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Abstract.: The key purpose of this paper is to investigate the Bohr radius
for several subclasses of analytic functions with negative coefficients. Our
investigation with the Bohr radius correlates with the classes of gener-
alized Janowski type functions. Under this novel strategy, we develop
Bohr’s phenomenon for a generalized class associated with q-functions
havingq ∈ (0, 1). In the applications viewpoint, our consequences have
shown the applicability in the class inaugurated by Bessel functions.
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1. INTRODUCTION

In 1914, H.Bohr [7] proved that if

g(z) =
∞∑

n=0

gnzn (1. 1)

is analytic in the open unit disc∇ = {z ∈ C : |z| < 1} and|g(z)| < 1, ∀z ∈ C .
Then ∑∞

n=0 |gn|rn ≤ 1, where|z| ≤ 1
6 , ∀z ∈ ∇.

The above inequality is called Bohr’s Inequality. It was proved by Wiener, Reisz and Schur
that the best possible value of|z| for which the inequality holds is13 . So this number is
called the Bohr radius for the analytic functions from the domain∇ to ∇. Later on the
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concept was generalized on the classes of functions from∇ to some other domainΘ ⊆ C
see [1, 2, 3].
The utilization of Bohr’s theorem in classification of Banach algebras by Dixon[9], at-
tracted the interest of many mathematicians in Bohr’s phenomenon. The study of general-
ization of Bohr’s theorem in different directions paved the way forward to a vast research
in this area.
Recently an extension of the Bohr’s inequality to the disc models of hyperbolic plane has
been established by Ali and Ng in [4]. Kayumov and Ponnusamy introduced p-Bohr radius
in [13], and have also given an improved version of Bohr’s inequality in [14].

A classΥ containing analytic functionsg(z) as defined in (1.1) in the open unit disc∇
will satisfy Bohr’s phenomenon if∃ an r? > 0 such that for everyg ∈ Υ the following
inequality is satisfied

%(
∞∑

n=0

|gnzn|, |g(0)|) =
∞∑

n=1

|gnzn| ≤ % (g(0), bd(g(∇))), ∀z ∈ ∇, (1. 2)

where% is the euclidean distance andbd(g(∇) denotes the boundary of image of∇ under
g. Eq (1.2) is called the distance formulation of Bohr’s inequality. Now letA be the class
of normalized analytic functions

g(z) = z +
∞∑

n=2

gnzn, (1. 3)

whereg(0) = 0 andg′(0) = 1. A function f(z) is said to be subordinate tog(z) in the
classA, denoted byf(z) ≺ g(z), if there exist a functionΨ(z) in A, with the conditions
Ψ(0) = 0 and|Ψ(z)| < 1, such thatf(z) = g(Ψ(z)).
For two analytic functionf(z) = z +

∑∞
n=2 anzn andg(z) = z +

∑∞
n=2 gnzn we define

the Hadamard product or convolution denoted by the symbol∗ as

f ∗ g = z +
∑∞

n=2 angnzn.

The classP [Λ, Θ] of Janowski type functions introduced by Janowski in [12] contains
analytic function

ζ(z) = 1 +
∞∑

n=1

bnzn, (1. 4)

such that

ζ(z) ≺ 1+Λz
1+Θz ,−1 ≤ Θ < Λ ≤ 1 and z ∈ ∇.

Definition 1.1. Let ζ(z) be of the form (1.4). Thenζ(z) ∈ Pm[Λ,Θ], if and only if

ζ(z) = (m
4 + 1

2 )ζ(1)(z)− (m
4 − 1

2 )ζ(2)(z), ∀m ≥ 2, z ∈ ∇ and−1 ≤ Θ < Λ ≤ 1,

whereζ(1)(z), ζ(2)(z) ∈ P [Λ,Θ] , .

Form = 2 we get the class of Janowski type functions.

Definition 1.2. The functionζ(z) ∈ Pα[Λ, Θ], iff ζ(z) ≺ ( 1+Λz
1+Θz )α, where0 ≤ α ≤ 1 and

−1 ≤ Θ < Λ ≤ 1, z ∈ ∇. For α = 1 we get the classP [Λ, Θ].
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Definition 1.3. Letτ1 be the class of analytic functions, defined byζ(z) = 1−∑∞
n=1 bnzn.

