
Journal of Applied and Emerging Sciences 2019 Vol (09), Issue (01)

22

Abstract -- Flash memory-based Solid-State Drives (SSDs) are becoming popular as the storage media in domains ranging from laptops

and embedded systems to enterprise-scale storage systems. The main reasons are SSDs durability and low energy consumption.

Performance behavior of SSDs differs from those of magnetic disks. However, SSDs possess poor random write performance because

of the erase-before-write problem. The cache memory has multiple novel features including advanced support for performance

monitoring, data pre-fetching, and coherency. In this research, we have incorporated multi-level caching with solid-state drives. We

evaluated our technique using the standard state-of-the-art DiskSim simulator. We found a significant reduction in number of writes

with multi-level caching. The overhead was comparable.

Keywords- SSD, Cache, Multilevel, DiskSim, LRU

Date Received 20 May 2019

Date Accepted 22 June 2019

Date Published 5 July 2019

I. INTRODUCTION

UE to several reasons, flash memory is rapidly becoming

an important and promising technology for the next-

generation storage. Some of the reasons are: (i) low access

latency, (ii) low power consumption, (iii) higher resistance to

shocks, and (v) increasing endurance. A lot of research done in

the past decade has focused on improving the performance and

reliability of flash devices and their associated drivers and

software [7, 5, 9, 18, 19].

In general, flash devices are made of NAND and NOR
technologies [20]. The NAND-type flash memory may be
written and read in blocks; generally smaller in size than the
entire device. NOR-type flash allows a single machine word
(byte) to be written to location previously erased. NAND-based
flash devices have emerged as a more acceptable candidate in
the storage market. One of the main reason behind this is the
logical gate structure of NOR and NAND. If case of NOR, gates
are connected in parallel where as in case of NAND it’s serial.
As parallel setup occupies more on board are compared serial
setup, NAND based SSDs are more preferred.

The NAND-flash based solid-state storage devices (SSDs)
can produce exceptional bandwidth and random I/O
performance that is in orders of magnitude better than that of
rotating disks. Moreover, SSDs offer both a significant savings
in power budget and an absence of moving parts, improving
system reliability.

 Flash memory-based SSDs exhibit much better
performance for random reads compared to hard disks because
NAND flash memory does not have seek delay. In a hard disk,
the seek delay can be up to several milliseconds. For sequential
read and write requests, an SSD has a similar or better
performance than a hard disk [1]. However, SSDs exhibit worse

random writes due to the unique physical characteristics of
NAND flash memory. It is called the erase-before-write
property of flash memory

 A NAND flash memory chip has several blocks that can be
erased independently. Each block has a fixed number of pages
where data can be written to or read from. Before data can be
written to or read from. Before data can be written to an already
used page, the block containing the page must be erased as
overwriting is not allowed. A typical block size and page size
is 16~256 KB and 0.5~4KB, respectively. Block erase takes
around 1.5~2 milliseconds, while reading and writing page
takes tens of microseconds and hundreds of microseconds
respectively [10,11].

Following are couple of systems issues which are relevant to
SSD performance:

Parallelism: To achieve optimal performance, the
bandwidth and operation rate of any given flash chip is not
sufficient. Hence, memory components must be coordinated to
operate in parallel.

Workload management: Performance highly depends on
workload. For example, architectural designs that produce good
performance under sequential workloads may not benefit
workloads that are parallel, and vice versa.

Write ordering: Small, randomly-ordered writes are

especially tricky as far as NAND flash based SSDs are

concerned.

Data placement: Careful placement of data across the chips
of an SSD is critical for load balancing and wear-leveling.

To improve the average performance for data accesses, Hard-

Disk Drives (HDDs) typically include an on-board cache based

on DRAM technology. In most HDDs, the cache acts primarily

as a buffer that matches the speed of the I/O interface to the

slower access speed of the hard disk platters. The cache buffer

might also incorporate some advanced features such as pre-

fetching, in order to further reduce the average read access time.

For writes, the operating system (OS) is given the illusion of a

Bakhtiar Kasi, Mumraiz Kasi, Riaz UlAmin
Faculty of Information & Communication Technology , BUITEMS, Quetta, Pakistan,

Corresponding Author: bakhtiar.kasi@buitms.edu.pk

Efficient Multilevel Cache Design for Solid

State Drive’s

D

Journal of Applied and Emerging Sciences 2019 Vol (09), Issue (01)

23

fast access time by signaling the completion of a write operation

as soon as data is accepted into the cache, before the write is

propagated to the hard disk platters.

