2λαβ

∞∑

i=0

(−1)i

(
2β − 1

i

)
B x

1+x
(r + 1, α (i + 1)− r)

(1. 13)

wherer = 1, 2, 3, 4 . . .

1.6. Renyi Entropy.

IT (δ) = log (α) +
δ

1− δ
log (θ) +

δ

1− δ
log (1 + λ)δ

β

(
δθ − δ + 1, δ +

δ

α
− 1

α

)

− log
(

2δλδαδ−1θδ β

(
2δθ − δ + 1, δ +

δ

α
− 1

α

))

(1. 14)

1.7. Special Cases of TIK Distribution. Recall that the TIK distribution is

F (t, α, θ) = (1 + λ)
{

1− (1 + t)−α
}θ

− λ
{

1− (1 + t)−α
}2θ

, α, θ > 0
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It can be written as

f (t, α, θ, λ) =
αθ

(1 + t)(α+1)

{
1− (1 + t)−α

}θ−1
(

1 + λ− 2λ
{

1− (1 + t)−α
}θ

)

(1. 15)
for α, θ > 0, |λ| ≤ 1 and t > 0. Then following are the special cases of TIK distribution.

Case 1:Let us assume thatθ = 1 andλ = 0,then by substituting these in ( 1. 15 ), the
TIK distribution leads to the density function of Lomax(Pareto type II) distribution, that is

f(t, α, 1, 0) =
α(1)

(1 + t)(α+1)

{
1− (1 + t)−α

}1−1
[
1 + 0− 2 ∗ 0

{
1− (1 + t)−α

}1
]

,

(1. 16)

whereα > 0 andt > 0.
Case 2:Let us assume thatλ = 0and by putting it into equation ( 1. 15 we obtain the

density function of Inverted Kumaraswamy Distribution probability, that is,

f(t, α, θ, 0) =
αθ

(1 + t)(α+1)

{
1− (1 + t)−α

}θ−1
[
1 + 0− 2(0)

{
1− (1 + t)−α

}θ
]

=
αθ

(1 + t)(α+1)

{
1− (1 + t)−α

}θ−1

, α, θ > 0, t > 0

(1. 17)
Case 3:Let us assume thatα = θ = 1 andλ = 0 , then equation ( 1. 15 , after plugging

these into it lead to the Log-Logistic probability distribution, that is,

f (t, 1, 1, 0) =
1 (1)

(1 + t)(1+1)

{
1− (1 + t)−1

}1−1
[
1 + 0− 2 (0)

{
1− (1 + t)−1

}1
]

=
1

(1 + t)2
, t > 0

(1. 18)
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Case 4:Let us assume thatα= 1 andλ= 0 and plug them into equation ( 1. 15 that as
a result produce the density function of Beta type-II Distribution, that is

f (t, θ) =
θ

(1 + t)(1+1)

{
1− (1 + t)−1

}θ−1
[
1 + 0− 2 (0)

{
1− (1 + t)−1

}θ
]

=
θ

(1 + t)2
{

1− (1 + t)−1
}θ−1

=
θ

(1 + t)2

{
1− 1

(1 + t)

}θ−1

=
θ

(1 + t)2

{
t

1 + t

}θ−1

= θ(1 + t)−2
tθ−1(1 + t)1−θ

= θ(1 + t)1−2−θ
tθ−1

=
1

θ(1, θ)
tθ−1(1 + t)−(θ+1)

(1. 19)

2. ESTIMATION BASED ON TYPE II CENSOREDDATA

It is well-kown that several estimation methods have been developed so far to estimate
the parameters of an unknown distribution. One well-known approach is the method of
maximum likelihood estimation (MLE) that we consider here to estimate the parameters
for TIK distribution under type-II censoring. Recall that in censored data, the observed
values of a random variable is partially known. There are different types of censored data,
such as type-I and type-II censored data. In the case of type-I censored data, the experiment
is stoped at a predetermined time which lead many objects unobserved. On the otherhand,
in type-II censoring, the experimented is terminated when predetermined number of objects
or units fails. To this end, we recall the PDF of TIK distribution.

