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Abstract
Transportation network is time bound supply mechanism and it involves multiple levels. It is beneficial for an
organization to identify optimal transportation routes by exploring different options. This practice can help in
minimizing the transportation costs and Optimizing the delivery time. In this study, multiple levels of
transportation transshipment network are considered and by adopting Mixed Integer Linear Programming
(MILP), cost of transportation network is minimized. A comparison with the existing cost indices is provided
for effectiveness of the tool used. Result indicates an improvement in the cost saving and comparison with
the initial results suggests cost saving by 9.41% in transporting raw materials from depot to the factory level
while 8.7% cost saving is achieved in transshipment of finished goods from warehouses to distribution centers.
Overall, the total cost is reduced by 18.17% which is a significant improvement and can be translated into
profit margin of the production supply chain. We also generalize the findings of the study by assessing the
statistical robustness of the results.
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INTRODUCTION
Optimal selection of transportation-transshipment routes is a challenge faced by many vendors and inability
to select the right combination of paths can cause a big dent to profit margins (UZ et al., 2014). Transshipment
points are defined as points with zero inventory i.e., whatever is transported to such points are not stored
for long, rather transferred to next locations (Kazemi et al., 2015). It is important to use warehouses, select
acquisition paths, assign to inventories and target distribution points in a cost effective way and with higher
response rate as time based delivery is appreciated by customers (Garcia et al., 2013). Network modeling
presents a complex posture containing different segments, paths and decisions are required to use routes
for optimal performance of supply chain (Wang et al., 2018). A robust analysis needs to be performed to
analyze the different facets of transportation network supply chain such as delivery schedules, inventory
usage and paths allocation (Yang et al., 2015). Transportation networks in particular are regularly
monetarized and expanded as per the global trends and needs of congestion (Luathep et al., 2011). An
existing supply chain network is considered with initial set of data indices against number of parts transported.
Cost optimization analysis is carried out to enhance the performance of the transportation-transshipment
network model. This study considers a transportation network comprising of four levels (raw material level
i, factory level j, warehouse level k and distribution level l) and decision is considered for number of parts
transported between levels to optimize the transportation costs and delivery time. Mixed Integer Linear
Programming (MILP) based mathematical model is used for optimization analysis. A thematic framework of
the study model is provided in Figure 1 where four levels of transportation-transshipment network are
considered.

MATERIALS AND MATHODS
The levels of transportation network are depots, factory, warehouses and distribution centers designated by
i, j, k & l, respectively. There are three choices for depots, single factory layout; four warehouses while two
distribution centers to consider in the analysis. Assumptions and Mathematical model for study analysis is
provided below;
Assumptions:
� All network nodes acts as transshipment nodes (no inventory storage)
� Inventory holding costs are assumed to be zero
� Opportunity costs for late delivery are not considered
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� Single product is considered where cost/unit transportation is same for all parts
� Loading and unloading costs are assumed to be insignificant

Figure 1: Layout of the Transportation Transshipment Network
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The network diagram and associated data is shown in Figure 2 below. There are four distinct levels of the
analysis and also, the distances between two respective connection points is displayed on the arrow head.
For example, from depot 1 to the factory, distance is 30 km. Similarly, second warehouse and the first
distribution center are separated by distance of 49 km.
Table 1 contains the maximum capacity at each raw material depot for supply to the factory, distance
associated between respective depot point and factory, and transportation cost per item between the supply
points.
Table 2 contains capacity, distance and cost indices between the warehouse locations and factory. There
is an upper limit on the number of transported parts between the warehouse and the factory location which
are used in the mathematical functions of depots, factory, warehouse and the distribution centers.
Table 3 represents cost and distance relationship between 4 warehouse locations and 2 distribution points.
The maximum capacity at each distribution point is 2200 and 2400 units respectively (also equal to total
demand D).

Figure 2: Network diagram for the distribution system: Values on arrows represents transportation distance between
nodes
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Table 1: Transportation capacity, distance and cost between depots and factory

Table 2: Capacity, distance and cost figures between warehouse(s) and factory

Table 3: Capacity, distance and cost between warehouse(s) and distribution center(s)

Figure 2: Network diagram for the distribution system

Table 1 contains the maximum capacity at each raw material depot for supply to the factory, distance
associated between respective depot point and factory, and transportation cost per item between the supply
points.

Table1: Transportation capacity, distance and cost between depots and factory.

Depot Max. Capacity Distance from j Cost/part/km Cost/part
i1 1600 Units 30 Km $0.2 $6
i2 1500 Units 45 Km $0.17 $7.65
i3 1850 Units 70 Km $0.24 $16.8

Max.
Supply

4950 Units --- ---

Table 2 contains capacity, distance and cost indices between the warehouse locations and factory. There is an
upper limit on the number of transported parts between the warehouse and the factory location which are used
in the mathematical functions of depots, factory, warehouse and the distribution centers.

Table2: Capacity, distance and cost figures between warehouse(s) and factory.

