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Abstract-- The landslide inventory helps to develop landslide susceptibility maps which further assist to minimize economic and 

human losses as well as towards hazard management. This work investigates landslide hazard mapping in the rugged mountain terrain 

vis-a-vis highly economically significant route between China and Pakistan i.e. Karakuram Highway (KKH). KKH is passing through 

the Karakorum mountainous region where landslides events occur frequently and prone to serious risk to local travelers, tourists, and 

to trading caravans. In this work, landslide inventory was developed (302 landslides) along KKH by visual interpretation of Sentinel 

and google images. Field survey was also carried to validate landslide datasets. Traditional knowledge-based model i.e. Analytic 

Hierarchy Process (AHP) and data-based models that include Frequency Ratio (FR) and weight of evidence were applied and compared 

to develop landslide susceptibility maps (LSM). The landslide dataset was divided into modelling/training (70%) and testing/validation 

(30%) datasets. LSMs are validated by Area Under Curve (AUC) criterion.  The results show that weight of evidence, AHP and FR 

have success rate curves of 61%, 72% and 84%, respectively. In addition, most highly accurate models are validated for their prediction 

power using testing landslide datasets. The results for prediction capacity for weight of evidence, AHP and FR are 72%, 58%, and 64%, 

respectively. Further, landslide susceptibility index (LSI) maps are classified into susceptibility zones. The validation and prediction 

results show that FR model is the most reliable and accurate model for our study area. Our results will be helpful to minimize landslide 

hazard losses along KKH, ultimately assisting in successful implementation of CPEC idea between China and Pakistan.  
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I.  INTRODUCTION 

Landslides are destructive natural hazards that frequently 

lead to loss of human life and economic resources, as well as 

triggering severe damage to natural resources. Sometimes, they 

affect overall economic system of many nations around the 

globe [1] . It is projected that, internationally, around one 

thousand persons loss their lives and financial damages of about 

4.1 billion US$ occurs because of landsliding events each year 

[2]. Landslides demonstrate themselves in many different forms 

including debris flows, rock falls, rockslides, rock avalanches, 

soil slips, and mud-flows. Landslides are considered as third in 

the list of natural hazards as they pose high risk and other 

adverse economic effects worldwide. The recovery from these 

disasters is sometime even higher than resources of the country. 

To avoid such situations, we can use remote sensing and GIS 

techniques to develop landslides inventory and LSMs of 

disaster-prone areas and plan resources and manage disaster in 

an efficient way. Further, disaster risk reduction plans and 

policies can be formulated producing updated and accurate 

landslide susceptibility maps. These susceptibility maps will 

lead to minimize risk to vulnerable people and avoid extensive 

economic loss [3].  

To develop Landslide Susceptibility mapping, the first step 

is to make a landslides inventory where Landslide 

Susceptibility Indexing (LSI) represents the probability of 

a landslide occurring in an area based on local influencing 

factors and terrain situations. The mapping of any area is 

possible because of accessibility and availability of different 

type of remote sensing, geographical datasets (which includes 

different type of thematic layers and causative factors, e.g., 

topography, etc.). Thus, remote sensing and GIS can play an 

important role in the development of a landslide inventory map 

and thematic maps related to landslide occurrence. Landslides 

inventory are developed using different approaches that include 

visual interpretation of satellite data, aerial photogrammetry, 

and supervised and un-supervised classification. Several 

previous research studies have used high resolution satellite 

imagery to generate landslides inventory data [4, 5] using 

different approaches including machine learning algorithms [6]. 

Usage of high-resolution satellite imagery to develop landslide 

inventory approach remains successful. Further, to combine 

different models to identify potential landslide areas through 
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developing LSM contributed to manage risk in a sustainable 

way [7, 8]. More recently Artificial Intelligence techniques 

have been used to identify potential landslides [9–13]. 

Similarly, combining different approaches that include 

interferometric synthetic aperture radar (InSAR) images for 

monitoring and assessment of landslides have led to high 

accuracy in identification of potential landslides [14–18]. 

