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Abstract: This article aims to present the reverse Minkowski inequality
and other related integral inequalities by using the generatiZeakctional
Hilfer-Katugampola derivative. We have novelized these inequalities by
utilizing the Holder inequality. Moreover, two new theorems by using this
inequality are presented for the generalizefdlactional Hilfer-Katugampola
derivative. The numerical approximations of our consequence have sev-
eral utilities in applied sciences and fractional integral and differential
equations.
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1. DESCRIPTION

The calculus of non-integer order pacts derivatives and integral operators’ novelization,
especially inequalities involving fractional integrals. In the literary text, numerous descrip-
tions of fractional integral operators exist, e.g., Weyl, ErdAlAgKober, Hadamard inte-
gral, RiemannégLiouville fractional integral, Hilfer, Katugampola, and Hilfer-Katugampola
fractional integral [29, 19, 33, 24]. Abdeljawad [1] and Khalil et al. [27] extend new frac-
tional operators called local fractional conformable derivatives and integral. This individual
generalizes such fractional operators via including the new parameters and yield the rele-
vant inequalities like Hermite-Hadamard, Opial, Ostrowski, Hadamard, and others can be
seenin [6, 2, 39, 9, 45, 38, 10].

Katugampola [25] proposed a generalized fractional integral summarizing all existing in-
tegrals: Weyl, Riemann-Liouville, ErdAI’Iyié$Kober, Hadamard, and Liouville. This
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iteration process of fractional calculus yield the generalized fractional integrals and de-
rivative operators by Jarad [23]. Many inequalities are obtained using such generalized
operators and motivate the researchers to pioneering concepts to unify the fractional opera-
tors[34, 8, 11, 41, 20, 35, 36, 28, 15]. On the other hand, there are numerous approaches to
acquiring a generalization of classical fractional integrals inequalities that can be found in
various fields of mathematics, science, engineering, physics, impulse equations, [4, 3], the
stability of linear transformations, initial value problems, integral differential equations,
and boundary value problems. Researchers can find these applications in [39, 17, 46] and
various branches of mathematics. Furthermore, Future work, influenced by these advances,
will bring innovative thinking to give novelties and create variants concerning these frac-
tional operators. Thus, many applications can be found in [4, 3] by using the integral in-
equalities. Among them, most known are Hermite-Hadamard, Holder, Minkowski, Jensen,
Hardy, and Jensen-Mercer and others [21, 40, 43, 7, 22, 5, 32]. Such generalization mo-
tivate us to apply the generalizedfractional Hilfer-Katugampola derivative to generalize

the reverse Minkowski inequality [42, 26, 16, 12, 31].

Integral inequalities have potential application in several areas of science: technology,
mathematics, chemistry, plasma physics, among others; especially, we point out initial
value problems, the stability of linear transformation, integral differential equations, and
impulse equations. Many researchers have focused on finding the numerous version of
the reverse Minkowski inequality for generalized fractional conformable integral by the
generalized fractional integral operator and Hadamard fractional integral operators.// The

b
well known Minkowski integral inequality is given far < [4{(z)dz < oo and0 <

b
[ ¥i(z)dz < oo as follows:

a

b

i b i b i
/(w1+¢2)q(z)dz < /wg(z)dz + /¢g(z)dz , (1. 1)

a

whereg > 1.
Similalry, the reverse Minkowski inequality is given as follows:

q

(f w€<z>dz> T (fb w3<z>dz> ‘< c<f‘ (01 + )7 (2) dz) 7 (L.2)

wherec is a constant ang > 1.

The contents of this paper are sorted into different sections. The basic definitions and con-
cept of the generalized k-fractional Hilfer-Katugampola derivative are presented in section
2. We proved the theorem associated with the reverse Minkowski inequality. Our key result
is shown in section 3. We advocate essential consequences such as the reverse Minkowski
inequality via the generalizedfractional Hilfer-Katugampola derivative. Related integral
inequalities are proved in section 4. The last section containing the conclusion closed the
article.
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2. PRELUDE

These basic segment definitions of fractional calculus utilizing the Riemann integral
proposed by [40], and the reverse theorem of Minkowski’s inequality and its related sum-
mary through Riemann-Liouville and Hadamard integration is the motivation of this study.
In addition, the fractional conformal integral is discussed, and a theorem is proposed to
recover the specific situation.