f(t, α, θ, λ) =
αθ

(1 + t)(α+1)

{
1− (1 + t)−α

}θ−1
[
1 + λ− 2λ

{
1− (1 + t)−α

}θ
]

,

(2. 20)
whereα, θ > 0, |λ| ≤ 1 and t > 0 For sample sizen, we formulate (log) likelihood
function, that is,

ln (L) = nln (α) + nln (θ)− (α + 1)
n∑

i=1

ln (1 + t)

+ θ

n∑

i=1

ln
{

1− ((1 + t))−α
}

+
n∑

i=1

ln

[
((1 + λ))− 2λ

{
1− (1 + t)−α

}θ
]

(2. 21)
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By differentiating w.r.tα we get

∂ln(L)
∂α

=
n

α
+

n∑

i=1

ln (1 + t) + θ

n∑

i=1




{
(1 + t)−α

}

1− (1 + t)−α {−ln(1 + t)}



+−2λθ

n∑

i=1





{
1− (1 + t)−α

}θ−1

{1 + t}−α {−ln(1 + t)}

(1 + λ)−2λ
{

1− (1 + t)−α
}θ





(2. 22)

Now by differentiating w.r.tθ we get

∂ln(L)
∂θ

=
n

θ
−

n∑

i=1

ln
(
1− (1 + t)−α

)
+ 2λ

n∑

i=1

({1− (1 + t)−α}θ−1ln{1− (1 + t)−α}
(1 + λ)− 2λ{1− (1 + t)−α}θ

)

(2. 23)
Finally, be differentiating w.r.t.λ, we obtain

∂ln(L)
∂θ

= 2λ

n∑

i=1





1 = 2
{

1− (1 + t)−α
}θ

(1 + λ)−2λ
{

1− (1 + t)−α
}θ





(2. 24)

By setting partial derivates w.r.tα, θ andλ equal to zero we obtain a set of simultaneous
equation. One can obtain the estimators by solving these simultaneous equations.

3. SIMULATION STUDY

In this section we perform simulation study to evaluate the performance of TIK dis-
tribution. For simulatons, Monte Carlo approach is used with 10,000 repetitions and the
comparasion is done on the basis of Mean Square Error (MSE) and absolute bias. The
parameters are estimated using MLE technique. Following true parametric values are con-
sidered

α = 0.5, θ = 0.1, λ = 0.5
α = 5.5, θ = 1.0, λ = 0.9

Simulation is executed for sample sizes n=50,100,200,300,and 500. The results of ML
estimated parametes in terms of mean, standard deviation, bias and mean squared error are
presented in Table 1 and Table 2.
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Sample size Parameters1 Mean2 Standard2Error Bias4 MSE5

25
α 4.788 2.3 4.288 23.679
θ 37.597 94.241 37.497 10287.42
λ -799.255 10003.604 -798.755 1645231

50
α 4.285 1.739 3.785 17.351
θ 18.466 44.065 18.366 2279.04
λ -594.221 558.347 -593.721 664255.9

100
α 4.05 1.221 3.55 14.093
θ 8.705 17.446 8.605 378.414
λ -318.93 340.98 -318.43 217665.02

150
α 3.968 1.047 3.468 13.122
θ 7.124 9.636 7.024 142.195
λ -194.47 216.54 -193.97 84513.93

200
α 3.904 0.893 3.404 12.384
θ 6.142 6.041 6.042 72.995
λ -87.93 198.03 -87.43 46859.88

300
α 3.744 0.696 3.244 11.008
θ 4.861 3.247 4.761 33.208
λ -54.31 141.02 -53.81 22782.15

400
α 3.726 0.673 3.226 10.86
θ 4.467 2.097 4.367 23.468
λ -3.244 109.79 -2.744 12061.37

500
α 3.677 0.432 3.177 10.28
θ 2.341 1.698 2.241 7.9052
λ -2.082 86.34 -1.582 7457.09