Based on inventory data with the support of causative factors 

using different models that include expert-based and data 

driven-based models have resulted in successful development 

of LSM which are useful for end-users [19–22]. Several 

previous studies applied expert knowledge-based models to 

develop LSM including the Analytical Hierarchy Process 

(AHP), however, the resulting maps contains a degree of 

uncertainty. Therefore, several approaches have been used to 

improve AHP’s accuracy [23, 24]. On the other hand, data 

driven models show consistency in better results in the LSM 

[25, 26].  Frequency Ratio (FR) model for LSM is based on 

causal factors which is used by several researchers  to develop 

LSMs [19]. Similar, statistical models include fuzzy logic [27], 

index of entropy [28] and logistic regression model [29] are in 

use to generate LSMs. 

The Karakoram, Himalaya, and Hindukush mountain 

ranges, that meet in Gilgit-Baltistan province of Pakistan are 

frequent to landslides due to the rough terrain, seismic activity, 

extreme weather conditions and infrastructure constructions on 

unsteady slopes. The Karakorum Highway (KKH) (1300 km 

long) which is one of the highest paved roads in the world 

connects Pakistani province of Gilgit-Baltistan with 

China's Xinjiang Uyghur Autonomous Region passes through 

Karakoram range. The KKH has high economic significance 

because all economic activity related to the import and export 

of Gilgit-Baltistan province is dependent on this highway. In 

addition, there is a large portion of import and export of goods 

to/from China is done through this highway. The economic 

importance of this highway has risen in recent years because of 

China-Pakistan Economic Corridor (CPEC) project (CPEC is a 

collection of infrastructure projects, the value of CPEC projects 

is worth $62 billion as of 2017). The highway is frequently 

blocked due to landslides, for example, recently in 2010, 19 Km 

of highway was buried, 20 people died and around 350 

households were destroyed, and this landslide blocked the 

Hunza river forming a large lake namely Attaabad Lake. In this 

context, considering high significance of this highway, we 

selected a portion of this highway (300 km) and develop a 

landslide inventory. In this work, a landslide susceptibility 

maps are developed using frequency ratio, weight of evidence 

and AHP modelling techniques. These landslide prediction 

models are compared for their prediction accuracy using 

landslide inventory. This work will be helpful to avoid and 

minimize economic and human losses along this very important 

travel route.   

The rest of the paper is organized starting with study area, 

followed by methods and materials, and results. Then a 

discussion section to discuss the comparison of methods and 

their results on KKH area. At the end a conclusion section for 

describing concluding remarks of this research work.     

A. STUDY AREA 

This study focuses on a portion of KKH as the total length 

of KKH is 1300 km, located in Gilgit-Baltistan province of 

Pakistan and Xinjiang province of China (Figure 1). The study 

is conducted in districts Gilgit, Hunza, and Nagar, Gilgit-

Baltistan province in the north of Pakistan. The study area 

consists of series of villages through which KKH is passing, 

starting from Juglot which lies geographically between latitude 

from 35ᵒ76′977″N and longitudes from 74ᵒ57′402″E and runs 

through Jutal, Rahimbad, Aliabad, and so on, ends at Khunjarab 

top, China-Pakistan border pass. The area is located along the 

left and right banks of the Hunza, Gilgit and Indus River. This 

study area covers 332 km long covering 10 km radius buffer of 

area along KKH. Therefore, the study focused area is about 

3320 km2. The area is prone to natural hazards as snow 

avalanches, landslides, and earthquakes are frequently hitting 

the area. The most common types of landslides in the study area 

are rock fall and debris falls triggered by rain falls and tectonic 

activities (Figure 2) [30]. Most of the rocks’ types are 

Paleozoic, Proterozoic, and Mesozoic. 

 
Fig 1. Study area; 300 km long KKH passing through series of villages in Gilgit, 
Pakistan. 

 

 
(a) 

   
     (b)            (c) 

Figure 2. Most frequent types of landslides on Karakuram Highway. (a). Debris 
flow: Attaabad, Hunza Landslide disaster[31], (b). Rock fall: Rock fall in 

Kohistan on KKH [32], (c). Rock fall: Rockfall in Barseen, Kohistan [33].   

 

In a year, the average rainfall in Gilgit is 154 mm. Water 

irrigation for land cultivation is obtained from the streams and 

rivers, abundant with melting snow and glaciers water from 

high mountains. The summer season is longer, dry, and hot. 
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Strong sunshine rarely raises temperatures to 40 °C (104 °F) 

whereas in winters the average temperature remains less than 

10 °C. Due to this extreme weather conditions, landslides and 

avalanches are common in the area. The geological structures 

and soils are weak in the region that also play crucial role. 

