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Abstract -- Flash memory-based Solid-State Drives (SSDs) are becoming popular as the storage media in domains ranging from laptops 

and embedded systems to enterprise-scale storage systems. The main reasons are SSDs durability and low energy consumption. 

Performance behavior of SSDs differs from those of magnetic disks. However, SSDs possess poor random write performance because 

of the erase-before-write problem. The cache memory has multiple novel features including advanced support for performance 

monitoring, data pre-fetching, and coherency. In this research, we have incorporated multi-level caching with solid-state drives. We 

evaluated our technique using the standard state-of-the-art DiskSim simulator. We found a significant reduction in number of writes 

with multi-level caching. The overhead was comparable. 
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I.  INTRODUCTION 

UE to several reasons, flash memory is rapidly becoming 

an important and promising technology for the next-

generation storage. Some of the reasons are: (i) low access 

latency, (ii) low power consumption, (iii) higher resistance to 

shocks, and (v) increasing endurance. A lot of research done in 

the past decade has focused on improving the performance and 

reliability of flash devices and their associated drivers and 

software [7, 5, 9, 18, 19]. 

In general, flash devices are made of NAND and NOR 
technologies [20]. The NAND-type flash memory may be 
written and read in blocks; generally smaller in size than the 
entire device. NOR-type flash allows a single machine word 
(byte) to be written to location previously erased. NAND-based 
flash devices have emerged as a more acceptable candidate in 
the storage market. One of the main reason behind this is the 
logical gate structure of NOR and NAND. If case of NOR, gates 
are connected in parallel where as in case of NAND it’s serial. 
As parallel setup occupies more on board are compared serial 
setup, NAND based SSDs are more preferred. 

The NAND-flash based solid-state storage devices (SSDs) 
can produce exceptional bandwidth and random I/O 
performance that is in orders of magnitude better than that of 
rotating disks. Moreover, SSDs offer both a significant savings 
in power budget and an absence of moving parts, improving 
system reliability.  

 Flash memory-based SSDs exhibit much better 
performance for random reads compared to hard disks because 
NAND flash memory does not have seek delay. In a hard disk, 
the seek delay can be up to several milliseconds. For sequential 
read and write requests, an SSD has a similar or better 
performance than a hard disk [1]. However, SSDs exhibit worse 

random writes due to the unique physical characteristics of 
NAND flash memory. It is called the erase-before-write 
property of flash memory 

 A NAND flash memory chip has several blocks that can be 
erased independently. Each block has a fixed number of pages 
where data can be written to or read from. Before data can be 
written to or read from. Before data can be written to an already 
used page, the block containing the page must be erased as 
overwriting is not allowed. A typical block size and page size 
is 16~256 KB and 0.5~4KB, respectively. Block erase takes 
around 1.5~2 milliseconds, while reading and writing page 
takes tens of microseconds and hundreds of microseconds 
respectively [10,11].  

Following are couple of systems issues which are relevant to 
SSD performance:  

Parallelism: To achieve optimal performance, the 
bandwidth and operation rate of any given    flash chip is not 
sufficient. Hence, memory components must be coordinated to 
operate in parallel.  

Workload management: Performance highly depends on 
workload. For example, architectural designs that produce good 
performance under sequential workloads may not benefit 
workloads that are parallel, and vice versa.  

Write ordering: Small, randomly-ordered writes are 

especially tricky as far as NAND flash based SSDs are 

concerned. 

Data placement: Careful placement of data across the chips 
of an SSD is critical for load balancing and wear-leveling. 

To improve the average performance for data accesses, Hard-

Disk Drives (HDDs) typically include an on-board cache based 

on DRAM technology. In most HDDs, the cache acts primarily 

as a buffer that matches the speed of the I/O interface to the 

slower access speed of the hard disk platters. The cache buffer 

might also incorporate some advanced features such as pre-

fetching, in order to further reduce the average read access time. 

For writes, the operating system (OS) is given the illusion of a 
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fast access time by signaling the completion of a write operation 

as soon as data is accepted into the cache, before the write is 

propagated to the hard disk platters. 

