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Abstract— Agriculture domain now extensively uses the Internet of Things (IoTs) technology to provide farmers with proper and 

accurate information. Assisting farmers regularly and periodically in a more efficient manner is totally based on complete data, 

proper planning, and decision making. Connecting devices with each other through IoT has brought huge changes to traditional 

way of farming. However, it has also invited some challenges such as the semantic interoperability, quality and accuracy of data.In 

this paper, we extend a base farming ontology to include classes comprising of water, pesticides, and seeds information that is 

organized both seasonally and phase-wise. We have extended a farming ontology specifically a crop production domain using rice 

crop as a case study. Semantic Web Rule Language (SWRL) integrated with Jess rule engine is used for reasoning and inferencing 

to make devices understandable to each other. A collection of 54 SWRL rules reason about 101 OWL classes in order to maintain 

water irrigation in rice crops. It also provides pesticide and weedicide information for each growth stage along with seed 

information by identifying specific crop type. This helps the farmers to obtain better results in terms of production and 

sustainability from the collected data by offering them decision making support in the management of rice crops. 
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1. INTRODUCTION 

Internet of Things (IoTs) is increasingly broadening 

up its horizons to an unprecedented level, making possible 

the communication between the tremendous amounts of 

assorted devices in diverse domains. Such evolutions in 

IoT continuously supervene on intended consequences of 

growing technology, receiving favorable requirements 

along with a target of adverse conditions. Facing some 

challenges are the results of heterogeneity and complexity 

in devices and the data it collects, respectively [1][2] 

IoT enables a variety of devices to cluster data in 

different formats to perform some tasks without any 

understanding of devices with each other due to no 

knowhow of description of data or information. These 

limitations of communication clearly reflect on domains 

where IoT has dominated itself. In an approach to 

advancement in the environment, society has embraced 

IoTs to define them in the form of smart cities. The idea 

of IoTs in smart cities improves the existing challenges to 

some consideration, leading to better urbanization. A 

growing concept of smart farming in smart cities domain 

influencing a future agriculture in most of the countries. 

Agriculture in majority countries holds an important 

economic value and a continuous improvement to its 

quality is on focus. Farmers paying particular attention to 

the quality of crops in time, with limited quantity of 

resources to get desired output in yields. 

Based on an existing work [5], we emphasis on the 

implementation of rule engine; where, it is first important 

to collect and represent a complete data in the form of 

ontology classes. This work is extended based on farming  

 

ontology incorporating crucial classes and a rule engine. A 

complete data regarding crop production is collected and 

then placed it in proper and adequate knowledge base 

integrating it with the existing OWL knowledge data. After 

completion of representation of data, an approach of 

employing rule engine is implemented. Rule engine reason 

and extract additional knowledge from existing entities 

defined. 

Our work in this paper covers several prospective in a 

crop production domain with the help of case study in rice. 

We addressed the concepts missing in the ontology of 

farming domain. With the help of identifying some important 

concepts, this problem has been overcome through 

extending the ontology with the help of adding new classes, 

properties and relationships to them. Secondly, identifying 

the absence of rules and rule engine leads to the less efficient 

way of retrieving data. Adding rules assists knowledge to be 

reasoned and inferred with some new facts and concepts with 

existing knowledge. The defined rules include the rules 

based on irrigation management in farming, detecting 

polluted water source, identifying the suitable repellant, 

identifying a suitable seed of that specific crop. Each and 

every rule works according to a current growth stage of a rice 

crop. We employ Jess rule engine which allows to push rules 

on data in order to pull desired results accordingly. This 

paper is organized is as follows: Section 2 presents the 

related work in a smart farming domain. Section 3 defines 

the stages and methods of our workings and provides a 

detailed view of base ontology and extended ontology. 

Section 4 presents the implementation of SWRL rules on the 

extended ontology. Results of inference on JESS rule engine 

are provided in Section 5. Finally, Section 6 concludes the 

work and presents future directions. 
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2. RELATED WORK 

IoT based applications on smart farming those based on 

Agri-IoT framework has been presented by Andreas 

Kamilaries et. al. [6] for the purpose to monitor two most 

demanding scenarios of farming 1) Heat maintenance for cow 

fertility 2) Finding right time for cultivation in soil fertility. 

Monitoring was done in real time through sensors to detect 

and cope up with unpredictable situations i.e Farming is 

highly unpredictable, due to its large dependency on weather 

and environmental conditions (e.g. rain, temperature, 

humidity, hail), unpredictable events (e.g. animal diseases, 

pests), as well as price volatility in agricultural markets. The 

solutions are then provided with the help of combined 

ontologies on collected static and dynamic information. The 

above scenarios lack online services and abilities to work on 

large data. 

Different practices in farming have been evolved with 

time resulting in new ideas to lean on. Vertical farming, a new 

possibility has risen up showing another picture in a study of 

farming. Saraswati et. al. [7] have proposed an ontology 

based on vertical farming. Both external and internal context 

are taken into consideration for both monitoring and 

controlling the environment which in author’s case is a 

skyscraper. The server collects the sensed data through 

ZigBee and updates the user at regular time intervals on GUI 

which is controlled via Programmable Logic Controller PLC. 