Thenτ1P
α[Λ,Θ] andτ1Pm[Λ, Θ] will be defined as:

τ1P
α[Λ, Θ] = τ1 ∩ Pα[Λ,Θ], (1. 5)

τ1Pm[Λ, Θ] = τ1 ∩ Pm[Λ,Θ]. (1. 6)

A very modern and major development in the field of geometric function theory is the
study of q analog of analytic functions, which caught the interest of many researchers due
to its vast applications in different fields of sciences. The q-derivative operatorDq, of an
analytic functiong(z) ∈ A has been introduced by Jackson in [11]. The power series
representation of this operator is given by

Dq(z) = 1−
∞∑

n=2

[n]qgnzn−1, (1. 7)

whereg(z) is as defined in (1.3). Here[n]q = 1 + q + q2 + ... + qn−1, [0]q = 0, [1]q = 1
andlimq→1− [n]q = n.
Let τ be the class of normalized analytic functions with negative coefficients, defined as
g∈ τ if and only if,

g(z) = z −
∞∑

n=2

gnzn, ∀ z ∈ ∇. (1. 8)

Definition 1.4. [8] Let g ∈ τ be of the form defined in (1.8). Theng is said to be in the
classTST (q, λ, k; Λ, Θ), q ∈ (0, 1), k ≥ 0,−1 ≤ Θ < Λ ≤ 1 and0 ≤ λ ≤ 1, if and only
if ∀z ∈ ∇, the following condition is satisfied

<
{

(Θ− 1)zdqg(z)/[(1− λ)z + λg(z)]− (Λ− 1)
(Θ + 1)zdqg(z)/[(1− λ)z + λg(z)]− (Λ + 1)

}
>

k

∣∣∣∣
(Θ− 1)zdqg(z)/[(1− λ)z + λg(z)]− (Λ− 1)
(Θ + 1)zdqg(z)/[(1− λ)z + λg(z)]− (Λ + 1)

− 1
∣∣∣∣ . (1. 9)

2. PRELIMINARIES

Lemma 2.1. [17] Let ζ(z) as defined in (1.4) be inPm[Λ, Θ], then form ≥ 2,−1 ≤ Θ <
Λ ≤ 1 andz ∈ ∇,
(i) |ζ(z)− 1−ΛΘr2

1−Θ2r2 | ≤ ( m
2 )(Λ−Θ)r

1−Θ2r2 , where|z| = r < 1.
(ii) |bn| ≤ (m

2 )(Λ−Θ).

Lemma 2.2. [10] Let ζ(z) = 1 +
∑∞

n=1 bnzn andH(z) = 1 +
∑∞

n=1 hnzn, be analytic
functions in∇ such that,ζ(z) ≺ H(z). If H(z) is univalent and convex in∇, then|bn| ≤
|h1| for all n ≥ 1.

Lemma 2.3. Let ζ(z) of the form (1.4) be inPα[Λ,Θ], where0 ≤ α ≤ 1 and−1 ≤ Θ <
Λ ≤ 1, then for allz ∈ ∇,
(i) |bn| ≤ α(Λ−Θ), ∀ n ≥ 1.
(ii) ( 1−Λr

1−Θr )α ≤ |ζ(z)| ≤ ( 1+Λr
1+Θr )α.
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Proof. (i) it is easy to show that( 1+Λz
1+Θz )α is convex univalent in∇. Therefore by using

Lemma [2.2], we get the required coefficient bound.
(ii) Sinceζ(z) ≺ ( 1+Λz

1+Θz )α, therefore(ζ(z))
1
α ≺ ( 1+Λz

1+Θz ). Now let ζ(z) = (ζ(z))
1
α , then

ζ(z) ∈ P [Λ, Θ], and by the distortion results for Janowski type functions we know that

( 1−Λr
1−Θr ) ≤ |ζ(z)| ≤ ( 1+Λr

1+Θr ),

which gives the required result. ¤

Lemma 2.4. [8] Let g(z) = z − ∑∞
n=2 gnzn ∈ TST (q, λ, k; Λ, Θ), q ∈ (0, 1), k ≥

0,−1 ≤ Θ < Λ ≤ 1 and0 ≤ λ ≤ 1, then∀z ∈ ∇ and|z| = r < 1, we have
r− |Θ−Λ|

2(k+1)([2]q−λ)+|[2]q(Θ+1)−λ(Λ+1)|r
2 ≤ |g(z)| ≤ r+ |Θ−Λ|

2(k+1)([2]q−λ)+|[2]q(Θ+1)−λ(Λ+1)|r
2.

