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Abstract 

 

In this article a circulation network model for the detection of arbitrage 

opportunities in the currencies and securities markets is presented. As an 

illustration, the study presents its application to the interest rate of the 

Mexican and American bond market, the interbank loan rate of both 

countries, as well as to the deposit rates of US and Canada reported in 

Bloomberg. Deviations of covered interest rate parity imply that there exist a 

series of transactions that can be carried out to obtain riskless profits by 

exploiting arbitrage opportunities. The problem of finding arbitrage 

opportunities is modeled via a generalized maximum flow problem. The 

maximum flow over the generalized circulation network represent profits 

from arbitrage, and it is obtained through the application of a minimum cost 

flow algorithm. 

 

Key Words: Exchange rate arbitrage, financial markets, Circulation 

Network Model.  

 

1. Introduction 

 

The search for arbitrage is one of the fundamental motors of an 

economy. Arbitrage consists in performing transactions that generate profits 

by taking advantage of the difference in prices between two similar assets. In 
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general, there are no opportunities of obtaining profits in the financial 

markets without incurring some risk. The notion of arbitrage is directly 

related to the law of one price. This law establishes that in competitive and 

efficient markets, two assets with similar characteristics and that generate the 

same cash flow must have the same price (Sercu & Uppal, 1995). Arbitrage, 

through the law of demand and supply, is the mechanism that ensures the 

validity of the law of one price. 

 

In this paper, the exchange rate and financial markets are modeled by 

using circulation networks that are of great interest from the point of view of 

their applications (Shigeno, 2004). The problem of finding arbitrage 

opportunities can be formulated by using an exchange rate network, which 

facilitates the formulation of an appropriate optimization model. In this way, 

even though the problem can be formulated as a linear programming 

problem, there exist more efficient minimum-cost flow algorithms that find 

the solution. These networks are also important because they facilitate 

visualizing and modeling the relations between a large number of variables.  

 

In order to find arbitrage opportunities in the exchange rate markets, the 

authors present the problem in a circulation network and solve it as a 

generalized maximum flow problem. In particular, the problem consist of 

obtaining the maximum flow that represent the arbitrage profits, along a 

generalized circulation network representing different transactions that can 

take place in the exchange and financial markets. Solution of the problem, 

through optimal flow, indicates the necessary transactions for obtaining 

profits from arbitrage, or if it is not the case, it indicates there is no arbitrage 

in that circulation network. To solve this generalized maximum flow 

problem, the minimum-cost flow algorithm is used as proposed by Goldberg, 

Plotkin and Tardos (1991). The advantage of using this minimum-cost flow 

algorithm is that it has lower computational complexity than the traditional 

algorithms that solve the linear programming problems.  

 

The paper is organized as follows: section 2 present the concepts related 

to exchange markets, and a discussion about transactions in the financial 
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markets. Section 3 explains how to present transactions in the exchange rate 

and financial markets by using a network i.e. explain how to present 

transactions that maximize profits of an arbitrageur as a solution of a linear 

programming optimization problem. Section 4 explains the concepts related 

to the generalized maximum flow problem and the optimality conditions for 

its solution. Section 5 develops the combinatorial minimum-cost flow 

algorithm proposed by Goldberg, Plotkin and Tardos (1991) to solve the 

generalized maximum flow problem. In section 6, a data set is used 

consisting of bid and ask exchange rates and interest rates for Mexico, United 

States of America (US) and Canada to find the arbitrage opportunities in 

their exchange rates and financial markets. Finally, section 7 concludes. 

 

2. Exchange Rate and Arbitrage 

 

2.1 The Exchange Rate Markets 

 

An exchange rate is the quantity of a currency needed to buy one unit of 

another currency, or the quantity of a currency received when you sell a unit 

of another currency. The exchange rate market is composed of two principal 

segments, the spot exchange rate market and the forward exchange rate 

market. The spot market is the foreign exchange market for payments and 

deliveries of currencies the same day the transaction takes place. The spot 

exchange rate is denoted as St, where t is the current date.  