Later Saraswati et. al. [8] extended their work on vertical 

farming ontologies aided by web services through OWL-S 

approach which integrates various web services. OWL-S 

consists of three subclasses (i.e. Service Profile, Service 

process and service grounding). Different concepts are taken 

into consideration which includes Context Based, Service 

Based, Environment Based, Hardware Based, and User Based 

concepts. 

Suresh Pokharel et. al. [5] showed the conversion of 

heterogeneous datasets from five different domains into RDF, 

where datasets were linked with AGORVOC and DBpedia. 

The sources include Agriculture production, weather 

information, Crop growing days information, Soil 

information, Administrative data of Nepal. After conversion 

into ontology different quality measurements were performed 

on data. The author showed this process through different use 

cases includes 1) Irrigation In Field where crop water is 

calculated for some time period, 2) Agriculture planner, 

policy maker for planning agriculture process, 3) Agriculture 

Spatial Data Visualization to understand through visualized 

data. 

3. SMART FARMING ONTOLOGY 

3.1 Methodology 

3.1.1 Stages of methodology: 

Stage 1: Existing ontology defined in [5] has covered many 

necessary areas required in agriculture. However, we 

identified some important factors that has been missing which 

can affect the production of desired results. The additional but 

key factors which can influence more efficient results in a 

farming domain can be divided into two parts: the first part of 

information would be that is needed  on a day-to-day basis 

and the second one includes information which is not often or 

sometimes required. The existing ontology also requires such 

divisions where soil type and seed type information are not 

required daily. Water information for agriculture is of higher 

priority to be perceived; as well the seeds and pesticide 

availability are key to manage a better farming daily plan. 

These classes fulfil most of the requirements regarding 

production of crops. 

Stage 2: The extended classes along with the existing ones 

intend to cover a scope of crop production domain. For 

examining results, selecting a specific crop for results 

analysis to show different prospects of that domain in detail 

is needed. After constructing crop production ontology, rice 

crop is a selected as a case study for analysis of a knowledge 

base. 

Stage 3: The addressed issues for a lack in the ontology can 

be efficiently gained by using a rule engine to provide 

reasoning through creating or reusing existing rules. SWRL 

Semantic web rule language is most widely used rule 

language, supported by protégé editor and supports many 

reasoners in order to combine OWL rules for semantics by 

proving abstract for a horn like rules. On the other side, SLOR 

Sensor based linked open rules is a rule discovery approach 

through mining algorithms having many similar traits that 

SWRL contains including reusability, interoperability, 

support for real time environments and for several reasoners 

lacking support for complicated sensors(e.g. GPS), 

distributed reasoning. According to papers [9] conclude the 

more emphasis on SWRL approach as it provides results 

without mining algorithms making it simpler and more 

efficient. Jess an ideal rule engine easily integrated rule 

engine providing rich rule-based reasoning in semantic web 

[10]. Creating and modifying rules in SWRL rule language 

and executing those rules with the help of Jess rule engine is 

the third step in queue. 

3.2 Ontology 

3.2.1 Base Ontology: 

Several works have been made on ontologies for different 

particular domains with intentions of detailed knowledge 

representation for concerned objectives contenting the needs 

for that domain. 

The existing ontology [5] containing 38 classes follow a 

hierarchy with respect to geographical levels from the 

scratch, starting from a country section, spanning an 

estimated scope by going forth with subclasses 

’Physiography’ and ‘Geography’. Further, class ’Country’ 

has been followed by a class ’Development Region’. 

Following the sequence, ’zone’ class appears to be next in 
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the list of following hierarchy. Moreover, zones in a country 

have furthered administratively divided into districts to 

separately work on different portions of distributed areas of 

farming. 

A key classification relevant to the scope of farming is 

mainly based on production class which includes all the main 

purpose sub-classes regarding production in farming. 

Agriculture within itself contains a hugely diverse area 

producing several productions through spanning a wide range 

of farming. In existing ontology, a production class covers 8 

major sub-classes within the purview of concerned motives 

of product types including classes: Fish, Fruit, Wool, Meat, 

Egg, Livestock, and Milk. Besides all these classes another 

crucial class has also been addressed which is ’Crop 

production’ class as a subclass of ’Production’ class, 

producing’ Crop’ class, additionally also having a subclass of 

’Cereal crop production’ class by specifically focusing on 

cereal production where, it produces another class named 

’Cereal’ class which is also a subclass of a class ’Crop’. 

Following the hierarchy ’District’ class is further 

partitioned with class ’VDC’, also ’Ward’ class is a part of 

’VDC’ class is directed towards ’Soil’ class derived from 

class ‘Ward’. Class ’Airport’ is located in class ’District’. 

A weather station class named ’Station’ is additionally 

located in ’District’. ’Station’ class has three subclasses to 

collect different measured data from different stations. 

’Rainfall Station’ class collects rain relevant data from class 

’Rain’, where, ’Meteorology Station’ as a subclass of 

’Station’ class collects data from ’Meteorology’ class and a 

subclass of ’Station’, the ’ETO Station’ class collects data 

from ’Evapotranspiration’ class. 

3.2.2 Extended Ontology: 

 

Moreover, to enhance results concluded from datasets 

includes some other dominating classes to infer better results. 