3. MAIN RESULTS

Theorem 3.1. Let ζ(z) defined in (1.4) be inPm[Λ, Θ], then form ≥ 2, z ∈ ∇ and−1 ≤
Θ < Λ ≤ 1,

∑∞
n=1 |bnzn| ≤ %(1, bd(ζ(∇))) for |z| = r?, wherer? = 2|Θ|−m

2|Θ|−2m+mΘ2 is
the Bohr radius.

Proof. By Lemma[2.1], we can see that the the circle|ζ(z) − 1−ΛΘ
1−Θ2 | = m

2 ( Λ−Θ
1−Θ2 ) is the

boundary of the disc containingζ(∇). The diametric end points of this disc are

(1−ΛΘ)−m
2 (Λ−Θ)

1−Θ2 and (1−ΛΘ)+ m
2 (Λ−Θ)

1−Θ2 .

So the distance of the boundary of the discζ(∇) from ζ(0) is

%(ζ(0), bd(ζ(∇))) = min

{∣∣∣∣1−
(1− ΛΘ)− m

2 (Λ−Θ)
1−Θ2

∣∣∣∣ ,

∣∣∣∣1−
(1− ΛΘ) + m

2 (Λ−Θ)
1−Θ2

∣∣∣∣
}

,

=
(m

2 − |Θ|)(Λ−Θ)
1−Θ2

. (3. 10)

Now since
∑∞

n=1 |bnzn| ≤ ∑∞
n=1 rnbn,

then by using Lemma 2.1, we have
∞∑

n=1

rnbn ≤ m

2
(Λ−Θ)

r

1− r
,

≤ (m
2 − |Θ|)(Λ−Θ)

1−Θ2
, ∀ 0 < r < r?

< %(ζ(0), bd(ζ(∇))),

wherer? can be obtained by solving the equation

m
2 (Λ−Θ) r?

1−r? = ( m
2 −|Θ|)(Λ−Θ)

1−Θ2 .

Hence Bohr’s inequality holds for all0 < r < r?. ¤

Corollary 3.2. For m=2 in Pm[Λ, Θ], we getr? = 1
|Θ|+2 , for the classP [Λ, Θ] obtained

by Ali in [5].
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Theorem 3.3. Let ζ(z) ∈ Pα[Λ, Θ], where0 ≤ α ≤ 1 and−1 ≤ Θ < Λ ≤ 1. Then the
Bohr’s Inequality holds for all0 < r < r?, where

r? =
1

1 + α(Λ−Θ)1−α(1 + |Θ|α)
. (3. 11)

Proof. By using Lemma [2.2], we find that the end points of the diameter of the boundary
of ζ(∇) are( 1−Λ

1−Θ )α and( 1+Λ
1+Θ )α. Therefore, we can easily see that

%(1, ζ(∇)) = (Λ−Θ)α

1−|Θα| .

It is easy to verify thatr? given in eq [3.11], is the root of the equation

α(Λ−Θ) r
1−r = (Λ−Θ)α

1−|Θα| .

Now as
∞∑

n=1

|bnzn| ≤ α(Λ−Θ)
r

1− r
,

≤ (Λ−Θ)α

1− |Θα| , ∀ 0 < r < r?

≤ %(1, ζ(∇)). (3. 12)

The equality holds forr = r?. ¤

Corollary 3.4. (i)For α = 1, we have the class of Janowski type functions.
(ii) For α = 1

2 , we haver? = 1

1+ 1
2 (Λ−Θ)

1
2 (1+|Θ| 12 )

.

(iii) For Λ = 1, Θ = −1, r? = 1
1+α(2)α−1(1+(−1)α) for the classPα. And if we also take

α = 1 we get the result for the class of caratheodory functions.
(iv) For Λ = 1− 2γ, Θ = −1, we get the classPα(γ) with r? = 1

1+α(2−2γ)α−1(1+(−1)α) .

Theorem 3.5. Let ζ(z) = 1−∑∞
n=1 bnzn ∈ τ1Pm[Λ,Θ], then

(i)
∑∞

n=1 |bn| ≤
m
2 (Λ−Θ)

1−m
2 Θ .

(ii)
∑∞

n=1 |bnzn| ≤ %(1, bd(ζ(∇))), for all r < 1.

Proof. (i) Since

|1− ζ(z)| ≤ |m2 (Λ−Θζ(z))|,
so atz = r

(1− m
2 Θ)

∑∞
n=1 |bnzn| ≤ m

2 (Λ−Θ).

Now asRe(ζ(z)) > 0, therefore
∑∞

n=1 |bnzn| < 1 in ∇. So we have
∑∞

n=1 |bn||rn| ≤ m
2 (Λ−Θ)

1−m
2 Θ .