Due to the constraint that page overwrite is forbidden,

researchers have tried to solve this problem of erase-before-

write problem by two different angles. Either by designing

sophisticated software techniques such as Flash Translation

Layer (FTL) [12, 14] or by designing flash-aware buffer

management algorithms (e.g. CFLRU, BPLRU, PUD-LRU)

[16,17, 19]. In this paper, we have turned our focus on to the

write-cache buffer management system. We have tried to

implement a two-level cache buffer management system on top

of the FTL layer of a typical SSD.

II. BACKGROUND

Flash memory devices are the current de facto media adopted
in SSDs. The architecture of the internal logic in a flash device
is almost like volatile SDRAM or SRAM. However, due to
differences in the storage cells used, the flash media has the
capability to retain the stored information without power.

As shown in Fig. 1, flash memory stores information in an
array of memory cells made from floating-gate transistors [2].
In general, the flash cell stores only a single bit of data, and is
therefore called a single-level cell.

The wiring and interconnection scheme between the
individual single-level cells determines whether it is a NAND
flash or NOR flash.

In all flash memories, the single-level cell in its default state
is logically equivalent to a binary “1” value. By programming
the floating-gate transistors its status can be changed to “0”.

An erase operation is required to bring back the flash cell to
its default state with value “1”. In other words, if a cell must be
written with a new value, it should be first erased in preparation
for the write (since the value of the new bit is unknown),
followed by programming the new value. The need for erasure
with every write operation is one of the factors resulting in
longer write access time.

A single flash package comprises billions of flash cells that
are organized in a hierarchical architecture, as depicted in Fig.2.
The basic unit is a flash page. Multiple flash pages compose a
block, which further forms a plane. In NAND flash memories,
reading and writing are performed in a granularity of flash page.
However, erasure is carried out in a granularity of flash block.
The typical sizes of a page and block, as well as the

specifications for basic read/write operations, are summarized
in Table I [21].

The internal architecture of an SSD device is illustrated in
Fig. 3. It consists of three basic components.

Host Interface Logic: This component handles the
communication with the OS and emulates an HDD interface as
well.

Control Logic: The basic function of the SSD controller is
to convert logical block address to logical flash page address
and further to physical page address, i.e., the functionality of
Flash Translation Layer (FTL) [12]. This component is
responsible for additional advanced features, such as
interleaving, wear leveling, etc.

An Array of Nonvolatile Flash Packages: Multiple flash
packages are combined to give the large storage size typical of
SSDs. The array is organized appropriately to achieve the
required performance through interleaving.

Constraints on the amount of data that can be written to an SSD
stem from the properties of NAND flash. Specifically, a block
must be erased before being re-written, and only a finite number
of erasures are possible before the bit error rate of the device
becomes unacceptably high [7]. SLC (single-level cell) flash
typically supports 100K erasures per flash block. However, as
SSD technology moves towards MLC (multi-level cell) flash
that provides higher bit densities at lower cost, the erasure limit
per block drops as low as 5,000 to 10,000 cycles.

According to Micron’s data sheet [10], under a
specific workload, its 60 GB SSD only has write lifetime of

Fig. 1. Flash memory information storage mechanism

TABLE I

Typical Sizes of a Page and Block

Fig. 2. Hierarchical Architecture

Journal of Applied and Emerging Sciences 2019 Vol (09), Issue (01)

24

42 TB, which is a reduction in write-lifetime by a factor of 7. It
is conceivable that under a more stressful workload, SSD write-
lifetime decreases by more than an order of magnitude.

III. RELATED WORK

Modern day SSDs have mainly two drawbacks: 1) poor

random write performance because of erase-before-write

property, and 2) low lifetime because of limited number of erase

per block property. For the last decade researchers have

proposed many solutions to negate these two drawbacks of

SSDs. Proposed solutions are can be categorized into two

divisions 1) by implementing start-of-the-art flash translation

layer, or 2) by implementing state-of-the-art write buffer

management system.

FTL (shown in Fig. 4) is nothing but a software layer residing
on top of the physical medium of SSD. It maintains a mapping
between logical pages and physical pages. By means of
intelligent wear-leveling and garbage collection mechanisms,
FTL can evenly distribute erasures to flash block. Thus, it
improves performance and increases the lifetime of SSD.