The main focus on extending an existing farming ontology is 

of determining and adding the missing parameters or those 

crucial classes which helps in obtaining more accurate, 

proper and unambiguous results. 

Aiming to expand further the crop production specific 

area in the existing ontology leads to includes many important 

classes to make sure the completeness of this domain. 

However, appending those new classes that cause some 

adequate information lacking, includes several classes which 

tend to collect critical data including water, seed, and 

pesticide. 

Taking rice as the main case study, led to work on its 

every growth stage separately. For the sake class ‘Cereal 

Crop Production’ is further broadened by a class ‘Rice 

Growth Stage’, shown in Figure 3.1. This class further is 

divided into subclasses of different phases of rice growth 

cycle shown in Figure 3.2. 
 

FIGURE 3.1: Class ‘Rice Growth Stage’ 

 

 
 

FIGURE 3.2: Class ‘Rice Growth Stages’ and its subclasses 

 

A rice complete growth cycle covers some main phases, 

starting from the very early stage named seeding stage where 

seed grows on upward to the Transplanting stage. Tillering 

stage appears little longer after Transplanting stage as a third 

stage of this cycle. After these stages the rice enters into later 

stages of its growth cycle as Flowering phase in which it 

prepares it to be completely ready for the final stages. 

Ripening is the conclusive phase to be appeared after 

Flowering phase. 

Another major problem that now a day’s agricultural 

domain carries is the increasing rate of pests along with the 

greater number of diseases. A proper and controlled use of 

pesticides is of much importance not only to have control on 

pests but also prevent it from overuse of it that may not 

damage crops too. 

Class ‘Pesticide’ and ‘Weedicide’ is another major class 

of ‘Crop Production’ class in Figure 3.3 and Figure 3.4 covers 

pesticide and weedicide area of agriculture and is a subclass 

of ‘PestandWeed’. ‘Crop production’ class assists ‘Pesticide’ 

and ‘Weedicide’ class by identifying crop type and its growth 

stage. 
 

 
FIGURE 3.3: Class Pest and Weed 

 
 

 
FIGURE 3.4: Class ‘Pest and Weed’ and its subclasses 

 

Further, at growth stage seed class plays a vital role to 

keep track and then obtain different seed types information 

by determining a seasonal seed through crop production class 

in order to acquire the needed regarding information having 

has relation shown in Figure 3.5, where, ‘Seed’ has a subclass 

of types of seeds as ‘Dicot’ and ‘Monocot’ classes in Figure 

3.6. 
 

FIGURE 3.5: Class ‘Seed’ 



Journal of Applied and Emerging Sciences Vol (11), Issue (1) 

 

[88] 

 

 

 
 

FIGURE 3.6: Class ‘Seed’ and its 
subclasses 

 

Ward is the last in geographical hierarchy and is one of 

the important classes in hierarchy to be defined. Location 

wise Ward is the area where our case study takes place (Rice 

in our case) to further elaborate the required classes at this 

part of hierarchy in ontology. This class covers three major 

subclasses shown in Figure 3.7 that meet the key requisite of 

crop production specific domain including ‘Water’, ‘Soil’ 

and ‘Irrigation’ classes elaborated further in detail. 
 

 
FIGURE 3.7: Class ‘Ward’ and its 

subclasses 

 
 

Water, a key parameter in farming domain either for 

irrigation of crops or for use in livestock farming, it is always 

the central class. Allocation and distribution decisions of 

water are based on understanding and determining the water 

requirement both quantitatively and seasonally. 

 
 

FIGURE 3.8: Class ‘Waterflow’ 

 

 

Water class manages the schedule of water management 

through its subclass, the ’Water Flow’ class shown in Figure 

3.8, which specifies schedule of water on the basis of 

availability and need of water. Where, these data are collected 

from subclasses of this class to prevent water form overflow 

or drought. 

To fulfill the need of required water it is necessary to 

know the requirement of crops. ’Water Flow’ class collects 

that data in Figure 3.9 from its subclasses ’Very High Water 

Flow’, ’High Water Flow’, ’Moderate Water Flow’, ’Low 

Water Flow’, ’Very Low Water Flow’, ‘Drain Water’ and 

‘Stop Water Flow’. Each class varies flow of water depending 

upon the situation. Also, each class is divided further into five 

subclasses except for ‘Drain Water’ and ‘Stop Water Flow’ 

classes shown in Figure 3.10 mapping the five-growth stage 

as at each growth stage water flow varies. At seeding stage 

‘High Water Flow’ must be covering10 mm of water depth, 

where, at flowering stage it must cover around 12 mm. 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 3.9: Class ‘Waterflow’ and its subclasses 

 

FIGURE 3.10: Class ‘Very High Waterflow’ and its 
subclasses  

 

Taking water depth into consideration, respecting to 

control the water flow, it is necessary to monitor the water 

level at different stages of rice growth. Another subclass of 

‘Water’ includes class ‘Water Level’ which observes and 

records the level of water and control the flow of water to its 

accordance shown in Figure 3.11. For example, if Seeding 

stage has water level greater than 10 mm, then water flow 

must be controlled. 
 