[29] Let [a, b] be a finite or infinite interval ofR = (—o0, 00). The set of Lebesgue
complex valued measurable functigron [a, b] is defined as

[ b
Mq[a,b]:{w:wq:q/ |w(z)qdz<+oo}, 1<qg<oo. (2.3)

b b
[7]Let 1,92 € M, [a,blwith1 < g < 00,0 < [¥](2)dz < coand0 < [d(z)dz <

co. If0 < n < z;—gzg < Nforn, N € Rt andVz € [a, b], then

b v b v b v
(o) (o) < ittt (frovorens)

! . 4)

b
[40] Let 41,2 € M,la,bl with 1 < ¢ < 00,0 < [#{(2)dz < co and0 <

b

[(2)dz < 00. If 0 < n < Z;gjg < Nforn, N € Rt andvz € [a, b], then
a

b a
/wg(z)dz> . (2.5)
[29] A function () is said to be inV/, , [a, ] if

[ b
Mq,,.[a,b]:{@b:?ﬁq:q/ |w(z)|qz7"dz<—|—oo}, 1<g<o , r>0.

(2. 6)

[B8]Letm—1<w<m,meN,p>0,k>0andy € M (a,b) anda < z < b, the
k-Riemann Liouville fractional integral of left sided and right sided is defined as
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z _ -1
(LS9 0) (2) = /@F 1(w)/ (Zp pyp> y" " (y)dy w>0 , x>a.
’ @2.7)

[BO]Letm —1<w<m,0<0<1,meN, p>0k>0andy € M, (a,b),
the generalized-Hilfer-Katugampola fractional derivative (left sided and right sided) as is
defined as

p Hw,f o pof(km—w) 17p£ " mp (1—0)(km—w)
(K,D(Lﬂ: 1}[;) (Z) =+ (K\S + <Z d2> (l€ kS at 1/’)) (Z) (2 8)

- (90 (2S00 ) o), 29

whered;" = (zl—f’d%) and?3¥, is the Riemann-Liouville integral defined in equation
(2.5).
[16] Let ¥1,92 € My, [a,b] with 1 < ¢ < 00,0 < (%‘”%1) (2) < o0 and0 <

(N’ewg)( )<oo. lf0<n< ilgzg < Nforn, N € Rt andVz € [a, ], then

(szu1)" + (Sxota) " = (VD o) (aatut ) (st ) "
2. 10)

Chinchane et al. [12], and Sabrina et al. [44] developed the following two reverse Minkowski
inequality theorems in which Hadamard fractional integral operator is involved.

[12, 4] Letehy, 1o € My, [a, b with1 < ¢ < 00,0 < (Hg’fd;‘f) (2) < oo and

0< (H‘;’fq/;g) (2) <oo. If0<n< ﬁzgjg < Nforn, N € Rt andvz € [a, ], then

(rut) " + (o) < (PO (s + g )
. 11)

[12, 44] Letyyy, by € My, [a,b] with 1 < ¢ < 00,0 < (H‘;fz/)’f) (2) < oo and
(H“ 91/;2) (2) < 00. If 0 <n < 22E) < Nforn, N € Rt andvz € [a, b], then

P2 (z)

+ ()" = (DI o) (e ) (100 )
2. 12)

2
q

(Hwi(2))

Chinchane et al. [13] proposed reverse Minkowski inequality through Saigo’s fractional
integral, and the same inequality was proved by Chinchane [14-fiiactional integral.
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3. REVERSEMINKOWSKI INEQUALITY VIA GENERALIZED k-FRACTIONAL
HILFER-KATUGAMPOLA DERIVATIVE

This section has generalized the reverse Minkowski inequality by utilizing the general-
ized k-fractional Hilfer-Katugampola derivative defined in Definition 2.6 and the relevant
theorems.