Hence whenr −→ 1, we get (i).
(ii) From (i) we can see that the diametric end points ofbd(ζ(∇)) are

d1 = 1−m
2 Λ

1−m
2 Θ andd2 = 1+ m

2 Λ−mΘ

1−m
2 Θ .
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Therefore, the distance between the boundary ofζ(∇) andζ(0) is

%(1, bd(ζ(∇))) = min{|1− d1|, |1− d2|} =
m
2 (Λ−Θ)

1−m
2 Θ .

Now we see that
∞∑

n=1

|bnzn| ≤
m
2 (Λ−Θ)
1− m

2 Θ
r,

≤
m
2 (Λ−Θ)
1− m

2 Θ
,

≤ %(1, bd(ζ(∇))), ∀ r < 1,

we get the equality forr = 1. ¤

The result is best possible for the function

ζo(z) = 1− m
2 (Λ−Θ)

1−m
2 Θ z.

Theorem 3.6. Let ζ(z) = 1−∑∞
n=1 bnzn ∈ τ1P

α[Λ, Θ], then

(i)|ζ(z)− 1| ≤ α(Λ−Θ)
1−αΘ r, for all z ∈ ∇.

(ii)ζ(z) satisfies Bohr’s inequality with Bohr radiusr? = 1.

Proof. The proof is same as of theorem[3.3]. The result is sharp for the function

ζ1(z) = 1− α(Λ−Θ)
1−αΘ z.

¤

It is interesting to note that the Bohr radius for the class of Janowski type functions with
negative coefficients and its generalized classesτ1Pm[Λ, Θ] andτ1P

α[Λ, Θ] is 1.

Theorem 3.7. Let g ∈ TST (q, λ, k; Λ,Θ), q ∈ (0, 1), k ≥ 0,−1 ≤ Θ < Λ ≤ 1 and
0 ≤ λ ≤ 1, then for allz ∈ ∇, g(z) satisfies Bohr’s phenomenon for

r? =
2(s + |t− v| − |w|)

s + |t− v|+
√

[s + |t− v|]2 + 4|w|(s + |t− v| − |w|)) , (3. 13)

wheres = 2(k + 1)([2]q − λ), t = [2]q(Θ + 1), v = λ(Λ + 1) andw = Θ− Λ.

Proof. Let g(z) = z −∑∞
n=2 gnzn, then by using Lemma[2.4], we get

%(g(0), bd(g(∇))) ≥ 1− |Θ−Λ|
2(k+1)([2]q−λ)+|[2]q(Θ+1)−λ(Λ+1)| .

Now substitutings = 2(k + 1)([2]q − λ), t = [2]q(Θ + 1), v = λ(Λ + 1) andw = Θ−Λ,
we get

%(g(0), bd(g(∇))) ≥ 1− |w|
s+|t−v| .

By taking

go(z) = z +
|w|

s + |t− v|z
2, (3. 14)

then again by Lemma[2.4], we can write
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−go(−r) ≤ |g(z)| ≤ go(r), where|z| = r < 1.

Let r? be the root of the equationgo(r) + go(−1) = 0, then we will get the expression
(3.13). Now consider

|z|+
∞∑

n=2

|gnzn| ≤ r +
∞∑

n=2

gnrn,

≤ r +
|w|

s + |t− v|r
2,

≤ 1− |w|
s + |t− v| , ∀ 0 ≤ r ≤ r?,

≤ %(0, bg(g(∇))).

The equality holds forr = r?. The result is sharp for the functiongo(z) defined in eq
(3.14) . ¤

Corollary 3.8. For λ = 1, Λ = 1 − 2γ, 0 ≤ γ < 1,Θ = −1 and q −→ 1−, we obtain
the classτ ∩Sp(k, γ), whereSp(k, γ) is the class of k-uniformly starlike functions of order
γ see[16]. So applying theorem 3.5, we haves = 2(k + 1), t = 0, v = 2 − 2γ and
w = 2γ − 2. Therefore, the Bohr radius for the classτSp(k, γ) of k-uniformly starlike
functions of orderγ with negative coefficients is

r? = 2(k+1)

(k+1)+|γ−1|+
√

(k+1)2+|γ−1|2+6(k+1)(γ−1)
.

If we also takek = 1 andγ = 0, then we get the classτ ∩ Sp, whereSp is the class of
uniformly starlike functions defined in[19], therefore for the classτSp we have

r? = 4
3+
√

17
.