FIGURE 3.11: Class ‘Water Level’ 

 

Water as a main ingredient to farming has great impact on 

crops. Polluted water causes not only damage to the crops but 

also crops cannot further be suitable for usage, even without 

any knowledge to the farmers. Class ‘Water Measurement’ a 

subclass of ‘Water’ measures the harmful nutrients in the 

water shown in Figure 3.12. 

 

FIGURE 3.12: Class ‘Water Measurement’ 

 

This class is further divided into subclasses through which 

it collects the data of those nutrients, including ‘Magnesium 

Level’, ‘Nitrogen Level’, ‘Potassium Level’, ‘Phosphorus 

Level’ and ‘Water PH’ classes. ‘Polluted Water Source’ is a 

class shown in Fig 3.13 that is the source of polluted water if 

occurs and is then an equivalent class of 
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‘Ward’ to identify that specific ward containing polluted 

water.  
 

 
FIGURE 3.13: Class ‘Water Measurement’ and its 

subclasses 

 

Another important subclass of class ‘Ward’ is class 

‘Irrigation’. This class collects some important data through 

its subclasses, class ‘Season’ having sub-class ‘Month’ and 

class ‘Time’. Class ’Season’, an extended class of ’Irrigation 

schedule’ provides with season information along with 

subclass month to determine an exact duration of any season. 

Further, a class ’Time’ provides with a specific time of day 

either morning, noon, evening. These classes in Figure 3.14 

assist other classes and rules to know the current season and 

month of that season as well time of the day to provide more 

accuracy to the results. 

 

 
FIGURE 3.14: Class ‘Irrigation’ and its subclasses 

 

The existing classes include class ’soil’, an extended class 

of ’Ward’ class in order to determine soil type holding a ’has 

soil’ relation among. This further is subdivided into ‘Soil 

Moisture’ and ‘Soil PH’ classes shown in Figure 3.15. The 

subclass ‘Soil Moisture’ helps in controlling water flow if 

cross any threshold value, where class ‘Soil PH’ evaluate the 

quality of soil suitable for that specific crop growth. 

 
FIGURE 3.15: Class ‘Soil’ and its subclasses 

 

4. RULES IMPLEMENTATION 

Mapping those classes with each other through defining 

relationships between them and by default gets connected to 

the properties of those classes too. In order to represent the 

domain specific real-world data into an adequate knowledge 

representation to further perform reasoning on that data and 

infer new knowledge from those existing ones is the utmost 

target of this paper. This is done via implementing rule engine 

to infer server results through different rules. The findings of 

this paper, as discussed before, spins around the farming 

domain more specifically crop production. 

After representing a complete knowledge in the form of 

ontology, which is the prerequisite for applying and 

processing rules, it is necessary to first cross check that 

complete graph of knowledge through any reasoner that in 

our case is Pellet Reasoner. This reasoner will indicate all the 

inconsistencies present in OWL DL (Web Ontology 

Language Description Logic) this also helps in SPARQL 

Query, execute class hierarchies and also explains the errors 

after inferencing. 

After the required following requisites are done, the 

ontology is ready for implementation of rules. Rules are 

created and modified with the help of SWRL rule language in 

Protégé SWRL Tab plugin. SWRL rule contains atoms, 

variables, built-ins and Imp, helps in creating rules. For 

execution of SWRL rules it is necessary to integrate a rule 

engine with Protégé. Protégé previous versions support Jess 

rule engine, a non-open source but executes defined rules 

more efficiently in short time duration. Jess rule engine in 

Protégé 4.8.3 is used to execute SWRL based rules of our 

smart farming ontology. 

4.1 Decision management: The Rice crop use case 

Our proposed work provides decision making for farmers 

covering different parameters using Rice crop case study. The 

decisions and management of farming are taken 

geographically on a Ward. The designed method provides 

different defined objectives as discussed in previous sections: 

1. Identifying the polluted water through sensors of 

that source or we can say that specific Ward that contains 

contaminated or polluted water 

2. Identifying each growth stage in Rice crop farming 

to make decisions accordingly 

3. Management of water during irrigation in crops in 

each growth stage by measuring: Soil moisture, Water level 

and Rainfall rate 

4. Monitoring weather through Rainfall station in order 

to manage water during rainfall preserving the water through 

receiving rainfall water 

5. Providing pesticide and weedicide information in 

each growth stage through identifying pests and weeds 

6. Identifying crop in order to identify its relevant seed 

As discussed previously the case study used in this paper 

revolves around rice crop. Our paper contains 54 SWRL rules 

covering most critical areas of crops to be processed. Due to 

brevity some of the rules and their results are defined in this 

paper. Before creating rules following parameters were 

examined after a thorough study regarding different prospects 

of this domain including irrigation and rainfall [13], and 

pesticide [11] and soil [12]. In order to index, retrieve, and 

organize data, AGROVOC1 provides a great range of 

vocabulary including 35,000 and are hierarchically organized 

under 25 top largely oriented towards the agricultural sector 

targeting mainly semantic web. Several concepts in our paper 

of rice are adapted from AGOVOC website, RDF-SKOS 2and 

AGROVOC defined Agrontology 
3. The further detailed concepts and parameters about rice 
specific crop in crop production domain are obtained via Crop 

Ontology Curation Tool4. CO allows us to browse the Crop 
Ontology, search for specific terms in rice growth and 