1000
α 1.987 0.319 1.487 2.3129
θ 1.291 1.383 1.191 3.332
λ -1.643 71.94 -1.143 5176.67

1500
α 1.045 0.223 0.545 0.3467
θ 0.653 1.127 0.553 1.575
λ -0.981 53.28 -0.481 2838.98

2000
α 0.641 0.182 0.141 0.053
θ 0.201 0.732 0.101 0.546
λ -0.604 19.31 -0.104 372.886

TABLE 1. ML estimates of parameters on the basis of simulation and
comparison with true valuesα = 0.5, θ = 0.1 andλ = 0.5.
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Sample Size Parameters1 Mean2 Standard Error3 Bias4 MSE5

25
α 11.602 1.095 6.102 38.434
θ 598.907 683.766 597.907 825028.5
λ -1658.817 2079.904 -1657.917 7074690

50
α 10.992 0.302 5.492 30.253
θ 305.312 203.422 304.312 133968.3
λ -801.3 616.019 -800.4 1020120

100
α 10.526 0.276 5.0262 25.337
θ 253.258 81.177 252.258 70223.74
λ -648.602 236.916 -647.702 475647

150
α 7.452 0.198 1.952 3.849
θ 218.421 69.821 217.421 52146.86
λ -501.43 209.321 -500.53 294345.56

200
α 6.873 0.134 1.373 1.90308
θ 198.231 63.742 197.231 42962.98
λ -347.21 187.73 -346.31 155173.169

300
α 6.321 0.109 0.821 0.6859
θ 109.37 57.291 108.37 15026.31
λ -191.94 109.65 -191.04 48519.404

400
α 6.098 0.103 0.598 0.3682
θ 92.37 44.432 91.37 10322.67
λ -99.324 98.743 -98.424 19437.46

500
α 5.932 0.089 0.432 0.1945
θ 61.327 39.778 60.327 5221.63
λ -57.84 59.345 -56.94 6763.99

1000
α 5.834 0.081 0.334 0.1181
θ 39.231 26.234 38.231 2149.83
λ -31.54 47.021 -30.64 3149.78

1500
α 5.706 0.073 0.206 0.0477
θ 8.765 19.456 7.765 438.831
λ -6.89 36.934 -5.99 1400

2000
α 5.6 0.065 0.1 0.0142
θ 1.329 7.986 0.329 63.884
λ -0.999 17.405 -0.099 302.94

TABLE 2. ML estimates of parameters on the basis of simulation and
comparison with true valuesα = 5.5, θ = 1.0 andλ = 0.9.

4. APPLICATIONS OFTRANSMUTED INVERTED KUMARASWAMY DISTRIBUTION TO

REAL L IFE DATASETS

In this section, four real life applications of TIK distribution have been presented. The
developed model is applied to data sets and the estimates of required parameters are ob-
tained by using the MLE approach. Furthermore, the performance of TIK distribution is
compared to Inverted Kumaraswamy Distribution, Lomax (Pareto type 2) distribution, Beta
Type II(Inverted Beta) distribution, and Frechet distribution based on likelihood measures

4.1. Application 1. The first set of data comes from Lee and Wang (2003) comprises of
the remission times (in months) of a random sample of 128 patients with bladder cancer.
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5.62,32.15,2.26,6.76,14.24,9.47,11.98,5.71,26.31,5.06,7.26,0.20,2.23,20.28,5.41,5.34,25.
74,7.32,3.52,12.02,7.62,8.37,0.40,0.51,4.34,5.32,11.64,14.76,6.97,5.85,4.40,4.50,46.12,8.
65,9.22,7.28,3.70,12.03,4.87,4.26,7.63,11.79,6.93,12.63,2.62,2.83,36.66,5.17,13.29,1.46,
8.66,21.73,4.98,2.07,13.80,10.06,2.75,7.09,2.69,14.77,2.02,2.87,17.14,6.94,4.51,9.02,5.0
9,3.02,18.10,5.49,16.62,2.54,3.31,23.63,17.36,1.40,1.26,1.19,10.66,11.25,3.36,5.41,9.74,
6.54,10.34,3.64,0.81,7.66,13.11,3.82,7.39,4.33,10.75,0.90,0.08,19.13,12.07,7.93,25.82,2.
02,2.69,2.09,5.32,2.46,0.50,14.83,1.35,1.76,4.18,3.48,34.26,4.23,22.69,3.57,3.36,2.64,8.2
6,3.25,1.05,79.05,43.01,8.53,17.12,15.96,7.87,7.59,6.25,3.88
The descriptive measures from the dataset are presented in Table 3 and the ML estimates
alongwith their standard error for different distribution are presented in Table 4.

