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Abstract.: The key purpose of this paper is to investigate the Bohr radius

for several subclasses of analytic functions with negative coefficients. Our
investigation with the Bohr radius correlates with the classes of gener-
alized Janowski type functions. Under this novel strategy, we develop
Bohr's phenomenon for a generalized class associated with g-functions
havingg € (0,1). In the applications viewpoint, our consequences have

shown the applicability in the class inaugurated by Bessel functions.
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1. INTRODUCTION
In 1914, H.Bohr [7] proved that if

g(z) = Zgnz" 1.1
n=0

is analytic in the open unitdis¢ = {z € C: |z] < 1} and|g(z)| <1, VzeC.
Then

S o lgnlr™ < 1, where|z| < §,Vz € V.
The above inequality is called Bohr’s Inequality. It was proved by Wiener, Reisz and Schur
that the best possible value pf| for which the inequality holds i%. So this number is

called the Bohr radius for the analytic functions from the domdito V. Later on the

319



320 Bushra Kanwak; Khalida Inayat Noor

concept was generalized on the classes of functions Waim some other domai® C C
see[1, 2, 3].
The utilization of Bohr's theorem in classification of Banach algebras by Dixon[9], at-
tracted the interest of many mathematicians in Bohr’'s phenomenon. The study of general-
ization of Bohr's theorem in different directions paved the way forward to a vast research
in this area.
Recently an extension of the Bohr’s inequality to the disc models of hyperbolic plane has
been established by Ali and Ng in [4]. Kayumov and Ponnusamy introduced p-Bohr radius
in [13], and have also given an improved version of Bohr's inequality in [14].

A classY containing analytic functiong(z) as defined in (1.1) in the open unit diSt
will satisfy Bohr's phenomenon & anr* > 0 such that for everyy € T the following
inequality is satisfied

o> lgnz"1:19(0))) = D gn2"] < 0 (9(0),bd(g(V))), Vz €V, (1.2

n=0

wherep is the euclidean distance abd(g(V) denotes the boundary of image @funder
0. Eq (1.2) is called the distance formulation of Bohr’s inequality. NowAldte the class
of normalized analytic functions

9(2) =2+ gnz", (1.3)
n=2

whereg(0) = 0 andg’(0) = 1. A function f(z) is said to be subordinate =) in the
classA, denoted byf(z) < ¢(z), if there exist a function?(z) in A, with the conditions
¥(0) =0and|¥(z)| < 1, such thatf(z) = g(¥(2)).
For two analytic functiory (z) = z + Y-, a,2™ andg(z) = z + >~ , gn2™ We define
the Hadamard product or convolution denoted by the symlaasl

frg=z2+> " oangn2""
The classP[A, ©] of Janowski type functions introduced by Janowski in [12] contains
analytic function

C(2) =14 by2", (1. 4)

n=1

such that

((2) < {352, -1<©®<A<1 and zeV.

Definition 1.1. Let((z) be of the form (1.4). Thef(z) € P, [A, ©], if and only if
((2) = (B +3)X0)(2) — (3 = 3)@(2), Vm>2zeVand-1<O<A<],

where((y(z), (2)(2) € P[A, 0], .

Form = 2 we get the class of Janowski type functions.

Definition 1.2. The function;(z) € P*[A, O], iff ((z) < (1£5%)", where0 < a < 1 and

-1<O<A<1,z€V.Fora=1we getthe clas®[A, O].



On Bohr Radius of Certain Analytic Functions with Negative Coefficients 321

Definition 1.3. Letr; be the class of analytic functions, definedy) = 1—",° | b, 2".
Thenr P*[A, ©] and Ty P, [A, ©] will be defined as:
T1PY[A,©] = 7 N PY[A, O], (1. 5)
T1P7,L[A, @] =T ﬂPnL[A, @] (1 6)

A very modern and major development in the field of geometric function theory is the
study of g analog of analytic functions, which caught the interest of many researchers due
to its vast applications in different fields of sciences. The g-derivative opefatoof an
analytic functiong(z) € A has been introduced by Jackson in [11]. The power series
representation of this operator is given by

=1-) [nlggnz""", 1.7)
n=2
whereg(z) is as defined in (1.3). Hefe], =1+ ¢+ ¢*+ ...+ ¢" 1, [0], =0, [1], = 1
andlim,_,;-[n], = n.
Let 7 be the class of normalized analytic functions with negative coefficients, defined as
ge 7 if and only if,

z):z—Zgnz”, vV zeV. (1. 8)