 

1 AGROVOC, http://aims.fao.org/agrovoc 
2 RDF-SKOS, http://aims.fao.org/agrovoc/releases 
3 Agrontology, http://aims.fao.org/aos/agrontology 
4 Crop Ontology Curation Tool, http://www.cropontology.org/ 

http://aims.fao.org/agrovoc
http://aims.fao.org/agrovoc/releases
http://aims.fao.org/aos/agrontology
http://www.cropontology.org/
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access the definition, as well as additional information. The 

further concepts relevant to agriculture are obtained through 

Chinese Agricultural Thesaurus (CAT). 5CAT covers areas 

including agriculture, forestry, biology, etc. It is organized in 

40 main categories and contains more than 63 thousand 

concepts. Where, the Linked Data version of CAT is in 

RDF/SKOS-XL. In addition, CAT includes more than 130 

thousand semantic relationships such as Use, UF, BT, NT and 

RT. 
The rules are based on those perceived scenarios detailed 

in Table 4.1. It contains a detailed vocabulary of successful 
crop growth consisting concepts of cereal crop production of 
crop rice. Table 4.1 concepts are a corner stone for rules but 
also the rice ontology basic concepts and different parameters 
are obtained from the different papers those includes details 
such as soil [12], pesticide management [11], seed, activities 
in growth stages of rice, season, time [13] and most 
importantly water management [14] [15]. Where, a work 
based on underutilized crop production domain ontology [16] 
provides rules specific to Bambara groundnut providing us 
with different prospects of growth of crop assisting in 
concepts of rules making. However, the values or parameters 
are provided in our swrl rules are mostly obtained from 
different resources, developed and provided by scientists and 
specialists [5] [12 - 16]. 

Each domain in IoT expands to an unprecedented level 
with increasing solutions in heterogeneous devices, domains 
and interoperability between them. Many standardized bodies 
defined several ontologies that easily can be adapted to 
different domains with much less efforts. The official 
ontology we adapted in our case by looking to our 
requirements is Semantic Sensor Network Ontology 
(SOSA/SSN). SOSA 6 (Sensor, Observation, Sampler and 
Actuator) is new extension to SSN 79 including actuators and 
sampling to classes and properties. The Table 4.2 shows the 
extracted and analyzed requirements. The requirement 
column shows all of the extracted requirements and the other 
two parallel columns represents the covered requirements. 
Note that the represented requirements contain prefix 
followed by some identifier that might be a class or a 
property. 

 

Requirement of SOSA/SSN and Ontology 

Requirement SOSA/SSN Ontology 

R1: Deployment ssn: Deployment ssn: Geographical 
level 

R2:Platform ssn: Platform ssn: Ward 
R3: Device ssn: System ssn: Device 

R3.1: Sensor sosa: Sensor sosa: Sensor 

R4: Actuator sosa: Actuator sosa: Actuator 
R5: Measurement sosa: Observation sosa: measurement 

R6: Property ssn: Property ssn: Property 

R7: Feature of 
interest 

sosa: Feature of 
interest 

sosa: Feature of 
interest 

R8: Action sosa: Procedure sosa: Function, 
command 

R9: Crop sosa: Sample sosa: Rice 

TABLE 4.2: Requirement coverage by SOSA/SSN modules and 
Ontology 

 
5 CAT, https://bartoc.org/ 
6 http://www.w3.org/ns/sosa/ 

7http://www.w3.org/ns/ssn/ 

4.2 SWRL Rules 

Working on details of any crop it is first important to 

make sure the current stage of its growth as other decisions is 

made on such basis. Rule 1 confirms the growth phase of rice 

crop. Here, RiceGrowthStage is a class having two data 

properties of hasStartTimeInterval indicating the start date of 

the Seeding phase and hasEndTimeInterval indicates the end 

date of the same phase with AND (^) operator in between 

implies (!) to the class Seeding as a current stage of rice 

growth. Water level is measured in inches per hour (in) and 

rainfall rate is measured as centimeter per hour (cm). Soil 

moisture sensor works for low to high (wet to dry). It checks 

on potential of water and content of water in soil expressed 

as percent volumetric (l) water content. Where, the flow of 

water is measured as liter per minute (lpm) 

 
RiceGrowthStage(?x)^ hasStartTimeInterval(?x, 

"15-May") ^ hasEndTimeInterval(?x, "15-June") 

→ Seeding(?x) 

Rule 1: Seeding Growth Stage 

 

Following the first rule, water flow has been maintained 

accordingly. Soil moisture has been observed through class 

Soil containing data property hasSoilMoisture through fixing 

parameters with the help of SWRL built-ins (less than and 

greater than) [6]. Class Soil helps to monitor the moisture of 

the soil and control the water flow in accordance to the 

situation. Here an additional class has also been added to 

monitor the rainfall rate with the help of class Rainfall fixing 

value through the data property has value less than 

5.0. This class will execute these rules till this situation has 

also been satisfied else will switch to the rule where rainfall 

rate exceeds. When all above conditions satisfy then will 

choose the water flow regarding that growth stage from very 

high to very low scale [13]. Below following rules of seeding 

stage are defined [15] [16]: 

 
RiceGrowthStage(?x)^hasGrowthstage(?x, 

"Seeding")^Soil(?s)^hasSoilMoisture(?s, 

?a)^swrlb:greaterThan(?a,268)^swrlb:lessThan 

(?a, 383)^ Rainfall(?r)^ hasvalue(?r,?v)^ 

swrlb:lessThan(?v,5.0)→ 

VeryLowWaterFlowInSeeding(?x) 

Rule 2: Very Low Water Flow 

In seeding stage if and only if soil moisture is greater than 
268 and less than 383 also rainfall value is less than 5.0 then 
Rule 2 implies very low water flow in seeding stage due to 
very low need of water. 