Mean Median Mode Variance Minimum Maximum N
9.36562 6.395 5 110.425 0.08 79.05 128

TABLE 3. Descriptive measures for the remission times (in month) of
bladder cancer patients

Distribution α̂ β̂ λ̂ SE(α̂) S.E(β̂) S.E(̂λ)
TIK 1.217731 3.658443 -0.763852 0.09350652 0.6923991 0.13047099
Inverted Kumaraswamy 1.087677 4.657458 0.08580569 0.68545273
Lomax (Pareto type-II) 0.5009143 0.04427481
Beta Type II (Inverted Beta) 4.116951 0.3638905
Frechet 0.7520845 3.2580877 0.04242387 0.40741298

TABLE 4. MLEs for the remission times (in month) of bladder cancer
patients data

In the following Table 5 and 6, different goodness of fit indices for different distribu-
tions are presented in order to compare the fitness of the proposed distribution with other
considered distribution

Distribution lnL AIC1 CAIC* BIC3 HQIC+
TIK 420.7823 847.5645 847.7581 856.1206 851.0409
Inverted Kumaraswamy 426.3051 856.6102 856.7062 862.3142 858.9278
Lomax (Pareto Type-II) 472.0216 946.0433 946.075 948.8953 947.2021
Beta Type II (Inverted Beta) 426.8402 855.6804 855.7121 858.5324 856.8392
Frechet 444.0008 892.0015 892.0975 897.7056 894.3191

TABLE 5. Goodness of fit measures of proposed and other considered
distributions for bladder cancer dataset
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Distribution Cramer Test
Anderson

Darling Test
Kolmogorove

Smirnov
p-value

TIK 0.26437 1.707203 0.083118 0.3395
Inverted Kumaraswamy 0.3859421 2.456708 0.10637 0.1104
Lomax (Pereto Type=II) 0.2738571 1.775642 0.31577 1.641x
Beta Type II (Inverted Beta) 0.3692528 2.356569 0.097025 0.1795
Frechet 0.7443207 4.546423 0.14079 0.01251

TABLE 6. Goodness of fit measures of proposed and other considered
distributions for bladder cancer dataset.

From Table 5 and 6, it is observed that the TIK distribution reaches the minimum values
of all the goodness of fit criteria described, indicating that the TIK distribution provides
better performance for the remission times (in months) of patients with bladder cancer.

4.2. Application 2. The second set of data is taken from Murthy et al. (2006) where
windshield maintenance times that were not defective at the time of the observations is
given. The data is as follows:
0.046,1.436,2.592,0.140,1.492,2.600,0.150,1.580,2.670,0.248,1.719,2.717,0.280,1.794,2.
819,0.313,1.915,2.820,0.389,1.920,2.878,0.487,1.963,2.950,0.622,1.978,3.003,0.900,2.05
3,3.102,0.952,2.065,3.304,0.996,2.117,3.483,1.003,2.137,3.500,1.010,2.141,3.622,1.085,
2.163,3.665,1.092,2.183,3.695,1.152,2.240,4.015,1.183,2.341,4.628,1.244,2.435,4.806,1.
249,2.464,4.881,1.262,2.543,5.140.
The descriptive statistics are presented in Table 7. The estimates of parameters using ML
approach together with their standard error are given in Table 8. The goodness of fit mea-
sures considering different fit indices are presented in Table 9 and 10.