Warehouse Max Capacity Distance from
Factory

Trans.
Cost/Unit/Km

Trans.
Cost/Unit

K1 1400 Units 70 Km $0.3 $21
K2 1400 Units 65 Km $0.28 $18.2
K3 950 Units 80 Km $0.29 $23.2
K4 1600 Units 62 Km $0.34 $21.08

Distribution
Warehouse (Distance) Maximum

Capacity
l1 l2K1 K2 K3 K4

l1
 45

Km 49 Km 38 Km 42 Km

2200
Units

2400
Units

l2
 54

Km 41 Km 45 Km 48 Km

Transportation Cost/Unit

l1
 $25.6

5 $29.89 $14.06 $16.38

l2
 $22.1

4 $15.99 $24.3 $22.56
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Objective function is the sum product of cost of transportation between points and number of parts being
transferred provided that a particular path is selected for transportation. The objective function minimizes
the cost of parts transshipped in the supply chain network.
Constraints 1 & 2 is to ascertain that depots, factory and warehouses serve as transshipment nodes where
no part is retained or inventoried (zero inventory handling costs). Constraint 3 is the demand tolerance for
the distribution centers; its capacity cannot exceed from demand in regions. Similarly, supply equals demand
constraint which is 4950 combining the demand of both distribution centers (constraint 4). Constraint 5, 6 &
7 is to make sure that supply from three depots does not exceed than their respective capacities of 1600,
1500 and 1850 units. Similarly, products flow from factory to the respective warehouses should be within
the capacity limits of warehouses (constraint 8, 9, 10 & 11). Lastly, product flow from the warehouses to
distribution centers should not exceed requirement at respective distribution centers l1 & l2 (2200 & 2400
Units respectively; Constraint 12 & 13).The optimization analysis was performed using Mixed Integer Linear
Programming (MILP) in LINGO software and Excel solver. The optimized analysis results are compared with
the initial statistics for assessing performance in the next section.

RESULTS AND DISCUSSION
Results of MILP analysis are provided in Table 4 where a comparison between initial data indices and
optimization efforts is displayed for both parts transported and cost of transportation. It can be noted that as
a result of analysis, cost was minimized & although between figures there is a mix trend but overall cost of
transportation from depot to factory level decreased by 9.41%. Similarly, the cost of transporting goods from
warehouses (K1-K4) to the distribution centers (l1 & l2) was reduced by 8.7%. To conclude the results, cost
effectiveness of 18.7% was accomplished as a result of the optimization effort which translates to an amount
of $15629. Initial cost of transportation was calculated to be $152472 while the resulted optimized cost was
equal to $136843.

Table 4: Optimization results of transportation between points and comparison with initial indices

Figure 3 provides graphical comparison of the number of parts and cost of transportation, before and after
the analysis. From the graph of parts transported, it is evident that the optimized number of parts transported
is greater at each point from initial set of data whereas, there is a mix trend in the cost of transportation
between points and from the graph, cost of transportation after the analysis is greater at four points (K1-l1,
K4-l1, K1-l2 & K3-l1) while there is a break even at two point (i2-j & K2-l2). In order to validate that the results
are valid and generalizable, an analysis is performed using paired sample t-test (Mee et al., 1991) in SPSS
V.22 and findings are discussed in the next portion.

Table 4: Optimization results of transportation between points and comparison with initial indices.

i1-j i2-j i3-j K1-l1 K2-l1 K3-l1 K4-l1 K1-l2 K2-l2 K3-l2 K4-l2
Parts Initial 1340 1460 1800 650 750 220 580 500 580 700 620

Optimized 1580 1495 1525 350 240 760 850 460 785 435 720

Cost Initial 8040 11169 30240 16672 22417 3093 9500 11070 9274 17010 13987
Optimized 9480 11436 25620 8977 7173 10685 13923 10184 12552 10570 16243
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Figure 3: Graphical representation of Parts and Cost comparison

Figure 4: Graphical representation of Transportation Cost comparison

Table 5 contains the results of paired sample t-test (Ross et al., 2017). From the mean score column, we
can understand that difference in the mean score for parts transported before and after the optimization is
zero (M=0; S.D=311.9) as in both cases, overall same number of parts were transported (which is equal to
demand, D) but the difference in the patterns exhibited by earlier plot is significant. Similarly, pair 2 is the
comparison of cost (before and after the optimization analysis) with a Mean=1420.818 (S.D= 6543.4) which
is also significant (p<0.05) with a p-value equal to 0.048. This can be interpreted as cost of transportation
on average is $1420.818 (t-value equals 0.720) more in the case of an un-optimized environment. Thus, we
can conclude that the results are generalizable and earlier attained results hold true for larger contexts.
Future research can focus on considering the delivery time indices of the same network models and an
analysis can be carried out to compare the delivery time schedules in an optimized and un-optimized
environment. Also, these findings can be applied and replicated in other study contexts for enhancing the
robustness of the methodological approach. Uncertainty factors were not considered in the analysis which
are practical in today’s production and supply chain environment, future focus can incorporate the uncertainty
factors in the MILP analysis to provide more meaningful insights.
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Table 5: Paired sample comparison for cost and parts transported
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Paired Samples Test

Paired Differences t Df Sig. (2-tailed)

Mean S.D Std. Err.

Mean

Pair 1
Init_Parts -

Opt_Parts

.000 311.9 94.045 .000 10 .004

Pair 2 Init_Cost - Opt_Cost 1420.818 6543.4 1972.932 .720 10 .048
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