RiceGrowthStage(?x)^hasGrowthstage(?x, 

"Seeding")^Soil(?s)^hasSoilMoisture(?s, 

?a)^swrlb:greaterThan(?a,382)^swrlb:lessThan( 

?a,418)^Rainfall(?r)^hasvalue(?r,?v)^swrlb:le 

ssThan(?v,5.0)→ LowWaterFlowInSeeding(?x) 

Rule 3: Low Water Flow 

 

If soil moisture is greater than 382 and less than 418 
showing less need of water, also rainfall value is less than 5.0 
then Rule 3 implies to allow low water flow in seeding stage. 

http://www.w3.org/ns/sosa/
http://www.w3.org/ns/ssn/
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Rice Crop Vocabulary 

Class Cereal Crop Production 

Instance Rice 

Superclass Cop Production 

Soil Loam 

Soil Moisture Varies in Different growth stages 

Soil PH Greater than 5.0 and less than 6.5 

Rainfall Suitable rainfall rate ( less than 0.5) 

Water Level In millimeters 

Polluted Water If greater than 1.5 

Pesticide Carbaryl, Nateevo 

Weedicide Sunstar 

Seed name Orziya Sativa 

Season Summer, Spring, Winter, Autumn 

Growth stage Seeding, Transplanting, Tillering, Flowering, 
Ripening, Harvesting 

Growth Information Rice crop growth depends on soil type (Loam) and on soil moisture (dry, normal, wet), a suitable 

soil moisture on suitable growth stage is necessary. Soil PH with suitable temperature and 

moderate rainfall rate or controlled water rate maintains a successful growth and good yield. Water 

flow completely depends in a soil moisture, rainfall rate and water level. Polluted water is not 

tolerated as it may leads to damage to the crops (Magnesium, Phosphorus, Nitrogen, Potassium 

and water PH levels must be less than 1.5). At early stages of the growth pesticide use can be 

harmful that’s why a weedicide (Sunstar) is suitable for those early stages and pesticide (nateevo) 

at the middle stages of the growth. When crops enters into maturity phases 
pesticide (carbaryl) can be used to prevent it from pests. 

TABLE 4.1: Rice Crop Vocabulary 

 

 
RiceGrowthStage(?x)^hasGrowthstage(?x, 

"Seeding")^Soil(?s)^hasSoilMoisture(?s, 

?a)^swrlb:greaterThan(?a,417)^swrlb:lessThan 

(?a,435)^Rainfall(?r)^hasvalue(?r,?v)^ 

swrlb:lessThan(?v,5.0)→ 

ModerateWaterFlowInSeeding(?x) 

Rule 4: Moderate Water Flow 

If soil moisture is greater than 417 and less than 435 
indicating normal moisture of soil, also rainfall value is less 
than 5.0 then Rule 4 implies to allow moderate water flow in 
seeding stage. 

RiceGrowthStage(?x)^hasGrowthstage(?x, 

"Seeding")^Soil(?s)^hasSoilMoisture(?s, 

?a)^swrlb:greaterThan(?a,434)^swrlb:lessThan( 

?a,451)^Rainfall(?r)^hasvalue(?r,?v)^swrlb:le 

ssThan(?v,5.0)→ HighWaterFlowInSeeding(?x) 

Rule 5: High Water Flow 

 

In seeding stage if and only if soil moisture is greater than 
434 and less than 451 indicating dry soil, also rainfall value 
is less than 5.0 then Rule 5 implies the need of high water 
flow. 

RiceGrowthStage(?x)^hasGrowthstage(?x, "Seed- 

ing")^Soil(?s)^hasSoilMoisture(?s,?a)^swrlb:e 

qual(?a,1023)^Rainfall(?r)^hasvalue(?r, ?v) ^ 

swrlb:lessThan(?v,5.0)→ 

VeryHighWaterFlowInSeeding(?x) 

Rule 6: Very High Water Flow  

In seeding stage if and only if soil moisture is equal to 
1023 showing completely dry, also rainfall value is less than 
5.0 then Rule 6 implies the need very high water flow in 
seeding stage. In case of high rainfall, the above rules will not 

 

be executed as the Rainfall condition becomes false. This will 
not only help to save water and utilize from the rain water but 
also prevent crops from flooding. 

Rainfall(?r)^hasvalue(?r,?v)^swrlb:greaterTha 

n (?v, 5.0) → StopWaterFlow(?r) 

Rule 7: Stop Water Flow 

As soon as rainfall rate exceed 5.0 values it will stop the 
water flow shown in Rule 7. 