Definition 1.4. [8] Letg € 7 be of the form defined in (1.8). Theris said to be in the
classTST(q, N\, k;A,©), g€ (0,1),k>0,-1 <O <A<land0 <<, ifandonly
if Vz € V, the following condition is satisfied

R { (© = 1)2d,9(2)/I(L = )z + Ag
O+ D)2dyg(=) /(1= Nz + Ag

. ‘ (6 — 1)2d,9(2)/ I
CERERONI

—~|—

1—=XN)z+ Ag(2)
1—X)z+ Ag(2)

29— (A—1)
e <A+1>}>
|- (A—1)
}(A+U 4. (1.9)

2. PRELIMINARIES

Lemma 2.1. [17] Let((z) as defined in (1.4) be iR,,,[A, ©], then form > 2, -1 < O <
A<landz eV,
() [¢(z) — 1=h0rt) < U0 \where|z| = r < 1.

(i) |on| < (3)(A - ©).

Lemma 2.2. [10] Let((z) = 1+ > 7 b,z"and H(z) = 1+ Y7 | h,2", be analytic
functions inV such that{(z) < H(z). If H(z) is univalent and convex i¥, then|b,| <
|hi| foralln > 1.

Lemma 2.3. Let((z) of the form (1.4) be iP*[A, ©], where0 < o« < land-1< 0 <
A <1, thenforallz € V,
(i) (1=40) < [¢(2)] < (HA0)°,
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Proof. (i) it is easy to show tha([1+AZ) is convex univalent irV. Therefore by using
Lemma [2.2], we get the required coefﬂment bound.

(ii) Since ((z) < (1£52)<, therefore(((z))= < (15%). Now let((z) = (((2))=, then

¢(z) € P[A, 0], and by the distortion results for Janowski type functions we know that

(1=50) < ()| < (JE8%),
which gives the required result.

Lemma 2.4. [8] Letg(z) = 2z — > 0" 5 gn2" € TST(q, N\, k;A,0),q € (0,1),k >
0,-1<O®<A<1land0d <\ <1,thenvz € Vand|z| =r < 1, we have

5 O-A]_ r? <|g(2)| < r+ oA 2.
(k+1)([2lg—A)+1[2]q(©+1)—A(A+1)] 2D (2~ N+ 2l (OFD-AAFD]

r—

3. MAIN RESULTS

Theorem 3.1. Let((z) defined in (1.4) be iR, [A, ©], then form > 2, z € Vand—1 <
O < A <1, Y0 [ba2"] < o1,bd(((V))) for || = r*, wherer* = 520 is
the Bohr radius.

Proof. By Lemma[2.1], we can see that the the cir]éz) — 1=£49| = 2 (2=9) is the

boundary of the disc containing V). The diametric end points of this disc are

(1-A6)-%(A-6)  (1-AO)+ % (A-6)
1-02 an 1-02 :

So the distance of the boundary of the ctj‘ssv ) from ¢(0) is

o(C(0), bA(C(V)) = mm{ 1-46) - '

1—@2
(3-8 -e)
1-e?

1—

’

1—A®1)_®2(A—®)‘}

(3. 10)

Now since

D bnz" < 320 7,

then by using Lemma 2.1, we have

oo

Zr b, < (A 0)

n=1

1—7r’
(5 —1©)(A-0)

— 1 _ @2 )

< 0(¢(0),bd(¢(V))),

wherer* can be obtained by solving the equation

ON(A—6
(A - )Ty = EPUA-0)

V 0<r<r”

Hence Bohr’s inequality holds for &l < r < r*. O

Corollary 3.2. For m=2in P,,[A, O], we getr* = for the classP[A, ©] obtained
by Aliin [5].