Corollary 3.9. For λ = 1, q −→ 1−, we have the classτ ∩ k− ST [Λ,Θ], where the class
k−ST [Λ, Θ] was investigated by Noor and Malik in[15]. So for the classτk−ST [Λ,Θ],
we gets = 2(k + 1), t = 2(Θ + 1), v = (Λ + 1) andw = Θ− Λ. Hence the Bohr radius
for this class is

r? = 2[2(k+1)+|2Θ−Λ+1|−|Θ−Λ|]
2(k+1)+|2Θ−Λ+1|+

√
[2(k+1)+|2Θ−Λ+1|]2+4|Θ−Λ|[2(k+1)+|2Θ−Λ+1|−|Θ−Λ|] .

If we takeΛ = 1,Θ = −1 then we obtain

r? = 2(k+1)

(k+2)+
√

k2+8k+8
.

Corollary 3.10. For Λ = 1 − 2γ, 0 ≤ γ < 1, Θ = −1, λ = 1, k = 0 andq −→ 1−, we
obtain the classτS∗(γ) of starlike functions of orderγ with negative coefficients. So for
this class we get

r∗ = 2

γ+
√

γ2−8γ+8
.

Corollary 3.11. For Λ = 1,Θ = −1, λ = 0, k = 0 and q −→ 1−, we get the class
τR = τ ∩R, whereR = {g ∈ A : <(g′(z)) > 0}. For the classτR we obtain

r∗ = 1
1+
√

2
.
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4. APPLICATION

As an application of our work, we have obtained the Bohr radius of class defined by
using Bessel functions. Bessel functions are the special functions, used to study solutions
of differential equations. The class of generalized Bessel functions of first kind of order u,
consists of the functions

υ(u, c, d)(z) =
∞∑

n=0

(−d)n

n!Γ (u + n + c+1
2 )

(
z

2
)2n+u. (4. 15)

Eq (4.15) is the particular solution of the following equation, see [6].

z2υ′′(z) + czυ′(z) + [dz2 − u2 + (1− c)u]υ(z) = 0, u, c, d ∈ C.

The functionϕ(u, c, d)(z) in terms ofυ(u, c, d)(z) can be defined as

ϕ(u, c, d)(z) = 2uΓ (u + c+1
2 )z1−u

2 υ(u, c, d)(
√

z).

By using the well known Pochhammer symbol defined as:

(δ)ε = Γ (δ+ε)
Γ (ε) =

{
1 ifε = 0
δ(δ + 1)...(δ + ε− 1) ifε ∈ N.

We get the following series representation forϕ(u, c, d)(z)

ϕ(u, c, d)(z) = z +
∞∑

n=1

(−d
4 )n

(κ)nn!
zn+1, (4. 16)

whereκ = u+ c+1
2 /∈ {0,−1,−2, ...}. For our ease we writeϕ(u, c, d)(z) = ϕ(κ, d). The

operatorB(d,κ) : A −→ A is defined by

B(d,κ)(g(z)) = ϕ(κ, d) ∗ g(z), ∀g(z) ∈ A.

Ramachandran et al. [18] introduced a classUB(γ, η, β, d) of analytic functions with
negative coefficients, using the normalized form of generalized Bessel functions of first
kind defined as:
Let d > 1, 0 ≤ γ < 1, β ≥ 0, 0 ≤ η < 1 andz ∈ ∇, then a functiong(z) ∈ τ is said to be
in the classUB(γ, η, β, d), if and only if

<[ zG′′(z)
G′(z) ] > β| zG′′(z)

G′(z) − 1|+ η,

where

G(z) = (1− γ)B(d,κ)(g(z)) + γ(B(d,κ)(g(z)))′. (4. 17)

Now by using some results of [18] and the above technique of finding the Bohr radius we
can show that the classUB(γ, η, β, d) satisfies Bohr’s phenomenon for the following Bohr
radius

r? =
(η + β + 2(2− η)ς)

β + 2(2− η)ς +
√

(β + 2(2− η)ς)2 + 4(1− η)(η + β + 2(2− η)ς − 1)
,(4. 18)

with ς = (1 + γ)(|−d
4κ |).
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5. CONCLUSION

Keeping in sight the importance and applications of Bohr’s phenomenon in many areas
of research, we found the Bohr radius of different subclasses of analytic functions with
negative coefficients. The derived results in the present investigation, continue to hold for
a variety of subclasses of analytic functions. Moreover, the technique used in the paper can
be utilized to investigate the Bohr radius of various other classes.
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