Mean Median Mode Variance Minimum Maximum N
2.08527 2.065 2.5 1.55059 0.046 5.14 63

TABLE 7. Descriptive measures for Service times of 63 Aircraft Wind-
shield data.

Distribution α̂ β̂ λ̂ SE(α̂) S.E(β̂) S.E(̂λ)
TIK 2.0247256 2.7448902 -0.670917 0.22806 0.6692 0.18768
Inverted Kumaraswamy 1.789253 3.258129 0.21171 0.6299
Lomax (Pareto type-II) 0.9625152 0.1212654
Beta Type II (Inverted Beta) 1.699635 0.2141338
Frechet 0.810356 0.930597 0.065629 0.154297

TABLE 8. MLEs of TIK and other distribution on aircraft windshield data
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Distribution lnL AIC CAIC BIC HQIC
TIK 112.1855 230.371 230.7778 236.8004 232.8997
Inverted Kumaraswamy 115.1654 234.3308 234.5308 238.6171 236.0167
Lomax (Pareto Type-II) 130.8613 263.7226 263.7882 265.8657 264.5655
Beta Type II (Inverted Beta) 123.425 248.8501 248.9157 250.9932 249.693
Frechet 131.3029 266.6058 266.8058 270.8921 268.2916

TABLE 9. Gooddness of fit indices for TIK and other considered distri-
butions using aircraft1 windshield data

Distribution Crammer Test
Anderson

Darling Test
Kolmogrov

Smirnov Test
p-value

TIK 0.4531756 2.687421 0.16682 0.05315
Inverted Kumaraswamy 0.5463664 3.188067 0.18197 0.02684
Lomax (Pareto type 2) 0.4839982 2.846576 0.31801 3.642x
Beta Type II (Inverted Beta) 0.5123395 3.001137 0.26077 0.0002872
Frechet 0.9952383 5.418904 0.22147 0.003401

TABLE 10. Gooddness of fit indices for TIK and other considered dis-
tributions using aircraft1 windshield data

Clearly from Table 9 and Table 10, the TIK distribution shows better fit on the consid-
ered data as compared to all other distributions because it gain minimum values of most of
th goodness of fit measures

4.3. Application 3. The third set of data, by Andrews and Herzberg (2012), represents the
fatigue duration (fracture) of fatigue failure in Kevlar 373 epoxy under constant1pressure
at a stress level of 90 percent until they all failed. The data is provided as:

0.0251,0.0886,0.0891,0.2501,0.3113,0.3451,0.4763,0.5650,0.5671,0.6566,0.6748,0.67
51,0.6753,0.7696,0.8375,0.8391,0.8425,0.8645,0.8851,0.9113,0.9120,0.9836,1.0483,1.05
96,1.0773,1.1733,1.2570,1.2766,1.2985,1.3211,1.3503,1.3551,1.4595,1.4880,1.5728,1.57
33,1.7083,1.7263,1.7460,1.7630,1.7746,1.8275,1.8375,1.8503,1.8808,1.8878,1.8881,1.93
16,1.9558,2.0048,2.0408,2.0903,2.1093,2.1330,2.2100,2.2460,2.2878,2.3203,2.3470,2.35
13,2.4951,2.5260,2.9911,3.0256,3.2678,3.4045,3.4846,3.7433,3.7455,3.9143,4.8073,5.40
05,5.4435,5.5295,6.5541,9.0960.

The descriptive statistics are presented in Table 11. The estimates of parameters using
ML approach together with their standard error are given in Table 12. The goodness of fit
measures considering different fit indices are presented in Table 13 and 14.

Mean Median Mode Variance Minimum Maximum N
1.95924 1.73615 1.5 2.47741 0.0251 9.096 76

TABLE 11. Descriptive measures for the fatigue fracture of Kevlar 373
epoxy data.
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Distribution α̂ β̂ λ̂ SE(α̂) S.E(β̂) S.E(̂λ)
TIK 2.134827 2.469498 -0.752759 0.225614 0.546215 0.15845
Inverted Kumaraswamy 1.88626 3.143558 0.207126 0.556548
Lomax (Pareto type-II) 1.026563 0.117755
Beta Type II (Inverted Beta) 1.571857 0.180304
Frechet 0.758853 0.820589 0.054088 0.132202

TABLE 12. Gooddness of fit indices for TIK and other considered dis-
tributions using of Kevlar 373/epoxy data.