\0|+2'
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Theorem 3.3. Let((z) € P*[A,0], where0 < o« < land—1 < O < A < 1. Then the
Bohr’s Inequality holds for alb < » < r*, where

1
1+ a(A—-0)-a(1+ 0%’

Proof. By using Lemma [2.2], we find that the end points of the diameter of the boundary

of (V) are(1=2)> and(+£A ), Therefore, we can easily see that

1-© 140
o(1,¢(V)) = S5t
It is easy to verify that* given in eq [3.11], is the root of the equation

a(A —0) . = L0

’r*

(3. 11)

—|e°]
Now as
3 buz"| < a(h - ©)——,
= 1—r
(A —0)~ *
< X T
= T-7ee V 0<r<r
< 0(1,¢(V)). (3.12)
The equality holds for = r*. d

Corollary 3.4. (i)For a = 1, we have the class of Janowski type functions.

(i) For a = 3, we have* = — L —.
1+5(A-©0)2 (1+(|0]2)

(iiyFor A =1,0 = —1,r* = 1+a(2)a,11(1+(71)a) for the classP“. And if we also take

a = 1 we get the result for the class of caratheodory functions.

(iv) For A = 1 —2v,0 = —1, we get the clas®*(y) with r* =

1
Traz—2y)o-T(1H(=D%) "
Theorem 3.5. Let((z) =1 — > o7 | b,2" € 71 P, [A, ©], then

. 0o Z(A-O
M35, [bal < 4557
(i) 2%, bnz"| < o(1,bd(C(V))), forall r < 1.

Proof. (i) Since

[1=C(2)] < [3(A = 6¢(2))],
soatz =r
(1-36)3 2 bnz" < 5(A - ©).
Now asRe(((z)) > 0, therefored~ ", |b,2"| < 1in V. So we have

Z(A—©
Zfﬁ:l |bn|‘7"n| S 21(,%9).

Hence when — 1, we get (i).
(i) From (i) we can see that the diametric end pointd& (V)) are

1-2A 1+ 2 A—m®O
dy = ﬁ andds = 12,7%@
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Therefore, the distance between the boundaiy(®f) and((0) is

o(1,6d(¢(V))) = min{|1 — di,[1 - dof} = 55,

Now we see that

> n(A-©
S| <28 0),
n=1 1= 2
5(A-0)
— 1 _ % )
<o(Lbd(¢(V))), V r<1,
we get the equality for = 1. O

The result is best possible for the function
mA_
Co(2)=1— 21(_%@@))2
Theorem 3.6. Let((z) =1 — > 7, b,z™ € 71 P*[A, ©], then
()[¢(z) —1] < “A=9); forall 2 € V.
(i) (=) satisfies Bohr’s inequality with Bohr radiug = 1.

Proof. The proof is same as of theorem[3.3]. The result is sharp for the function

Glz)=1- 222,

O

It is interesting to note that the Bohr radius for the class of Janowski type functions with
negative coefficients and its generalized classés, [A, ©] andr P*[A, O] is 1.
Theorem 3.7. Letg € TST(q,\, k;A,0),q € (0,1),k > 0,-1 <O < A <1and
0 <X <1, thenforallz € V, g(z) satisfies Bohr's phenomenon for
. 2(s + [t — v] — |w]) | . 13)
s+ [t — vl + /Is + [t = v]]2 +4fw[(s + [t = v] = [w]))
wheres = 2(k + 1)([2] — A),t =[2]4(©+1),v = A(A+ 1) andw = © — A.

Proof. Letg(z) =z — Y2, g»2", then by using Lemma[2.4], we get

e-A
0(9(0),bd(9(Y))) > 1 = a3y o, (o=
Now substitutings = 2(k + 1)([2], — A), t = [2]4(© + 1),v = A(A+ 1) andw = © — A,
we get
0(9(0), bd(g(V))) = 1 - .
By taking
|wl 22,
s+ |t — v
then again by Lemma[2.4], we can write

go(2) =z + (3. 14)
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—go(—1) < 19(2)| < go(r), where|z| = r < 1.

Let r* be the root of the equatiog,(r) + go,(—1) = 0, then we will get the expression
(3.13). Now consider

oo (oo}
2[4+ lgnz" <7 4> gar™,
n=2 n=2

<r4 |w] 2
- s+t—v|

B

s+t —o|’

< 0(0,b9(g(V)))-

The equality holds forr = r*. The result is sharp for the functign (z) defined in eq
(3.14). O

vV 0<r<r~,

Corollary 3.8. ForA=1,A=1-29,0< vy < 1,06 = —1andq — 1~, we obtain
the classr N S, (k, ), whereS,, (k, v) is the class of k-uniformly starlike functions of order
~ see[16]. So applying theorem 3.5, we have= 2(k + 1),t = 0,v = 2 — 2y and
w = 2v — 2. Therefore, the Bohr radius for the class$),(k,y) of k-uniformly starlike
functions of ordery with negative coefficients is
o 2(k+1)
(k4 1)+ =14/ (k+1)2 + 7= 12 +6(k+1)(v—1)