There have been many FTL proposals like Log-structured
FTL architecture [6], then page-mapping FTL [14], block-
mapping FTL [15] , hybrid mapping FTL and most recently
Demand –based page level FTL (DFTL) [10].

Write buffer management system is the alternative approach
of the FTL approach. In this approach buffer memory is added
above FTL to serve as write buffer. As a write buffer, frequently
updated data blocks can be kept on the buffer for as long as
possible before being de-staged to the flash physical medium.
Thus, write buffer reduces number of erases and offers a better
performance [16].

There have been many proposals. Clean first LRU (CFLRU)
[17] is buffer cache management algorithm. According to this
algorithm it attempts to choose a clean page as a victim rather
than dirty page because writing cost is much more expensive.

Block padding LRU (BPLRU) [19] is also a buffer management
scheme to be applied to the write buffer inside SSDs. BPLRU
manages buffer only for write requests. BPLRU implements
LRU algorithm in the block level instead of page level. It uses
CFLRU as the cache replacement algorithm.

There have been proposals of efficient write cache [8] to
provide balanced read/write performance for flash memory.
Also, it uses an efficient updating technique to provide more
responsive SSD architecture by writing back stable but dirty
flash pages.

Predicted average update distance LRU (PUD-LRU) [16] is

also a write buffer management system where predicted

average update distance (PUD) is used as the key block

replacement criterion on top of log-block FTL scheme. To take

advantage of the log block FTL, PUD-LRU maximizes number

of valid pages in de-staged block in each erase operation.

IV. MOTIVATION

Well-designed FTL cannot replace buffer management.
Also, these write-caches reduce write operation on SSDs [16].
This in turn reduces number of erase operations on the SSD.
These disk-based write caches improve SSD lifetime
significantly without sacrificing performance.

Other than BPLRU [19] none of the works previously used
multilevel cache in their design. But BPLRU used two caches
in two sides of the design. They used one cache to in the File
system side to manage the I/O and the other cache in the SSD
side to make it work as write buffer.

RAM can be used as a fast and effective write cache;
however, the overriding problem with RAM is that it is not
persistent. Increasing the RAM size or the timer interval for
periodic flushes may reduce the number of writes to storage but
only at the cost of a larger window of vulnerability during
which a power failure or crash could result in lost updates.

The large performance gap between reads and writes is due
to two reasons described. Firstly, a basic write operation
(excluding erasure) is by itself slower than reading. From
Table I, it is seen that a write takes 200 μs to program a flash
page; the time to read a flash page is merely 25 μs. Secondly a
flash cell must be erased before it can be re-programmed.

Since the granularity of writes is a flash page (4K bytes) but
the granularity of an erase operation is a flash block (64 pages),
a page-write operation can incur a large penalty if the block
being written has valid data (thereby requiring erasure). When
a page is being written to the flash, because of the erasure the
entire block containing the page can lose data; the FTL in the
SSD controller ensures data integrity by performing data copy
before erasure [11]. The FTL also attempts to minimize block
erasures by maintaining appropriate mappings between logical
in the flash memory.

The basic policy used is write-back, i.e., data are always first
written into the cache, and only later propagated to flash
memory. In our design, we have tried to merge the write back
property of caching with LRU cache replacement algorithm.

Fig. 4. SSD Logic Components

Fig. 3. NAND Flash Memory

Journal of Applied and Emerging Sciences 2019 Vol (09), Issue (01)

25

A cache miss refers to a failed attempt to read or write a piece
of data in the cache, which results in a main memory access
with much longer latency. The graph shown in Fig. 5
summarizes the cache performance seen on the Integer portion
of the SPEC CPU2000 benchmarks, as collected by Hill and
Cantin [4].

We have tried to implement two levels of write-cache instead
of single level write-cache of greater size cause of latency issue.
Increase of size may increase the hit rates, but it also will
increase the cache latency.

V. MULTILEVEL ARCHITECTURE

SSD has an inherent problem with the writing of data. Data
reads are at the granularity of a page, writing is slower because
media blocks must be erased before they can be reused for new
data. An erase operation is considerably more expensive than a
read or writes operation by itself. In addition, each block can be
erased only a finite number of times before becoming unusable,
therefore, the life of an SSD is limited to a finite number of
writes. Previous attempts as in [5] have targeted the problem of
slow writes in SSD by making sequential writes rather than
random writes and perform random reads. Random reads have
proved to be faster for SSD; therefore, caching page read does
not pay much significance to the overall performance of SSD
read.