Lety, s € My . [a, z] on[0, 00] such thatfz > a, ? D% P49 (z) < oo with > 0 and
€ R\{0}.w>0,q>1and?D pi(z) < 00. If 0 <n < j’;;gjg < Nforn,N e Rt
andvy € [a, 2] , then

(s0z001) "+ (eo2tuna)) " < (O (10t + 00 (2)

(3. 13)
Proof. By the given condition->=¢ ﬁlgz) < N,a <y <z itcan be written as
Y1(2) < N (¥1(2) + ¥2(2)) — Npa(2),
which implies that
(N + 1) (2) < N9(¥1(2) + ¥2(2))". (3.14)

Applying the operatoj;%Zfm w) o (wgsgi@)(“m*“)) to both sides of inequity (3.2),
we vyield

O(km—w) ¢m m 0)(km—w
(N + 17800 g (w0 ) pi(2)
< NS (ke f SO ) (1 (2) + () (3. 15)

Accordingly, it can be written as by using equation (2.7)

N 7
(2D261()) " < o (2020 (o v2) () (3. 16)
In contrastyn < Zﬁ;Eii , it can be written as
1 L)’ 1 4 3. 17
o) a(a) < S (Wa(2) + 4a(2)” (3.17)

Applying the operato@%e(“m ‘”)5m ( mg%&:”“’"‘”) on both sides of (3.5), and sim-
plifying the expression , we obtaln

(£D248() " < e (2028 @i+ () 3.18)

The desired result (3.1) stems from (3.4) and (3.6) by adding these inequalities.
Inequality (3.1) is referred to as the reverse Minkowski inequality via generatifeattional
Hilfer-Katugampola derivative. O
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Let<pr, 2 € My, [a, 2] on |0, oc] such that’z > a, #.D% 99 (2) < oo with x > 0 and
0 € R\{0}.w>0,q>1and; Dy vi(z) < 00 If 0 < n < S < Nforn, N € RY
andvy € [a, 2] , then

2

(rpfwi(2)" + (103 vs())°

< (WD o) (rostut)” (eostsia) " (3. 19

2
q

Proof. The product of inequalities (3.4) and (3.6) yields

(nE DD (0 peyt()* (102208(2)) " < (2058 1 +0) () - @2 20)

Now, utilizing the Minkowski inequality to the right-hand side of (3.8), we yield
1)(N +1 1 .. 1\ ?
DO (rozturo) (ostuso)” < ((i0ztut) + (o2t usa) )
(3. 21)

It can be inferred from (3.9), that
w % w % 1 N 1 w % w
(iswt)" + (oetuga)” = (P o) (eztutca))” (2ostuse)

O

Q=

4. CERTAIN RELATED INEQUALITIES VIA GENERALIZED k-FRACTIONAL
HILFER-KATUGAMPOLA DERIVATIVE

This section is dedicated to the derivation of such related generaliredtional Hilfer-
Katugampola derivative operator variants.

Letyr, v € My, [a, 2] on[0,00] such thatz > a, # D% 99 (2) < oo with k > 0 and
€ R\{0}.w>0,qr>1,2+1=1,1D v )<oo If0<n< ;fgg < N for
n, N € R andvy € [a, 2] , then

(2ozwi)* (10svs) < (f) (2022 (v

Proof. Proceeding as in [37] and by the given conditiﬁéj—g <N,a<y<zlitcanbe
written as

=

@uie)). @22

Di(2) < Nuo(z) = i (2) > Nagb (2). 4. 23)

We can rewrite it as follows by multiplying both sides of inequality (4.2)¢tgly(z)