Additionally, the mountains have steep slopes that are 

susceptible to landslides [34]. 

II.  METHODS AND MATERIALS 

A.  Datasets 

The landslides inventory is developed by visual 

interpretation of Sentinel 2 images, which were counter verified 

in Google earth maps and field data and boundaries were 

adjusted accordingly.  The main scarp of every recorded 

landslide during the field work was illustrate in topographic 

maps at a proper scale and then was digitized as polygon layer 

[22]. In the study area, 302 landslides were mapped for the 

inventory. For each landslide in the inventory, it contains 

information such as location, size, and direction of the 

landslide, the bedrock, and surface material. The inventory was 

split into training of development of Landslides Susceptibility 

Mapping (80%) and validation (20%) sets. The details of 

datasets used are given in Table 1. 

 

Table 1. Details of datasets used in this study. 

 
Data Factors Scale 

/resolution 

Source 

Sentinel 2 

Satellite 

Images 

Landslide 

inventory, 

LCLU, 

Road 

network 

10 m  

DEM Slope and 

Aspect 

Stream 

Network 

30 m SRTM Shuttle Radar 

Topography Mission 

(USGS) United States 

Geological Survey 

Geological 

Map 

Geology 

Units 

Fault lines 

30 m Survey of Pakistan 

Google 

Earth 

Maps 

Landslide 

inventory 

Land 

cover/land 

use Road 

network 

 

2-5 m 

 

Field 

Survey 

GPS 

Points 

1 m  

 

 

B.  Methodology  

The workflow of methodology used for this study is given in 

Figure 3. Each step of methodology is explained in the 

following paragraphs.  

 
Figure 3. Flow chart of Methodology used for this research work. 

 

C.  Landslide Controlling Factors  

The eight factors which causes the occurrence of landslides 

in our study area are categorized into topological, hydrological, 

geological, and anthropologic factors (Figure 4). Topological 

factors include slope and aspect. The slope angle is considered 

the main parameter of the slope stability. Aspect related 

parameters such as exposure to sunlight, winds, rainfall, soil 

moisture and breaks may control the incidence of landslides. 

Terrain slope, and aspect are computed from the SRTM DEM 

of 30 m resolution. To assess the impact of slope angle on 

landslide dispensation, the slope angle map was categorized 

into five classes following the source [35], the terrain aspect 

was classified into 9 classes. 

Geological factors considered for this study include geology 

and proximity to faults. Geology plays a vital role in landslide 

susceptibility studies since diverse geological units have 

diverse susceptibilities to activate geomorphological processes. 

Fault lines and eight geological formations (classes) were 

digitized using the geological map of Pakistan shown in Table 

2. This region is encompassed with eight geological divisions, 

such as Late Paleozoic Rocks, Igneous and metamorphic rocks, 

Precambrian metamorphic and sedimentary rocks, Alluvium, 

Paleozoic Rock, Early Mesozoic & Late Paleozoic rocks, 

Permian Rocks, and Unmapped. 

Precipitation and proximity to streams are hydrological 

factors considered for this study. Precipitation and drainage 

play very important role in respect of landslides as most of the 

time rain and erosion of water trigger landslides in this study 

area. 

The anthropological factors considered in this study area are 

land use and distance to roads. A land cover map was created 

using Sentinel 2 image based on supervised classification. To 

assess the influence of the land cover on landslides movement, 

the land cover of our area of interest was categorized in eight 

different classes (shown in Table 2). The accuracy of the land 
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cover map was 87% obtained through confusion matrix of a 

LULC classification as it was validated through field data. Land 

use is one of the main factors influencing for the incidence of 

landslides, on the one hand, the barren slopes are more expose 

to landslides. On the other hand, vegetative areas contribute to 

reduce occurrence of landslides. One of the influencing factors 

for the stability of slopes is road development and construction 

activity. This factor map was developed as per the hypothesis 

that landslides may be more common along roads, due to 

unsuitable cut slopes and drainage from the road. The road 

network was developed through digitalization from the Sentinel 

2 image [35]. 