Due to the constraint that page overwrite is forbidden, 

researchers have tried to solve this problem of erase-before-

write problem by two different angles. Either by designing 

sophisticated software techniques such as Flash Translation 

Layer (FTL) [12, 14] or by designing flash-aware buffer 

management algorithms (e.g. CFLRU, BPLRU, PUD-LRU) 

[16,17, 19]. In this paper, we have turned our focus on to the 

write-cache buffer management system. We have tried to 

implement a two-level cache buffer management system on top 

of the FTL layer of a typical SSD. 

II.  BACKGROUND 

Flash memory devices are the current de facto media adopted 
in SSDs. The architecture of the internal logic in a flash device 
is almost like volatile SDRAM or SRAM. However, due to 
differences in the storage cells used, the flash media has the 
capability to retain the stored information without power. 

As shown in Fig. 1, flash memory stores information in an 
array of memory cells made from floating-gate transistors [2]. 
In general, the flash cell stores only a single bit of data, and is 
therefore called a single-level cell.  

The wiring and interconnection scheme between the 
individual single-level cells determines whether it is a NAND 
flash or NOR flash. 

In all flash memories, the single-level cell in its default state 
is logically equivalent to a binary “1” value. By programming 
the floating-gate transistors its status can be changed to “0”.  

An erase operation is required to bring back the flash cell to 
its default state with value “1”. In other words, if a cell must be 
written with a new value, it should be first erased in preparation 
for the write (since the value of the new bit is unknown), 
followed by programming the new value. The need for erasure 
with every write operation is one of the factors resulting in 
longer write access time. 

A single flash package comprises billions of flash cells that 
are organized in a hierarchical architecture, as depicted in Fig.2. 
The basic unit is a flash page. Multiple flash pages compose a 
block, which further forms a plane. In NAND flash memories, 
reading and writing are performed in a granularity of flash page. 
However, erasure is carried out in a granularity of flash block. 
The typical sizes of a page and block, as well as the 
 

 
 

 

 

 

 

 

 

 
 
specifications for basic read/write operations, are summarized 
in Table I [21]. 

The internal architecture of an SSD device is illustrated in 
Fig. 3. It consists of three basic components.  

Host Interface Logic: This component handles the 
communication with the OS and emulates an HDD interface as 
well. 

Control Logic: The basic function of the SSD controller is 
to convert logical block address to logical flash page address 
and further to physical page address, i.e., the functionality of 
Flash Translation Layer (FTL) [12]. This component is 
responsible for additional advanced features, such as 
interleaving, wear leveling, etc. 

An Array of Nonvolatile Flash Packages: Multiple flash 
packages are combined to give the large storage size typical of 
SSDs. The array is organized appropriately to achieve the 
required performance through interleaving. 

Constraints on the amount of data that can be written to an SSD 
stem from the properties of NAND flash. Specifically, a block 
must be erased before being re-written, and only a finite number 
of erasures are possible before the bit error rate of the device 
becomes unacceptably high [7]. SLC (single-level cell) flash 
typically supports 100K erasures per flash block. However, as 
SSD technology moves towards MLC (multi-level cell) flash 
that provides higher bit densities at lower cost, the erasure limit 
per block drops as low as 5,000 to 10,000 cycles.  

According to Micron’s data sheet [10], under a 
specific workload, its 60 GB SSD only has write lifetime of       

Fig. 1. Flash memory information storage mechanism 

TABLE I 

Typical Sizes of a Page and Block 

Fig. 2. Hierarchical Architecture 
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42 TB, which is a reduction in write-lifetime by a factor of 7. It 
is conceivable that under a more stressful workload, SSD write-
lifetime decreases by more than an order of magnitude. 

III.  RELATED WORK 

Modern day SSDs have mainly two drawbacks: 1) poor 

random write performance because of erase-before-write 

property, and 2) low lifetime because of limited number of erase 

per block property. For the last decade researchers have 

proposed many solutions to negate these two drawbacks of 

SSDs. Proposed solutions are can be categorized into two 

divisions 1) by implementing start-of-the-art flash translation 

layer, or 2) by implementing state-of-the-art write buffer 

management system. 

FTL (shown in Fig. 4) is nothing but a software layer residing 
on top of the physical medium of SSD. It maintains a mapping 
between logical pages and physical pages. By means of 
intelligent wear-leveling and garbage collection mechanisms, 
FTL can evenly distribute erasures to flash block. Thus, it 
improves performance and increases the lifetime of SSD.  