1

7 (2)08 (2) > N™agpn (2). (4. 24)
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Applying the operato,’;&‘sz(fm_“’)é;}1 (ngsgﬁ@)(m—‘”) on both sides, and simplifying
the expression , we obtain
0(km—w) ¢m m —0)(km—w % %
3l by (el (uf (uf )
> NS (kmp S0 ) (0 (2)), (4. 25)

This may also be written as,
1

N (o) ) < ((e02) §<z>¢§<z>))i. (4. 26)

In contrastn < W (z) , it can be written as
e

N

ol (2) < i (2). (. 27)

=

Multiply 5 (=) to both sides of inequality (4.6) and using the relation ;. = 1, we yield

n¥iba(z) < 07 (2)05 (). (4. 28)

Applying the operatof (™~ 5m (nmgs&‘”(”’”"w)) on both sides, and simplifying
the expression , we obtain

i (D (2))7 < (LD b1 ()45 (2)7 (4. 29)
Taking the product between the inequality (4.5) and (4.8) and utili%img% = 1, the
required inequality yields. a

Let ¢1,79 € My, [a,z] on[0,00] withk > 0,60 € R\{0}. w > 0,¢q,r > 1 and
L4+ =1suchthatvz > a, D5 yi(z) < oo andf Dy Yvi(z) < oo. If 0 < n <
) < N forn, N € RT andvy € [a, 2] , then

h2(z)
29—1 \a gr—1
P UJ,Q < P w,O q q P w,@ T T
IiDa+ 7/)1(2)@/12(2) = q(N + 1)q (KDa—s- (¢1 + '1/12)(2)) + ’I’(’I’L + 1)T (KDa—Q— ¢1 + 1/)2)(73))
(4. 30)
Proof. By using the hypothesis, we get the inequality
(N + 1)%WT (2) < N1 + 12)%(2). (4. 31)

Applying the operatoﬁ%ifm_“)égn (nmgsgﬁ)(“m“”)) on both sides of inequality (4.10)
,we yield

(N +1)7 (2958 (k2S00 ) ) i ()

< N1 (ﬁgzgfm—w)(ggl (nggglge)(nmfw))) (1 + ¢2)q(2)), (4. 32)
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It can be written as

0DELYI(2) < %w”wl T 4ha) (). (4. 33)

Incontrast 0 < n < Y1(2) it can be written as

Pa(2)
(n+1)"95(2) < (P1 + 1h2)"(2). (4.34)

abd(km—w)

Applying the operatof S, o ( mpg(ﬂr 8)(rm— “)) we yield

PDYp(2) < DY (1 + P2)"(2). (4. 35)

c_ 1
(n+1)"
Considering the Young'’s Inequality

P1(2) Pa(z) < . + (4. 36)
Multiplying both sides by S~ m ( mgsﬁ&?’”‘w)), we yield
1 u.) 1 w, r
Y (Wae) (2) < CRDY (] (2) + DR (5 () (4.37)

Invoking inequalities (4.12) and (4.14) into (4.16), we yield

LD (Wra)(2) < - (EDZPUA(E)) + - (D2 (0)

q
< — 2D 4+ 2) (=) + ——r (2D (1 + 1) (2))
= q(N F1)7 et ! 2 r(n41)" et ! 2 ’
(4. 38)
Utilizing the inequality ,(y + 2)" < 2"~ 1(y" + 2"), one yield
LD (1 +12)7(2) < 272D (9 + 93 (=), (4. 39)
and
LD (1 + )" (2) < 27D (4] + 05) (). (4. 40)
From inequalities (4.17), (4.18), and (4.19) collectively, the proof of inequality (4.9) is
done. O

Let v, v € My, [a,2] on[0,00] such thatz > a, 2D%9d(2) < oo with k > 0,
0 R\{0}w>0,q7>1,242=1,2D2"pi(z) < 00. If 0 <n < L < N for
n, N € Rt andvy € [a, z] , then

N+1
N —¢

DY (4 (2) — ewba(2))7 < (ED2IWI(E))T + (EDEL P (1)