 

Table 2. Features influencing Landslide with classes used for 

assessing the contribution of each influencing factor. 
Factors Classes 

Slope 

(°) 

Very 

Gentle 

Slope 

<5° 

Gentle 

Slope 5° 

– 15° 

Moderat

ely 

Steep 

Slope 

15° – 

30° 

Steep 

Slope 

30° – 

45° 

Escarp

ments 

>45° 

 

Aspect Flat (-1) North (0 

- 22) 

Northea

st (22 - 

67) 

E

ast 

(67 - 

112) 

Southea

st (112 - 

157) 

South 

(157 - 

202) 

Southwe

st (202 -

247) 

West 

(247 -

292) 

Northw

est (292 

- 337) 

 

Land 

Cover 

Dense 

Conifer 

Sparse 

Conifer 

Broadle

aved, 

Conifer 

Grass

es / 

Shrub

s 

Agricul

ture 

Land 

Soil / 

Rocks 

Snow/G

lacier 

Water  

ology Late 

Paleozoi

c Rocks 

Igneous 

and 

metamo

rphic 

rocks 

Precam

brian 

metamo

rphic 

and 

sedimen

tary 

rocks 

Alluv

ium 

Paleozo

ic Rock 

Early 

Meso

zoic 

& 

Late 

Paleo

zoic 

rocks 

 Permian 

Rocks 

Unmap

ped 

    

Proximi

ty to 

Stream 

(meter) 

< 100 m 100 - 

200 m 

200 - 

300 m 

300 - 

400 m 

> 400 m  

Proximi

ty to 

Road 

(meter) 

< 100 m 100 - 

200 m 

200 - 

300 m 

300 - 

400 m 

400 - 

500 m 

 

Proximi

ty to 

Fault 

(meter) 

0000 – 

1000 

2000 – 

3000 

> 3000    

Precipit

ation 

121 -166 166 - 

210 

210 - 

259 

259 - 

314 

314 - 

392 
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Fig 4. Landslide controlling factors for the study area with their classes. 

 

 

D.  Analytical Hierarchy Process (AHP) 

AHP is a tool used for site assessment, planning, and 

vulnerability analysis [36]. It needs the participation of experts 

based on importance of each factor consider for the multi-

criteria and multi objectives. Each factor is weighted and 

combined to form an integrated weight. The factors’ weights 

are generated based on pairwise comparison matrix of AHP 

based on expert knowledge. The principle of transitivity is 

considered important in AHP for any specified three factors 

(such as m1, m2 and m3), and is explained as follows; if m1 > 

m2 and m2 > m3, then m1 > m3. This principle of transitivity 

makes a foundation for conditioning factors weighing in AHP. 

It is important to calculate the consistency of expert 

comparisons in matrices in each step. The consistency ratio 

(CR) is determined by Eq. (1). 
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CR = (_max - n)/(RI(n - 1))    (1) 

 

RI is the random index of a pairwise comparison matrix for 

n = 2, 3, 4, 5, 6, 7, 8, and 9. If the CR is <0.10 it considers an 

suitable level of consistency, whereas a CR > 0.10 points to a 

degree of inconsistency [37]. In this study total 15 experts were 

served with questionnaires to collect expert knowledge for layer 

weighting. The evaluated weights of the eight layers were 

computed using the AHP model based on the pairwise 

comparison matrices. 

E.  Weight of evidence Modelling 

Weight of evidence statistical modelling is described in 

Equation 2 and 3; a detailed description can be found in [38]. 

W+    =     In  ⌈

𝑛𝑝𝑖𝑥1

𝑛𝑝𝑖𝑥1+𝑛𝑝𝑖𝑥2
𝑛𝑝𝑖𝑥3

𝑛𝑝𝑖𝑥3+𝑛𝑝𝑖𝑥4

⌉                    (2) 

W-    =      In  ⌈

𝑛𝑝𝑖𝑥2

𝑛𝑝𝑖𝑥1+𝑛𝑝𝑖𝑥2
𝑛𝑝𝑖𝑥4

𝑛𝑝𝑖𝑥3+𝑛𝑝𝑖𝑥4

⌉                   (3) 

Where npix1 is the number of pixels for the potential 

landslide predictive factor, npix2 is the number of pixels for the 

absence of potential landslide predictive factor, npix3 is the 

number of pixels for the potential landslide predictive factor 

and absence of landslides, npix4 is the number of pixels for the 

absence of both potential landslide predictive factor and 

landslides. Final weight (Wc) was calculated by Eq. 4. 