Our approach is based on the previous findings, stating that
reads are faster as in [5] and writes shall be targeted for
improvement. As proposed in [8] introduction of a cache in
SSD for caching all write operations before actually writing
them to SSD can have significant improvement in write
performance. This way writes can be made to the SSD from the
cache only when the SSD is idle, furthermore, it would be
useful to explore the write sequencing as done in [5] to leverage
the sequential write capability rather than a random write.

All write operations on a page are cached; all read operations
are directory sent to the SSD; however, a read hit can take place
if the data is already loaded in cache by a previous write
operation on the same block. L1 write hits takes place if the
page being requested is already located in the cache, in case of
a L1 cache miss the request is forwarded to L2 cache, which
generally is larger than L1 cache. An L2 cache hit occurs if the
page being requested is present in L2 cache. In case of a miss
at the L2 the page is first loaded from the SSD into L2 cache
and then copied onto the L1 cache as well. Ideally the L1 cache
is frequently accessed; L1 cache must be updated with the
frequently accessed blocks to augment spatial locality and
temporal locality.

Our implementation is software based, we would like to
incorporate optimized cache management algorithm in our
approach. To overcome the erase overhead in case of write
operation, we would like to write dirty data from cache only
when the SSD is idle. Likewise, care would be taken to write
dirty data this is not accessed frequently; perhaps cache data is
only written when it is not accessed for any longer. This way
we can improve the locality of pages that are accessed
frequently and eventually written when they are no longer
required, thus we can improve the life of SSD by minimizing
the number of writes. After the write to SSD is completed, we
may or may keep a copy of the page in cache, if the write was
required as in case of cache capacity exceeded, the pages that

Fig. 5. Cache Size

are least frequently accessed would be removed and written to
SSD if they were marked dirty.

We would like to explore and use the following cache

replacement algorithms, both algorithms provide a set of

benefits over the other available techniques. Efficient use of

cache would help in achieving more performance, the

performance measures are almost always constraint on the

performance of cache management techniques being used.

A. The Least Recently Used (LRU)

LRU maintains an ordered list (the cache directory) of
resource entries in the cache, with the sort order based on the
time of most recent access. New entries are added at the top of
the list, after the bottom entry has been evicted. Cache hits
move to the top, pushing all other entries down.

Since, L1 is most frequently accessed and updated we would
expect better performance in this case.

B. Second Level Buffer Cache
The page replacement algorithms decide which data pages to

page out (swap out, write to SSD) when an allocation must be
made. Paging happens when a page fault occurs and a free page
cannot be used to satisfy the allocation, either because there are
none, or because the number of free pages is lower than some
threshold. [13]

The LRU algorithm is used for L2 level caching, we expect
better performance outcomes with this algorithm. Capacity of
L2 cache is higher than that of L1 cache, therefore, L1 cache
write miss should ideally result in L2 cache hit. Furthermore,
efficient techniques can be used at the L2 level to minimize the
number of direct access of SSD in the case of frequent writes.

VI. IMPLEMENTATION

We used an object-oriented programming language: Java.
Our goal would be to simulate the L1 and L2 caching with the
SSD. Our implementation would contain the centralized
component: Cache Controller (CC), which manages page loads
and writes on both the L1 and L2 caches. The cache controller
would act as an interface between the processor and the L1 and
L2 caches, so all read and write request would be managed by
the cache controller. The cache controller would keep track of
the SSD status and would invoke the cache management
algorithms whenever either of the cache has reached a certain
capacity threshold. Furthermore, the cache controller would
interface with the SSD and invoke the Garbage Collection (GC)

Journal of Applied and Emerging Sciences 2019 Vol (09), Issue (01)

26

functionality of SSD after some regular intervals or after a
certain number of writes to the SSD.

Ideally the cache controller would maintain meta
information on both L1 and L2 cache, this information would
contain hash table containing the mapping from tag-id on cache
onto a physical address in the SSD i.e. logical to physical
address mapping, additionally we have maintained logging
information for certain blocks that are accessed frequently and
a counter for the number of times data is written to the same
block.