< 28 Lo ety (2) — ey (2)) .

n—=c

Q\»—-

(4. 41)
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Proof. By using0 < ¢ < n < N , we yield
nc< Nec = nc+n<nc+N < Nc+ N
= (N+1)(n—c)<(n+1)(N —c).
We inferred

Resulting,

which implies that

W (x) — (@) - po v o (1(2) = cta(2))”
Gl —ap ===
We yield,
1_wa(s) 1 _ m—c_ () —ca(s) _ N-c
N = 1 (2) = n > em = e () = cN
Which implies that

()W (2) — ea(2))? < w(2) < (

)1 (Y1 (2) — ca(2))?.

n—c

K

Applying the operator S|, 9("“” “)67" (/@mpsg—g)(”m—w)) on both sides of inequality

(4.21), we yield
p(\a(ﬁm W)(Sm ( mp(x(l*o)('{m*w)) ((1/}1(25) - C’(/JQ(Z))q)

K a+ n‘yaJr (N _ C)q
<t S0y (S0 ) ((2)

<p Olsm—w) 5 ( mp(\(ke)(nmw)) ((%(z) — ci/)z(z))q) |

—K a+ N‘sa+ (ﬂ _ C)q

It can be written as accordingly

D2 (1 (2) — ea(2))F < 4D ()

< L rD20(r(2) — ()

Continuing in the same way for the inequality (4.22), we yield

LD ((2) — a2 <PD“<¢2< D

< p— QDW (W1 (2) — ciha(2)) D).

Q=

Q=

Now adding the inequality (4.23) and (4.24) , we yield the inequality (4.21).

(4. 42)

(4. 43)

(4. 44)

(4. 45)
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Let ¢1,¢2 € My, [a,z] on[0,00] with k > 0,6 € R\{0}. w > 0, ¢,7 > 1 and
L4+ 1 = 1suchthatvz > a, Dy yi(z) < oo andf Dy lvi(z) < oo. If 0 < n <
) < Nforn, N € RT andvy € [a, 2] , then

P2 (z)
(2D P1(2)7 + (ED2wd(2)T < AEDLY ( + 42)1(2)) 7, (4. 46)
_ M(m+N)+N(M+n)

where) = D ICES

Proof. By the given condition,

1
N < () < e (4. 47)
Taking the product of inequality (4.26) afd< m < v (z) < M, we obtain
m _ i(z) M
NS 0t < - (4. 48)
From inequality (4.26), we yield
N
U(2) < () (W (2) + wa(2))", (4. 49)
and
M
U(e) < () @ (2) + ()1 (4. 50)

Applying the operator 3|, (”m “’)67” (wgsgf”(”m*w)) on both sides of inequality
(4.28), we obtain

A (wz%& Peme) (9(2))

N KM —w — Km—w
< (I S (WSl ) (1 () + ()
we can write it as
3 N 1
(D2 ((20)) " < kD (W + )" (). (4. 51)
Continuing in the same way with the inequality (4.29), we yield
(202 (e1(20)) " < A0 (W + )" (). (4.52)

Now adding the inequalities (4.30) and (4.31) we get the required inequality (4.25)]

Let 41,42 € My, [a,2] on[0,c0]with x > 0,60 € R\{0}. w > 0, ¢, > 1 and
L1 = 1suchthatz > a, {DL Wi (2) < oo andf D yd(z) < oo. If 0 < n <

Z;gg < N forn, N € RT andvy € [a, 2] , then
1

(m+1)(M+1)

LD U (n(2). (4. 53)

L (0 D20, (2)a(2)) < (EDE (0 + 2)(2))

M

IN
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Proof. By using0d < m < 1”1%2% < M , it follows that

Yo (2)(m+ 1) < o(2) +Y1(2) < o(2)(M +1). (4. 54)
Also it can be written a% < 5;8 < % we obtain
D) <(2) + () < () (T, (4. 55)