If we also takek = 1 and~y = 0, then we get the classn S,, wheresS, is the class of
uniformly starlike functions defined [t19], therefore for the classS, we have

= 3+il/ﬁ'
Corollary 3.9. For A =1, — 1~, we have the classn k — ST[A, ©], where the class
k— ST[A, ©] was investigated by Noor and Malik jh5]. So for the classk — ST[A, ©],
wegets =2(k+1),t =2(0©+1),v = (A+ 1) andw = © — A. Hence the Bohr radius
for this class is

. 2[2(k+1)+[20—A+1]|—|©—A]]

2(k4+1)+]20—A+1|++/[2(k+1)+[20 - A+1[]2+4[0—A[[2(k+1)+[20—A+1[-[O—A[]
If we takeA = 1,0 = —1 then we obtain
= 2(k+1)
(k+2)+Vk2+8k+38"

Corollary 3.10. ForA=1-27y,0<y< 1,06 =-1,A =1,k =0andg — 17, we
obtain the classS*(y) of starlike functions of ordety with negative coefficients. So for
this class we get

* 2

= —
Y+ 72 —-87v+8

Corollary 3.11. For A = 1,06 = —1,A = 0,k = 0 andg — 1—, we get the class
TR=7NR,whereR = {g € A: R(¢'(z)) > 0}. For the classrR we obtain
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4. APPLICATION

As an application of our work, we have obtained the Bohr radius of class defined by
using Bessel functions. Bessel functions are the special functions, used to study solutions
of differential equations. The class of generalized Bessel functions of first kind of order u,
consists of the functions

o) —d)"
v, e, d)(z) = ZO = (u(+ n)+ = (), (4. 15)

Eq (4.15) is the particular solution of the following equation, see [6].
220"(2) + czv'(2) + [d2? — u? + (1 — c)ujv(z) = 0, u,¢,d € C.
The functiony(u, ¢, d)(z) in terms ofv(u, ¢, d)(z) can be defined as
o(u,c,d)(z) = 2T (u + Cgl)zl_%v(u, e, d)(V/z).

By using the well known Pochhammer symbol defined as:

[(+e) _ {1 ife=0

d)e =
(¥) () 6(0+1)..(6+e—1) ifeeN.
We get the following series representation i, ¢, d)(z)

00 —d\n
o(u,e,d)(z) =2z + Z &) P (4. 16)
n=1

— (K)pn!

wherex = u+ <t ¢ {0,—1, -2, ...}. For our ease we writg(u, ¢, d)(z) = ¢(x,d). The
operatorB(g .y : A — Ais defined by

B(ar)(9(2)) = p(r,d) x g(z), Vg(z) € A.
Ramachandran et al. [18] introduced a cld&B(~, 7, 3,d) of analytic functions with
negative coefficients, using the normalized form of generalized Bessel functions of first
kind defined as:
Letd >1,0<y<1,6>0,0<7n<1andz € V, then afunctiory(z) € 7 is said to be
in the clas€/ B(v, n, 8, d), if and only if

G (z 2G" (2
%[ G/(i))] > /6| G’(i)) - ]-| +n,

where

G(2z) = (1 =¥)Ba,x)(9(2)) + 7(Ba.x)(9(2)))". (4.17)

Now by using some results of [18] and the above technique of finding the Bohr radius we
can show that the clagséB(v, n, 3, d) satisfies Bohr's phenomenon for the following Bohr
radius

. (n+6+2(2—n)s)
B+22-n)s+/(B+22—n)2+40 —n)(n+B8+22—n) —1)

with ¢ = (1+7)(152).

(4. 18)
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5. CONCLUSION

Keeping in sight the importance and applications of Bohr’'s phenomenon in many areas
of research, we found the Bohr radius of different subclasses of analytic functions with
negative coefficients. The derived results in the present investigation, continue to hold for
a variety of subclasses of analytic functions. Moreover, the technique used in the paper can
be utilized to investigate the Bohr radius of various other classes.
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