There have been many FTL proposals like Log-structured 
FTL architecture [6], then page-mapping FTL [14], block-
mapping FTL [15] , hybrid mapping FTL and most recently 
Demand –based page level FTL (DFTL) [10]. 

Write buffer management system is the alternative approach 
of the FTL approach. In this approach buffer memory is added 
above FTL to serve as write buffer. As a write buffer, frequently 
updated data blocks can be kept on the buffer for as long as 
possible before being de-staged to the flash physical medium. 
Thus, write buffer reduces number of erases and offers a better 
performance [16].  

There have been many proposals. Clean first LRU (CFLRU) 
[17] is buffer cache management algorithm. According to this 
algorithm it attempts to choose a clean page as a victim rather 
than dirty page because writing cost is much more expensive. 

Block padding LRU (BPLRU) [19] is also a buffer management 
scheme to be applied to the write buffer inside SSDs. BPLRU 
manages buffer only for write requests. BPLRU implements 
LRU algorithm in the block level instead of page level. It uses 
CFLRU as the cache replacement algorithm.  

There have been proposals of efficient write cache [8] to 
provide balanced read/write performance for flash memory. 
Also, it uses an efficient updating technique to provide more 
responsive SSD architecture by writing back stable but dirty 
flash pages.  

Predicted average update distance LRU (PUD-LRU) [16] is 

also a write buffer management system where predicted 

average update distance (PUD) is used as the key block 

replacement criterion on top of log-block FTL scheme. To take 

advantage of the log block FTL, PUD-LRU maximizes number 

of valid pages in de-staged block in each erase operation. 

IV.  MOTIVATION 

Well-designed FTL cannot replace buffer management. 
Also, these write-caches reduce write operation on SSDs [16]. 
This in turn reduces number of erase operations on the SSD. 
These disk-based write caches improve SSD lifetime 
significantly without sacrificing performance. 

Other than BPLRU [19] none of the works previously used 
multilevel cache in their design. But BPLRU used two caches 
in two sides of the design. They used one cache to in the File 
system side to manage the I/O and the other cache in the SSD 
side to make it work as write buffer.  

RAM can be used as a fast and effective write cache; 
however, the overriding problem with RAM is that it is not 
persistent. Increasing the RAM size or the timer interval for 
periodic flushes may reduce the number of writes to storage but 
only at the cost of a larger window of vulnerability during 
which a power failure or crash could result in lost updates. 

The large performance gap between reads and writes is due 
to two reasons described. Firstly, a basic write operation 
(excluding erasure) is by itself slower than reading. From   
Table I, it is seen that a write takes 200 μs to program a flash 
page; the time to read a flash page is merely 25 μs. Secondly a 
flash cell must be erased before it can be re-programmed.  

Since the granularity of writes is a flash page (4K bytes) but 
the granularity of an erase operation is a flash block (64 pages), 
a page-write operation can incur a large penalty if the block 
being written has valid data (thereby requiring erasure). When 
a page is being written to the flash, because of the erasure the 
entire block containing the page can lose data; the FTL in the 
SSD controller ensures data integrity by performing data copy 
before erasure [11]. The FTL also attempts to minimize block 
erasures by maintaining appropriate mappings between logical 
in the flash memory. 

The basic policy used is write-back, i.e., data are always first 
written into the cache, and only later propagated to flash 
memory. In our design, we have tried to merge the write back 
property of caching with LRU cache replacement algorithm.  

Fig. 4.  SSD Logic Components 

Fig. 3. NAND Flash Memory 
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A cache miss refers to a failed attempt to read or write a piece 
of data in the cache, which results in a main memory access 
with much longer latency. The graph shown in Fig. 5 
summarizes the cache performance seen on the Integer portion 
of the SPEC CPU2000 benchmarks, as collected by Hill and 
Cantin [4]. 

We have tried to implement two levels of write-cache instead 
of single level write-cache of greater size cause of latency issue. 
Increase of size may increase the hit rates, but it also will 
increase the cache latency.  