RiceGrowthStage(?x)^hasGrowthstage(?x,"Seedin 

g")^Soil(?s)^hasSoilMoisture(?s,?a)^swrlb:gre 

aterThan(?a, 417) ^ swrlb:lessThan(?a,435) ^ 

WaterLevel(?w) ^ hasWaterLevel(?w, ?y) ^ 

swrlb:lessThan(?y, 2) ^ Rainfall(?r) ^ 

hasvalue(?r, ?v) ^ swrlb:lessThan(?v, 5.0) → 

ModerateWaterFlowInSeeding(?x) 

Rule 8: Moderate Water Flow 

RiceGrowthStage(?x) ^ hasGrowthstage(?x, 

"Seeding") ^ Soil(?s) ^ hasSoilMois- 

ture(?s,?a) ^ swrlb:lessThan(?a,268) ^ 

WaterLevel(?w) ^ hasWaterLevel(?w, ?y) 

^swrlb:greaterThan(?y, 10) → DrainWater(?x) 

Rule 9: Drain Water 

Class WaterLevel in Rule 8 observes the level of water in 
that specific phase of growth, if water reaches below 
threshold then starts to flow the moderate flow of water or if 
exceeds the water level in Rule 9 due to rainfall then drain the 
extra water [13]. In almost each rule, growth stage has been 
observed first as every stage of growth has different 
requirements. 

It is always not necessary that crops get fresh supply of 
water from either source [14] or it is easy to estimate it 
through the surface. The following upcoming rules assist to 
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measure increasing rates of the different water pollutant 
nutrients. If any of the rules satisfies the condition it will 
indicate the red flag of polluted water source which is also 
equivalent to that specific polluted ward. Five different 
harmful nutrients have been measured with the help of data 
property hasvalue and SWRL built-in (greater than). 

 
Ward(?x)^hasWard(?x,"Ward")^MagnesiumLevel(?a 

) ^ hasvalue(?a, ?b) ^ swrlb:greaterThan(?b, 

1.0) → PollutedWaterSource(?x) 

Rule 10: Magnesium Polluted Water 

Rule 10 implies polluted water source if magnesium level 
is greater than 1.5 [15]. 

Ward(?x) ^ hasWard(?x, "Ward") ^ WaterPH(?c) 

^ hasvalue(?c, ?d) ^ swrlb:greaterThan(?d, 

1.5) → PollutedWaterSource(?x) 

Rule 11: Water PH Polluted Water 

Rule 11 implies polluted water source if water PH is 
greater than 1.5. 

Ward(?x)^hasWard(?x,"Ward")^NitrogenLevel(?e) 

^hasvalue(?e,?f)^swrlb:greaterThan(?f, 1.5) → 

PollutedWaterSource(?x) 

Rule 12: Nitrogen Polluted Water 

If nitrogen level exceeds value 1.5 Rule 12 implies 
polluted water source. 

Ward(?x)^hasWard(?x,"Ward")^PotassiumLevel(?g 

)^hasvalue(?g, ?h)^swrlb:greaterThan(?h, 1.5) 

→ PollutedWaterSource(?x) 

Rule 13: Potassium Polluted Water 

Rule 13 implies polluted water source if potassium level 
is greater than 1.5. 

Ward(?x)^hasWard(?x,"Ward")^PhosphorusLevel(? 

i) ^ hasvalue(?i, ?j) ^ swrlb:greaterThan(?j, 

1.5) → PollutedWaterSource(?x) 

Rule 14: Phosphorus Polluted Water 

If phosphorus level is greater than value 1.5 Rule 14 
implies polluted water source. 

Pesticide and weedicide are two different repellents used 
in different growing stages of crops if spotted. The following 
rules implicate the suitable repellent with respect to every 
growing phase [15] [25]. 

RiceGrowthStage(?x)^hasGrowthstage(?x,"Tiller 

ing") ^ Pesticide(?r) ^ hasvalue(?r, ?v) ^ 

swrlb:greaterThan(?v, 0.5) → Nateevo(?x) 

Rule 15: Nateevo Pesticide 

If stage tillering detect pesticide and has value greater 
than value 0.5, then Rule 15 implies nateevo pesticide. 

RiceGrowthStage(?x)^hasGrowthstage(?x, 

"Seeding")^ Weedicide(?r) ^ hasvalue(?r, ?v) 

^ swrlb:greaterThan(?v, 0.5) → Sunstar(?x) 

Rule 16: Sunstar Weedicide 

Rule 16 implies sunstar weedicide if weedicide has value 
greater than 0.5 in seeding stage. 

RiceGrowthStage(?x)^hasGrowthstage(?x, 

"Ripening")^Pesticide(?r) ^ has-value(?r, ?v) 

^ swrlb:greaterThan(?v, 0.5) → Carbaryl(?x) 

Rule 17: Carbaryl Pesticide 

Rule 17 implies carbaryl pesticide if pesticide value is 
greater than 0.5 in ripening stage. 

RiceGrowthStage(?x)^hasGrowthstage(?x, 

"Flowering")^Pesticide(?r)^ hasvalue(?r, ?v) 

^ swrlb:greaterThan(?v, 0.5) → Carbaryl(?x) 

Rule 18: Carbaryl Pesticide 

If stage flowering detect pesticide and has value greater 
than value 0.5, then Rule 18 implies carbaryl pesticide. 