We tested our approach against the traditional SSD system
with no caching. We also compared the performance of the
LRU Algorithm for Second Level Buffer Caches. We expect
greater improvement with this approach, and the write hits
should help in reducing the response time. Additionally,
managing the data writes to the SSD would improve the overall
life and hence reliability of the SSD.

The following diagrams shown in Fig. 6 and Fig. 7 explains
the flow data in cache.

 Fig. 6. L1 Cache

 Fig. 7. L2 Cache

VII. EVALUATION

We used a workload of 100 K write operation of a size of
70MB size of operation developed by Iozone. Iozone is
filesystem benchmark tool. The benchmark generates and
measures a variety of file operations. Iozone has been ported to
many machines and runs under many operating systems. Iozone
is useful for performing a broad filesystem analysis of a
vendor’s computer platform. The benchmark tests file I/O
performance for the following operations: Read, write, re-read,
re-write, read backwards, read strided, fread, fwrite, random
read, pread ,mmap, aio_read, aio_write [23].

The DiskSIM configurations that we used in this experiment
are summarized in the Table II.

Journal of Applied and Emerging Sciences 2019 Vol (09), Issue (01)

27

TABLE II
DiskSIM parameter for this experiment

The trace file had approximately 80 % cache-able data which is
ideally suitable for using in this scenario we used an L1 cache
size of 8 KB and L2 cache size 16 KB and ran the trace file in
10 iterations of equal size of our implementation.

We assumed the same access time for both L1 and L2 cache.
However, generally L1 is faster than L2, as future work our
implementation can be extended by including access time for
L1 which is less than access time of L2 for this simulation.

We present our results by evaluating our implementation
against the standard SSD without caching. We compared a
number of factors including the number of writes, response
time, and the overhead of using two cache with the SSD.

From Figure 8, it is clear that number of writes were reduced
by almost 63 %. Case 9 is unique where the data lacked spatial
consistency and size of each write was comparatively greater
than in previous iterations.

Results (see Figure 9) shows the response time comparison
between our implantation and the traditions SSD. The average
response time did not show much improvement in this case.
Case 9 had unusual performance in this case as well.

From the results shown in Figure 10 it is clear that there was
on average performance in the execution time in the Multi-level
cache design. This execution time performance occurred as a
result of the overall reduction the number of write request on
SSD.

Fig. 8. Write per iteration

Fig. 9. Average Response Time

Fig. 10. Total Execution Time

The overhead of using Multi level cache with SSD is
acceptable, as depicted in the Fig. 11.

Fig. 11. Multi-level Cache Overhead

VIII. CONCLUSION

We recorded Significant (63% in our experimental setup)
reduction in the number of writes. We also observed a reduced
number of SSD which indirectly helps in reducing the number
of erase operations in SSD and eventually helps in wear-
leveling. We also conclude that execution time reduced with
number of cache hits. Finally we can predict an anticipated
improvement with Multi level caching.

Parameter Value

Page Write 200 μs

Page Read 25 μs

Block Erase 1.5ms

Block Size 256 KB

Page Size 4 KB

Erase Cycles 10K

Journal of Applied and Emerging Sciences 2019 Vol (09), Issue (01)

28

There were some limitations in our study that can be
addressed in future implementation. Specifically, we used a
workload of all write operations; it would be interesting to see
if the performance of SSD is affected in some way by including
read operations as well.

Secondly, we used a single trace file used. We used LRU
cache replacement algorithm in both L1 and L2 cache’s. It
would be interesting to use State-of-the art algorithm’s
(BPLRU, PUD-LRU etc.) in our multilevel cache architecture
and compare performance with single level write buffer
architecture.

As part of the future work we would like to compare
performance with existing buffer management schemes.

IX. REFERENCES

[1] Dumitru, D. (2007, Aug 16). esayco-flashperformance-art.pdf. Retrieved
from http://managedflash.com/news/papers/easyco-flashperformance-art.pdf

[2] [23]Ssd extension for disksim simulation environment. (2009, March 6).
Retrieved from http://research.microsoft.com/en-us/downloads/b41019e2-
1d2b-44d8-b512-ba35ab814cd4/

[3]]Bucy, J, Schindler, J, Schlosser, S, & Ganger, G. (2010, October 28). The
disksim simulation environment (v4.0). Retrieved from
http://www.pdl.cmu.edu/DiskSim/

[4] J. L. Hennessy and D. A. Patterson. Computer architecture: a quantitative
approach, 4th Edition. Morgan Kaufmann, Amsterdam, Boston, 2006

[5] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and R.
Panigrahy. Design tradeoffs for SSD Performance. In ATC'08: USENIX 2008
Annual Technical Conference on Annual Technical Conference, pages 57{70,
Berkeley, CA, USA, 2008.USENIX Association.