V.  MULTILEVEL ARCHITECTURE 

SSD has an inherent problem with the writing of data. Data 
reads are at the granularity of a page, writing is slower because 
media blocks must be erased before they can be reused for new 
data. An erase operation is considerably more expensive than a 
read or writes operation by itself. In addition, each block can be 
erased only a finite number of times before becoming unusable, 
therefore, the life of an SSD is limited to a finite number of 
writes. Previous attempts as in [5] have targeted the problem of 
slow writes in SSD by making sequential writes rather than 
random writes and perform random reads. Random reads have 
proved to be faster for SSD; therefore, caching page read does 
not pay much significance to the overall performance of SSD 
read.  

Our approach is based on the previous findings, stating that 
reads are faster as in [5] and writes shall be targeted for 
improvement. As proposed in [8] introduction of a cache in 
SSD for caching all write operations before actually writing 
them to SSD can have significant improvement in write 
performance. This way writes can be made to the SSD from the 
cache only when the SSD is idle, furthermore, it would be 
useful to explore the write sequencing as done in [5] to leverage 
the sequential write capability rather than a random write. 

All write operations on a page are cached; all read operations 
are directory sent to the SSD; however, a read hit can take place 
if the data is already loaded in cache by a previous write 
operation on the same block. L1 write hits takes place if the 
page being requested is already located in the cache, in case of 
a L1 cache miss the request is forwarded to L2 cache, which 
generally is larger than L1 cache. An L2 cache hit occurs if the 
page being requested is present in L2 cache. In case of a miss 
at the L2 the page is first loaded from the SSD into L2 cache 
and then copied onto the L1 cache as well. Ideally the L1 cache 
is frequently accessed; L1 cache must be updated with the 
frequently accessed blocks to augment spatial locality and 
temporal locality.  

Our implementation is software based, we would like to 
incorporate optimized cache management algorithm in our 
approach. To overcome the erase overhead in case of write 
operation, we would like to write dirty data from cache only 
when the SSD is idle. Likewise, care would be taken to write 
dirty data this is not accessed frequently; perhaps cache data is 
only written when it is not accessed for any longer. This way 
we can improve the locality of pages that are accessed 
frequently and eventually written when they are no longer 
required, thus we can improve the life of SSD by minimizing 
the number of writes. After the write to SSD is completed, we 
may or may keep a copy of the page in cache, if the write was 
required as in case of cache capacity exceeded, the pages that 

 
 
Fig. 5. Cache Size 

are least frequently accessed would be removed and written to 
SSD if they were marked dirty. 

We would like to explore and use the following cache 

replacement algorithms, both algorithms provide a set of 

benefits over the other available techniques. Efficient use of 

cache would help in achieving more performance, the 

performance measures are almost always constraint on the 

performance of cache management techniques being used. 

A.  The Least Recently Used (LRU) 

LRU maintains an ordered list (the cache directory) of 
resource entries in the cache, with the sort order based on the 
time of most recent access. New entries are added at the top of 
the list, after the bottom entry has been evicted. Cache hits 
move to the top, pushing all other entries down.  

Since, L1 is most frequently accessed and updated we would 
expect better performance in this case. 

B.  Second Level Buffer Cache 
The page replacement algorithms decide which data pages to 

page out (swap out, write to SSD) when an allocation must be 
made. Paging happens when a page fault occurs and a free page 
cannot be used to satisfy the allocation, either because there are 
none, or because the number of free pages is lower than some 
threshold. [13]  

The LRU algorithm is used for L2 level caching, we expect 
better performance outcomes with this algorithm. Capacity of 
L2 cache is higher than that of L1 cache, therefore, L1 cache 
write miss should ideally result in L2 cache hit. Furthermore, 
efficient techniques can be used at the L2 level to minimize the 
number of direct access of SSD in the case of frequent writes. 

VI.  IMPLEMENTATION 

We used an object-oriented programming language: Java. 
Our goal would be to simulate the L1 and L2 caching with the 
SSD. Our implementation would contain the centralized 
component: Cache Controller (CC), which manages page loads 
and writes on both the L1 and L2 caches. The cache controller 
would act as an interface between the processor and the L1 and 
L2 caches, so all read and write request would be managed by 
the cache controller. The cache controller would keep track of 
the SSD status and would invoke the cache management 
algorithms whenever either of the cache has reached a certain 
capacity threshold. Furthermore, the cache controller would 
interface with the SSD and invoke the Garbage Collection (GC) 
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functionality of SSD after some regular intervals or after a 
certain number of writes to the SSD. 