           Wc = (W+) - (W-)                                        (4) 

The weight contrast (Wc) is the difference between W+ and 

W- and reflects the overall spatial relationship of the causative 

factors and landslides. 

F.  Frequency ratio modelling 

The impact of a contributing factor on the spatial distribution 

of landslides can be evaluated by FR statistical modelling. FR 

is the ratio of the area where landslides events happened in the 

area of interest. It is also the ratio of the likelihoods of a 

landslide incidence to a non-incidence for a given attribute [39]. 

The FR is computed by using Eq. 5. 

FR = 
𝐷𝑖/𝐴𝑖

∑𝐷𝑖/∑ 𝐴𝑖
                                   (5) 

where, Di is the area of landslides in the specified class; Ai 

is the area of class; ∑ Di is the sum of landslides in the complete 

study area; and ∑ Ai is the sum of area of all classes of the 

whole study area. 

G.  Landslide susceptibility index maps 

LSI maps are developed by overlaying the contributing 

factors using Eq. 6 [29] after computing a given weight (Wc) to 

each factor. 

LSI = ∑ W c                                      (6) 

Wc is total calculated weight of each factor.  The LSI map is 

developed from the FR value based on the following equation:  

LSI = ∑ FR                                         (7) 

To determine the predictive power of several evidential 

parameters, four models with different combinations (given in 

Table. 3) of evidential factors are obtained for LSI maps using 

Eq. 7.  

Table 3. Influence factors combinations for different models. 

Models Combinations 

Fr All eight parameters (Aspect, Slope, Geology, 

Land cover, Precipitation, Proximity to Fault, 

Proximity to Road, Proximity to Stream) 

AHP All eight parameters (Aspect, Slope, Geology, 

Land cover, Precipitation, Proximity to Fault, 

Proximity to Road, Proximity to Stream) 

D All eight parameters (Aspect, Slope, Geology, 

Land cover, Precipitation, Proximity to Fault, 

Proximity to Road, Proximity to Stream) 

C Aspect, Geology, Land cover, Proximity to Road, 

Slope, Precipitation, Proximity to Stream 

B Aspect, Slope, Land cover, Proximity to Fault, 

Precipitation, Proximity to Stream 

A Aspect, Slope, Geology, Proximity to Fault, 

Precipitation, Proximity to Stream 

H.  Validation of the results and modelling. 

The LSI maps are validated by area under curve (AUC). Arc-

SDM is a Spatial Data Modeler which calculate AUC. We give 

input as a true positive value which is field data and resulted 

models classify into hundred classes. Through that the Arc-

SDM tool calculates the performance of models and converts 

these models into graphs which clearly shows the accuracy of 

models. The AUC is calculated as follows: 

𝐴𝑈𝐶 = ∑ 1/2𝑛+1
𝑖=2 √(𝑥𝑖 − 𝑥𝑖 + 1)2   .  (𝑦𝑖 + 𝑦𝑖 + 1)   (8) 

I.  Classification of landslide LSI map 

The resulting LSI map was categorized into five 

susceptibility zones, extending from “very low” to “very high”, 

based on the prediction rate curve [36]. This categorization 

scheme is according to the natural break law of the success rate 

curve [40]. At the end, the accuracy of LSI map was evaluated 

by corresponding the percentage area covered by each 

susceptibility class with the percentage of area covered by a 

landslide incidence in each class. 

III.  RESULTS 

The three models discussed in section 3 are used to generate 

susceptibility maps to find the areas which have high potential 

of landslides. The output susceptible maps for different 

combination of casual factors, FR model, and AHP model are 

given in Figure 5. Further, output values of AHP and FR model 

are given in Table 4 and Table 5, respectively. FR values (Table 

4) and factor weights from AHP (Table 5) show susceptibility 

(Figure 5) as with increase of number the susceptibility ratio 

rises in the area. The weightings of the FR model are generated 

based on our inventory dataset so they can be different if the 

dataset is changed. Whereas AHP weightings are derived based 

on experts’ preferences using pairwise comparison matrices.  