Distribution lnL AIC1 CAIC* BIC3 HQIC+
TIK 126.6522 259.3045 259.6378 266.2967 262.0989
Inverted Kumaraswamy 130.2268 264.4537 264.6181 269.1152 266.3166
Lomax (Pareto type 2) 148.0409 298.0817 298.1358 300.4124 299.0132
Beta Type II (Inverted Beta) 141.3447 284.6895 284.7435 287.0202 285.621
Frechet 153.5392 311.0784 311.2428 315.7399 312.9414

TABLE 13. Gooddness of fit indices for TIK and other considered dis-
tributions using of Kevlar 373/epoxy data.

Distribution Crammer Test
Anderson

Darling Test
Kolmogrov

Smirnov Test
p-value

TIK 0.2233292 1.349718 0.1092 0.3026
Inverted Kumaraswamy 0.3085488 1.886975 0.12445 0.1744
Lomax (Pareto type 2) 0.2606781 1.593812 0.28597 5.39 10{̂-6}
Beta Type II (Inverted Beta) 0.2833641 1.733491 0.22379 0.000796
Frechet 0.9168293 5.339595 0.18936 0.007352

TABLE 14. Gooddness of fit indices for TIK and other considered dis-
tributions using of Kevlar 373/epoxy data.

The above Table 13 and 14 addresse the goodness of fit criterion and ML estimates
for examined models. We see that TIK distribution achieves the least estimations of all
depicted goodness of fit standards. Therefore, TIK distribution can be considered better fit
for fatigue fracture of Kevlar 373 epoxy data.

4.4. Application 4. The fourth data set is by Murty, Xie and Jiang (2004) present the
failure time (in weeks) of 50 components commissioned at a time. The data is provided as
follows
0.013,0.065,0.111,0.111,0.163,0.309,0.426,0.535,0.684,0.747,0.997,1.284,1.304,1.647,1.
829,2.336,2.838,3.269,3.977,3.981,4.520,4.789,4.849,5.202,5.291,5.349,5.911,6.018,6.42
7,6.456,6.572,7.023,7.087,7.291,7.787,8.596,9.388,10.261,10.713,11.658,13.006,13.388,
13.842,17.152,17.283,19.418,23.471,24.777,32.795,48.105.
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The descriptive statistics are presented in Table 15. The estimates of parameters using
ML approach together with their standard error are given in Table 16. The goodness of fit
measures considering different fit indices are presented in Table 17 and 18.

Mean Median Mode Variance Minimum Maximum N
7.82102 5.32 2.5 84.75597 0.013 48.105 50

TABLE 15. Descriptive measures for the failure time (in weeks) of
500components data

Distribution α̂ β̂ λ̂ S.E(̂α) S.E (̂β) S.E(̂λ)
TIK 0.8163129 1.1920156 -0.5980451 0.1243014 0.304033 0.2421881
Inverted Kumaraswamy 0.7211705 1.4436815 0.1162764 0.2734134
Lomax (Pareto type 2) 0.581541 0.08224207
Beta Type II (Inverted Beta) 1.876653 0.2653987
Frechet 0.4790776 1.2802198 0.04541148 0.40276074

TABLE 16. MLEs of TIK and other distributions for the failure time8(in
weeks) of 500 components data.