Taking product of inequalities (4.33) and (4.34), we yield

Vi(2)da(z) _ (Wa(2) + $1(2))* _ d1(2)en(2)
M ~ (m+1)(M+1) — m '

(4. 56)

Applying the operatof\s(1 6)(rm—w 6’”( mg%fi(f’”*“’)) on both sides of inequality
(4.35), we yield

p$9(mm w)5m< mp@(l—e)(mm—w)> (¢1( )1;[}2( ))

K> at > M

r>a+
2
<p ab(km—w) om mp (1=0)(km—w) (7/)2(Z)+¢1( ))
Sar " 0] ( rJat ) (m+ 1)(M +1)

(
p (\e(mn w) ¢m mp (1—0)(rkm—w) ’(/}1 Z)’(/JQ( )
ot et o) (S13883)

it can be written as

1

17 ED i (2n(2) < (2D 1 (2)a(2)),
O

Let o1, 99 € My, [a, 2] on [0, 00] with k > 0 andd € R\ {0}. w > 0, ¢,7 > 1 and
L4+ =1suchthatvz > a, Dy yi(z) < oo andf Dy vi(z) < oo. If 0 < n <

Wm(ﬁDZf(% +102)%(2)) < %

z;gjg < Nforn, N € Rt andVy € [a, 2] , then
(D)7 + (RD2I03(2)7 < 20 De R (i (=) ()7, (4. 57)
whereh(y1(2), v2(2)) = max{M[(Z + 1)1 (t) — Mo (t)]
Proof. By condition0 < m < () < M,a <y <z, wecan write
Va(2)
Y1(2)
0<m§M+m—¢2(z). (4. 58)
and
M+m— Z;Ez; < M. (4. 59)
From the inequalities (4.35) and (4.38), we yield
b(z) < PLEM) 01 2 g 2). (4. 60)

m
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h—

P (
< pa(

1 1z
m P(z)

From the given hypothesis , we can wiitec

1 - 1 S
i — < ;- , which implies

<

1 1
o<
M~ M

~—

+

(4. 61)

=

and

1 + 1 ’lﬁg(z)

M m  Pi(z)
From the inequalities (4.40) and (4.41), we yield

1 (37 + 2)i(2) —a(2)

S 0 (2)

< (4. 62)

1
m

<. (4. 63)

1
m
It can be written as

1

Y1(2) S M55+~ () = Ma(2)

M (M +m)ip1(z) — MPmapy(z)
mM

= (24 un(2) — Mn(2)

< MICS 4 1) (2) — M)
< h(ih(2),¢2(2)). (4. 64)
From inequality (4.39) and inequality (4.43)

¥i(2) < h(1h1(2), ¥2(2)) (4. 65)
¥i(2) < hI(Y1(2), ¥2(2))- (4. 66)

Applying the operator,;%fbﬂfm’“)(%” (nmgsgl;”(m*w)) on both sides of inequality
(4.44), we yield

K

<t S op (e L) (W (0 (2),(2)

It can be written as

235 e (kS ()

LD (W(2) < 2D (W (1 (2), 42 (2)) (4. 67)
Repeating the process for the inequality (4.45), we yield
LD (W(2) < 2D (W1 (41 (2), 42 (2))) (4. 68)

Adding the inequality (4.46) and (4.47), we yield the required inequality (4.36). O

Theorems (3.1), (3.2), and Theorems (4.1) to (4.6) are proved by using the generalized
k-fractional Hilfer-Katugampola derivative and Riemann-Liouville integral.
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5. CONCLUDING REMARKS

The research paper wrings out, in brief, the newly described fractional integral deriva-
tive. We define the novelized strategy foifractional Hilfer-Katugampola derivative for
reverse generalization of Minkowski inequality. The related noteworthy variations in re-
gards to generalized derivatives are illustrated. Numerous variants can be set up for the
utilization of a few characterized fractional operators. Veritably, the work built up in the
given course of action is new and contributes intriguingly to the investigation of integral
fractional differential equations.
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