Journal of Applied and Emerging Sciences Vol (11), Issue (1) 

[24] 
 

 

 
 

 
 

 
 

 
 



Journal of Applied and Emerging Sciences Vol (11), Issue (1) 

[25] 
 

 

 
 

 

 
 

Figure 5. LSI maps for different combinations of controlling factors defined in 
Table 3. 

A.  Validation 

The LSI maps are validated by using the area under curve 

(AUC) criterion. The success rate graph for each LSI model in 

AUC has verified its accuracy. As shown in Figure 6, model D 

shows the highest accuracy. Therefore, we used the parameters 

from model D in the FR model for LSI mapping. The success 

rate curve in Figure 6 for Model “D” shows that the highly 

vulnerable areas having 20% have 30% of total observed 

landslide area. Similarly, highly vulnerable area having 50% 

has 70% of landslide area. 

Model D, the success rate curve (given in Figure 6) shows 

that 20% and 50% of the highly vulnerable areas have 30% and 

70% of total observed landslide area, respectively. Likewise, 

FR Model, the success rate curve given in Figure 6 shows that 

20%, 50%, and 70% of the highly vulnerable areas have 71.1%, 

96%, and 97% of the total observed landslide area, respectively. 

 

B.  Prediction Power 

The prediction rate curve is used to authenticate the power 

of the modelling to forecast future potential landslides on 

testing dataset [42]. The forecast accuracy of Model D, AHP, 

and the FR Model are assessed. The result shown in Figure 7 in 

Model ‘D’ case, 30%, 50%, and 70% of the highest vulnerable 

area has 55.2%, 68%, and 71.2% of the total observed landslide 

area, respectively. 

Likewise, the result shown in Figure 7 in FR Model case, 

30%, 50%, and 70% of the highest vulnerable area has 78.3%, 

85%, and 95.4% of the observed landslide area, respectively. 

 
Figure 6. AUCs of six models show prediction potential of each model. These 

curves are generated using training datasets of landslides inventory and LSI 
drawn in figure 5. 

 
Figure 7. AUCs of three models show prediction potential of each model. These 

curves are generated using testing/validation datasets of landslides inventory 

and LSI drawn in figure 5. 

C.  Classification of landslide LSI map 

From the outcomes shown in previous section it was 
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observed that Model D, FR Model and AHP model have higher 

accuracy in terms of prediction to the other experimented 

models. Classified susceptibility maps for model D, FR model, 

and AHP are developed and each model is divided into 

susceptible classes those are “very low”, “low”, “moderate”, 

“high”, and “very high” shown in Figures 8 (a, b, and c). Most 

of these classes indeed covered all the landslides along the 

study area. 

 

 

 
Figure 8. LSI zones for (a) FR msodel,(b) AHP model, and  (c) model ‘D’. 

IV.  DISCUSSION 

Each causative factor’s influence for landslide incidences is 

explored using frequency ratio, AHP, and weight of evidence 

modelling (Tables 4, 5). Our investigation shows that geology, 

precipitation, and landcover have high values for Wc and Fr. 

Similarly, for the AHP modelling, CR values for precipitation, 

proximity to faults, proximity to road, and landcover have high 

values followed by geology. From overall modellings it can be 

concluded that geology, precipitation, and landcover are the 

most influencing factors for landslide incidences along the 

KKH which is also concluded by several researchers [42–44].  

The causative factor of geology with class Alluvium has the 

most influencing to land sliding followed by Precambrian 

metamorphic and sedimentary rocks with Wc and FR values of 

1.7 and 1.47, respectively (Table 4). In our field observation 

along the KKH, it was observed that Alluvium and Precambrian 

rocks are very deformed and prone to slope failure. The 

precipitation factor has also high influence as with the raise of 

precipitation in a class the more susceptible to land sliding 

occurs as the highest class between 160-205 is with values of 

FR and Wc are 4.72 and 6.88, respectively. 

The slope angles between 30-45 degree have the highest 

rank values for Wc and FR and area is more susceptible to 

landslides. For the angles more than 45 degree the FR is the 

highest and Wc is in negative. High steepness along the KKH 

can be noted that it cannot accommodate sliding material results 

in clean rocks and vertical debris. In aspect factor, the south 

facing slopes are the most susceptible as they have the highest 

values for Wc and FR. The same results were also found in [42] 

with the reason that those slopes which are south facing are 

having more sunshine days and due to chemical and other 

environmental exposures they are more susceptible for 

landslides. 