Ideally the cache controller would maintain meta 
information on both L1 and L2 cache, this information would 
contain hash table containing the mapping from tag-id on cache 
onto a physical address in the SSD i.e. logical to physical 
address mapping, additionally we have maintained logging 
information for certain blocks that are accessed frequently and 
a counter for the number of times data is written to the same 
block.  

We tested our approach against the traditional SSD system 
with no caching. We also compared the performance of the 
LRU Algorithm for Second Level Buffer Caches. We expect 
greater improvement with this approach, and the write hits 
should help in reducing the response time. Additionally, 
managing the data writes to the SSD would improve the overall 
life and hence reliability of the SSD. 

The following diagrams shown in Fig. 6 and Fig. 7 explains 
the flow data in cache.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                  Fig. 6. L1 Cache 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                   Fig. 7. L2 Cache 

VII.  EVALUATION 

We used a workload of 100 K write operation of a size of 
70MB size of operation developed by Iozone. Iozone is 
filesystem benchmark tool. The benchmark generates and 
measures a variety of file operations. Iozone has been ported to 
many machines and runs under many operating systems. Iozone 
is useful for performing a broad filesystem analysis of a 
vendor’s computer platform. The benchmark tests file I/O 
performance for the following operations: Read, write, re-read, 
re-write, read backwards, read strided, fread, fwrite, random 
read, pread ,mmap, aio_read, aio_write [23]. 

The DiskSIM configurations that we used in this experiment 
are summarized in the Table II. 
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TABLE II 
DiskSIM parameter for this experiment 

 

 

 

 

 

 

 

 

 

 

The trace file had approximately 80 % cache-able data which is 
ideally suitable for using in this scenario we used an L1 cache 
size of 8 KB and L2 cache size 16 KB and ran the trace file in 
10 iterations of equal size of our implementation. 

We assumed the same access time for both L1 and L2 cache. 
However, generally L1 is faster than L2, as future work our 
implementation can be extended by including access time for 
L1 which is less than access time of L2 for this simulation. 

We present our results by evaluating our implementation 
against the standard SSD without caching. We compared a 
number of factors including the number of writes, response 
time, and the overhead of using two cache with the SSD.  

From Figure 8, it is clear that number of writes were reduced 
by almost 63 %. Case 9 is unique where the data lacked spatial 
consistency and size of each write was comparatively greater 
than in previous iterations. 

Results (see Figure 9) shows the response time comparison 
between our implantation and the traditions SSD. The average 
response time did not show much improvement in this case. 
Case 9 had unusual performance in this case as well. 

From the results shown in Figure 10 it is clear that there was 
on average performance in the execution time in the Multi-level 
cache design. This execution time performance occurred as a 
result of the overall reduction the number of write request on 
SSD. 

 

Fig. 8. Write per iteration 

 

 

Fig. 9. Average Response Time 

  

Fig. 10. Total Execution Time 
 

The overhead of using Multi level cache with SSD is 
acceptable, as depicted in the Fig. 11. 

 

Fig. 11. Multi-level Cache Overhead 

VIII.  CONCLUSION 

We recorded Significant (63% in our experimental setup) 
reduction in the number of writes. We also observed a reduced 
number of SSD which indirectly helps in reducing the number 
of erase operations in SSD and eventually helps in wear-
leveling.  We also conclude that execution time reduced with 
number of cache hits.  Finally we can predict an anticipated 
improvement with Multi level caching. 

Parameter Value 

Page Write 200 μs 

Page Read 25 μs 

Block Erase 1.5ms 

Block Size 256 KB 

Page Size 4 KB 

Erase Cycles 10K 
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There were some limitations in our study that can be 
addressed in future implementation. Specifically, we used a 
workload of all write operations; it would be interesting to see 
if the performance of SSD is affected in some way by including 
read operations as well.  

Secondly, we used a single trace file used.  We used LRU 
cache replacement algorithm in both L1 and L2 cache’s. It 
would be interesting to use State-of-the art algorithm’s 
(BPLRU, PUD-LRU etc.) in our multilevel cache architecture 
and compare performance with single level write buffer 
architecture.  

As part of the future work we would like to compare 
performance with existing buffer management schemes. 
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