RiceGrowthStage(?x)^hasGrowthstage(?x, 

"Transplanting")^Weedicide(?r)^ hasvalue(?r, 

?v)^swrlb:greaterThan(?v, 0.5) → Sunstar(?x) 

Rule 19: Sunstar Weedicide 

If stage transplanting detects pesticide and has value 
greater than value 0.5, then Rule 19 implies sunstar 
weedicide. 

Crop(?c)^hasCrop(?c,"Rice")→ OryzaSativaSeed(?c) 

Rule 20: Oryza Sativa Seed 

Where, a seed with respect to that specific crop is identified 

if that crop occurs in the following Rule 20. 

 
5. RESULTS 

 

5.1 Results 

Before the final execution each rule was executed 

separately to test all of the rules according to their values. As 

soon as all results were found satisfying the final analysis on 

all of the rules were made. 

One of the major benefits of using Jess rule engine is its 

very quick response for executing results. It takes 

milliseconds to convert SWL rules into Owl Knowledge, 

executing the rules in the jess rule engine and again 

transferring inferred results to Owl knowledge. This swift 

process makes it an efficient way of getting valid results in 

no time. 

 

5.1.1 Seeding growth stage rules: 

a) Response time: 
For executing seeding stage rules the estimated response 

time are shown in Figure 5.1 below. Converting SWRL rules 
and OWL knowledge by converting OWL and SWRL into 
Jess engine, the calculated running time is 407 milliseconds. 
In this time bound it processed 8 imported SWRL rules, 101 
classes, 17 individuals and collectively imported 125 axioms 
to the rule engine. 

 

 

FIGURE 5.1: Response time of converting OWL and SWRL into Jess 

Executing all seeding stage specific Jess rules, it took 46 
milliseconds to infer 3 axioms in Figure 5.2. 
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FIGURE 5.2: Response time of executing seed rules 

 

Converting those new facts from Jess to OWL 

model took almost no time or it can just be a 0.5, as shown in 
Figure 5.3. 

 

 

 
FIGURE 5.3: Response time of transferring facts to OWL model 

After compiling Seeding stage based Jess rules the two 

inferred results become as the output includes: (a) ‘Seeding’ 

as a current growth stage of rice crop based on the time 

intervals of this stage (b) ‘ModerateWaterFlow’ class after 

fulfilling the condition of the need of more water to the crops 

based on low soil moisture and low rate of rainfall.  

     In case of different values of soil moistures, the different 

water flow rates become the inferred results either allowing 

for flow of water or controlling it. 

 

In case of low water level and low soil moisture showing 

need of water results in inferred axioms showing two classes 

of ‘ModerateWaterFlow’ in Figure 5.4. The first one class is 

the result from rule of low soil moisture and low rainfall rate 

and the second one is the result of low soil moisture and low 

water level in seeding stage. 

 

 
 

 

 
FIGURE 5.4: Moderate water flow in seeding stage 

 
 

If a water level and a specific soil moisture value exceed 

the threshold then ’DrainWater’ class becomes an output to 

drain water till it reaches to a suitable water level and soil 

moisture value shown in Figure 5.5. 

 

 

 
 

FIGURE 5.5: Drain water in seeding stage 
 

 

 
6. CONCLUSION AND FUTURE WORK 

Semantic web technologies assist IoT based domains by 

allowing IoT devices to access heterogeneous data from 

network, presented in the form of RDF representation in 

ontology. Sematic web is used in many areas of agriculture, 

where, the accurate data and proper decision making is of 

utmost importance to the farmers. In this work, we have 

added non-existing classes mainly of water, pesticide and 

seeds in crop specific production with the help of rice crop 

as a test case study. The results obtained were inferred 

through Jess rule engine to conclude new facts through 

reasoning knowledge-based data. Implementation of rule 

engine provides a way to collect and process huge data in 

the form of ontology and make complex decisions without 

human intervention in real time. Our ontology contains a 

set of 54 rules and 101 classes. 

A lacking prosperity of agriculture results in declining 

of field management. The rules we generated from existing 

and newly added classes covers a proper water 

management in different scenarios of basmati rice. Also, 

pesticide management and seed information are 

maintained. The successful results drawn covered 

 

different stages of rice growth of rice. This helps crop 

knowledge management and improves quality of services 

in crop farming. 

Agriculture with in itself is a wide area containing a 

lot several domains. There is ample room for further 

enhancement in ontology and enhancement to the rule base. 

Improvements in ontology can be done in any stage of 

ontology lifecycle. The workings of this paper cover 

many crucial classes to infer new facts in crop specific 

domain. This single scope extended ontology retrieved 

results of different parameters. Beside all those classes the 

proposed results from smart farming ontology can be 

elaborated adding some other additional classes that can 

ease farmers in almost every way including fertilizer, 

detecting diseases and new agricultural equipment details. 

Apart from crop production domain, several other farming 

domains are uncovered in this paper. Hence, this paper 

attempt to devise new approaches is belonging to other 

farming concepts including fish, meat, egg, fruit, wool, 

livestock, milk farming. Further it can be extended for 

other farming domains like vegetable farming, poultry 

farming and spice farming. 
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