The causative factors proximity to streams and proximity to 

faults have inverse relationship with distance and values of FR 
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and Wc as with the increase of distance the values of FR and 

Wc decreases. As the results are agreement with other 

researchers [42]. The same case is with proximity to roads, as 

the focus of this work is KKH so it can be noticed that most of 

the landslides are developed due to construction of the road, 

however, the results show the highest values between 200-300 

m. 

 
Fig 9.  LSI zones and landslide numbers in each zone of three models, show 

validation of classified susceptibility maps. 

The very high susceptible area according to FR, AHP and 

Model ‘D’ are 789 km2, 525 km2, and 315 km2, respectively. In 

the AHP susceptible map, the very high susceptible class is 

18.72% with 65 number of landslides of in the class, whereas it 

is 28.18 % in FR susceptibility map with 130 number of 

landslides (Figure 9). The overall AUC results for training 

(Figure 6) and testing (Figure 7) data for the three models (FR, 

AHP, model “D”) show that FR model based generated 

susceptibility maps have more accurate results followed by 

AHP model. We can conclude that our results are in agreement 

with previous studies and data-based models are more accurate 

in prediction as compare to knowledge-based models. In 

addition, knowledge-based models’ results may change if we 

use other experts with different criteria weightings and models.  

One of the limitations of our study is that we used only AHP 

model which is a knowledge-based traditional model for 

decision making. However, there are several studies where 

researchers found better results in comparison to this model [1, 

45–47]. In this study our intent is to observe the results of the 

data-based and traditional knowledge-based model for the 

specific highly economic significant high-way with limited area 

around it. This study will also help us to understands 

comparatively results to see the feasibility to implement same 

idea on other highways of importance in a geographical 

scattered and difficult terrain areas like Gilgit-Baltistan of 

Pakistan. There are also several studies which compares data-

based models for landslide susceptibility [48]. Data-based 

models are sensitive to training dataset as if source dataset is 

changed then the results also gets change. Thus, knowledge-

based models are dependent on experts whereas data-based 

models are sensitive to training datasets. Although, when we 

observed the sub-criteria for AHP and FR models the results are 

almost the same, however, there are some differences of results 

in the first class of precipitation, slope aspect in south class, and 

proximity to road (Figure 10).  For example, results of AHP 

model for precipitation shows the first class 121-166 (mm/yr) 

is the most significant class whereas data-based model FR 

results indicate the third class 210-259 (mm/yr) is the most 

important class. The results of AHP and FR models for distance 

to faults, stream, and road follow same pattern with minor 

variations as weightings for the factors decrease with the 

increase of distance (Figure 10). 
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Fig 10. The assessment of the weights for the classes of each factor the resulting 

from AHP and FR model. 

 

V.  CONCLUSION 

The development of landslide susceptibility maps for a 

landslide-prone area is the topmost priority step to initiate risk 

mitigation for the inhabitants of the area. The Karakuram High-

Way, which is the only land connecting route between Pakistan 

and China, has all the economic and trade dependence of the 

Gilgit-Baltistan province as well as of CPEC project. 

Considering the economic significance of this route, this 

research work developed landslide susceptibility maps along 

the KKH for 300 KM using the data from Google maps, sentinel 

images and field observation.  The main objective of these 

LSMs is to provide accurate prediction regarding future 

occurrences of landslides. Therefore, different statistical 

models (Weighting evidence, FR and AHP) were evaluated 

based on their accuracy for LSMs. In this process, we 

developed and used 302 landslides and divided into randomly 

training (70%) and validation (30%) datasets. The resulting 

LSMs accuracy were validated using AUC. Our results show 

that Fr model has high accuracy comparable to AHP model. 

Precise and consistent LSMs helps to minimize human and 

economic loss as well as to avoid hazards like landslides by 

better planning in advance. Our results will help planners and 

decision makers to plan in advance to avoid economic and 

human losses which are very frequent on these types of 

mountainous routes. Our results and approach can also be 

replicated to other long routes of Gilgit-Baltistan and other parts 

of the world to develop LSMs to minimize physical and 

economical loss to infrastructures and reduce risks of loss to 

human life.     
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