[6] Gal, E, & Toledo, S. (2005). Algorithms and data structures for flash
memories. ACM Computing Surveys (CSUR), 37(2),

[7] Y.-H. Chang, J.-W. Hsieh, and T.-W. Kuo. Endurance enhancement of
Flash-memory Storage Systems: Ancient static wear leveling design. In DAC
'07: Proceedings of the 44th annual Design Automation Conference, pages
212{217, New York, NY, USA, 2007. ACM.

[8] "Huang, M, Serres, O, Narayana, V, El-Ghazawi, T, & Newby, G. (2010).
"Efficient cache design for solid-state drives". Proceedings of the Proceedings
of the 7th acm international conference on computing frontiers Bertinoro,
Italy".

[9] H. Dai, M. Neufeld, and R. Han. ELF: An Efficient Log-structured Flash
File System for Micro Sensor Nodes. In SenSys '04: Proceedings of the 2nd
International Conference on Embedded Networked Sensor Systems, pages
176{187, New York, NY, USA,2004. ACM.

[10] realssd_c200_1_8.pdf. (2007). Retrieved from
http://download.micron.com/pdf/datasheets/realssd/realssd_c200_1_8.pdf

[11] C. Park, W. Cheon, J. Kang, K. Roh, W. Cho, and J.-S. Kim. A
reconfigurable FTL (flash translation layer) architecture for NAND flash-based
applications. ACM Transactions on Embedded Computing Systems (TECS),
7(4):38:1–38:23

[12] Kim, J, Kim, J, Noh, S, Min, S, & Cho, Y. (2002). A space-efficient flash
translation layer for compact flash systems . Consumer Electronics, IEEE
Transactions, 48(2), 366-375.

[13] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares, F.
Trivedi, E. Goodness, and L. R. Nevill. Bit error rate in NAND Flash memories.
In IEEE International Reliability Physics Symposium (IRPS), pages 9–19,
April 2008.

[14] Atsuo Kawaguchi, Shingo Nishioka, and Hiroshi Motoda. A flash-
memory based file system.
In USENIX Winter, pages 155-164, 1995.

[15] SSFDC Forum. SmartMedia Specification. http://www.ssfdc.or.jp

[16] Jian Hu, Hong Jiang, Lei Tian, Lei Xu, "PUD-LRU: An Erase-Efficient
Write Buffer Management Algorithm for Flash Memory SSD," mascots, pp.69-
78, 2010 18th Annual IEEE/ACM International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems, 2010.

[17] Park, S, Jung, D, Kang, J, Kim, J, & Lee, J. (2006). CFLRU: a replacement
algorithm for flash memory. Proceedings of the Cases '06 proceedings of the
2006 international conference on compilers, architecture and synthesis for
embedded systems Scottsdale, AZ

[18] T. Kgil, D. Roberts, and T. Mudge. Improving NAND Flash Based Disk
Caches. In ISCA '08: Proceedings of the 35th Annual International Symposium
on Computer Architecture

[19] H. Kim and S. Ahn. BPLRU: A Buffer Management Scheme for Improving
Random Writes in Flash Storage. In M. Baker and E. Riedel, editors,
Conference on File and Storage Technologies: FAST, pages 239{252.
USENIX, 2008

[20] M-Systems. Two Technologies Compared: NOR vs. NAND. White Paper,
http://www.dataio.com/pdf/NAND/MSystems/MSystems_NOR_vs_NAND.p
df, 2003.

 [21] Samsung Corporation. K9XXG08XXM Flash Memory Specification.
http://www.samsung.com/global/system/business/semiconductor/product/200
7/6/11/NANDFlash/SLC_LargeBlock/8Gbit/K9F8G08U0M/ds_k9f8g08x0m_
rev10.pdf, 2007.

[22] Design Tradeoffs for SSD Performance”, Nitin Agrawal, Vijayan
Prabhakaran, Ted Wobber, John D. Davis, Mark Manasse, Rina Panigrahy.
Usenix Annual Technical Conference (USENIX '08), June 08, Boston, MA.

[23] IOzone Filesystem Benchmark http://www.iozone.org