Distribution lnL AIC1 CAIC* BIC3 HQIC+
TIK 159.4382 324.8764 325.3981 330.6124 327.0607
Inverted Kumaraswamy 161.3341 326.6682 326.9235 330.4922 328.1244
Lomax (Pareto type 2) 163.0822 328.1644 328.2477 330.0764 328.8925
Beta Type II (Inverted Beta) 163.8393 329.6786 329.7619 331.5906 330.4067
Frechet 168.6388 341.2777 341.533 345.1017 342.7339

TABLE 17. Gooddness of fit indices for TIK and other considered dis-
tributions using for the failure time (in weeks) of 50 components data

Distribution Crammer Test
Anderson

Darling Test
Kolmogrov

Smirnov Test
p-value

TIK 0.3745741 2.032786 0.1989 0.03827
Inverted Kumaraswamy 0.4320544 2.354821 0.21998 0.01583
Lomax (Pareto type 2) 0.4224282 2.301301 0.24674 0.004541
Beta Type II (Inverted Beta) 0.4369886 2.382256 0.29643 0.0003053
Frechet 0.6096729 3.313685 0.19935 0.0376

TABLE 18. Gooddness of fit indices for TIK and other considered dis-
tributions using for9the failure time (in weeks) of 50 components data.

For this dataset, we see from Table 17 and 18 that the TIK achieves the estimates with
best results on goodness of fit indices. This indicates that the TIK distribution the best
suitable distribution for the said dataset among the considered distributions.
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5. CONCLUSION

In this study, a new TIK distribution is proposed to model the lifetime experiments and
its statistical properties are investigated. The parameters of the TIK distribution were es-
timated through the MLE criteria and numerical results were estimated via Monte-Carlo
simulation. The effects of the sample size on the shape and scale of the proposed distri-
bution are also explored. The proposed distribution is compared, empirically, with some
competitive distributions existing in the literature. The numerical results suggested that the
proposed TIK distribution is suitable to the compared distributions when studying the life
of an experiment. The proposed distribution can be extended to study the weighted disper-
sions, beta summed up conveyance, Zografos-Balakrishnan-G (ZB-G) appropriation, and
Marshall Olkin circulation for some future work.
Note: This research is part of the thesis with turnitin similarity report ID: 1349085284
dated June 24, 2020 and submitted to Punjab University Library, Lahore [36].
Conflicts of Interest: The authors declare no conflict of interest.
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[29] A. Rényi, Contributions to the theory of independent random variables, Acta Math. Acad. Sci. Hungar,1,
(1950) 99-108.

[30] I. N. Rashwan,A note on Kumaraswamy exponentiated Rayleigh distribution, Journal of Statistical Theory
and Applications,15, No. 3 (2016) 286-295.

[31] M. N. Shahzad and Z. Asghar,Transmuted Dagum distribution: A more flexible and broad shaped hazard
function model, Hacettepe Journal of Mathematics and Statistics,45, No. 52 (2016) 227-244.

[32] W. T. Shaw and I.R. Buckley,The alchemy of probability distributions: Beyond gram-charlier & cornish-
fisher expansions, and skew-normal or kurtotic-normal distributions, arXiv:0901.0434, (2009)

[33] R.L. Smith, and J. C. Naylor,A comparison of maximum likelihood and Bayesian estimators for the three-
parameter Weibull distribution, Journal of the Royal Statistical Society: Series C (Applied Statistics),36,
No. 3 (1987) 358-369.

[34] J. G. Surles and W. J. Padgett,Inference for reliability and stress-strength for a scaled Burr Type X distribu-
tion, Lifetime data analysis,7, No.2 (2001) 187-200.

[35] Y. Tian, M. Tian and Q. Zhu,Transmuted linear exponential distribution: A new generalization of the lin-
ear exponential distribution, Communications in Statistics-Simulation and Computation,43, No. 10 (2014)
2661-2677.

[36] M. Waqas and R. A. K. Sherwani,Transmuted inverted Kumaraswamy distribution: theory and applications,
Thesis submitted in University of the Punjab (2020).

[37] A. Yahaya and G. T. Ieren,A note on the transmuted Weibull-Rayleigh distribution, Edited Proceedings of
1st Int. Conf. of Nigeria Stat. Soc,1, (2017) 7-11.

[38] K. Zografos and N. Balakrishnan,On families of beta-and generalized gamma-generated distributions and
associated inference, Statistical methodology,6, No. 4 (2009) 344-362.