 

The forward market is the foreign exchange market for payments and 

deliveries of currencies in a future date. For example, a person might want a 

bank to quote today the exchange rate of pesos per dollar in three months, 

and that the transaction takes place in three months at the exchange rate 

agreed upon today (independent of the effective spot exchange rate at that 

date). The price agreed upon today for which that person can buy and sell 

dollars in three months is the forward exchange rate with a three month 

maturity. In the forward market the exchange rate involved in the transaction 

is fixed today, that is, there is no uncertainty about the future price. 

Moreover, the transaction takes place in a future date; this means that there is 
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no exchange of currencies today. 

 

The forward market can be divided in segments depending on the 

transactions date, and each segment has its own price. The forward exchange 

rate is denoted as Ft,T, where t is the current date and T represent the 

transactions date, which  can be measured in weeks, months or years. 

 

2.2 Transactions in the Money Market 

 

The risk-free market rate of return in nominal terms is the percentage 

difference between the initial value (t) and the value at the maturity date (T) 

of a risk-free asset. The domestic risk-free rate of return is denoted as rt,T  , 

where T-t represent the maturity of the contract, and denote the foreign rate 

of return as  r*
t,T. Financial institutions express the rate of return on an annual 

basis (r), so if the maturity of a loan or an investment is less than a year, the 

effective yield can be calculated as: 

 

rt,T =(maturity period in days/365) ⋅r               (1)                        

 

A deposit is a transaction in which a person invests money today and 

receives money in the future. In order to calculate the amount received, the 

initial investment is multiplied by (1+ rt,T), where rt,T is the effective domestic 

rate of return at time t for an asset with maturity date T. A loan is a 

transaction in which a person receives money today and pays an equal 

amount in the future at a cost. For this type of transaction, it is possible to 

calculate the amount of money received today by multiplying the amount that 

has to be paid in the future by (1/(1+ rt,T)). For the international market, the 

same transactions can be defined but by using the effective foreign rate of 

return r*
t,T. 

 

2.3 The Law of One Price and the Interest Rate Parity 

 

The law of one price establishes that, in competitive markets, two similar 

assets must have the same price. Two assets can be considered similar if they 
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have the same maturity date, liquidity and default risk. In particular, two 

assets are considered similar if r generates the same cash flow. 

 

Suppose two assets that generate the same cash flow don’t have the same 

price then the owner of the overvalued asset could simultaneously sell this 

asset and buy the cheaper one thus obtaining a profit without incurring any 

additional risk. This type of transaction is called circular arbitrage since it 

involves buying and selling an asset simultaneously. That is, arbitrage 

consists in obtaining profits by taking advantage of the price difference 

between two similar assets.  

 

Circular arbitrage generates an excess supply of the overvalued asset and 

an excess demand of the undervalued asset; as a consequence the difference 

in price of the assets will be reduced. If there are perfectly competitive 

markets, this process will stop until the price of two assets is the same and 

there are no profits from arbitrage. If there are transaction costs, the purchase 

and sale of assets will stop when the cost of buying the undervalued asset and 

selling the overvalued asset exceeds the difference between their prices.      

 

Although this mechanism result in the equalization of prices for assets 

that generate the same cash flow, in practice there are three reasons why 

profits can be obtained by using arbitrage: 

 

1) Markets can be inefficient in the sense that investors don’t react 

immediately, or are not aware of the profits that can be made in the market. 

 

2) In periods with expectations of high volatility in the foreign 
exchange market, speculative pressures can result in an increase of the 
supply of funds that generate arbitrage in the forward market. That is, in 
periods with high financial uncertainty and instability, the same currency can 
be quoted at different values in the forward market depending on the 
perception that each financial institution has about the future value of the 
exchange rate. 
 

3) The difference in price of assets can be the result of the default risk 
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implicit in the contracts.  

 

In the foreign exchange and money markets, the arbitrageur examines the 

current quotes for the exchange rates and interest rates, in order to look for 

the possibility of obtaining riskless instantaneous profits by means of an 

appropriate combination of transactions. If the markets are perfectly 

competitive, every participant in the market will be aware of these profits and 

will try to make the same transactions. These massive transactions will have 

an effect that some of the prices of the assets involved in the trades will 

adjust until they reach their equilibrium price. The equation that relates these 

equilibrium prices is the following:  

 

Ft,T = St

1+ rt,T

1+ rt,T
∗

                                                    (2) 

 

This equation shows that, in equilibrium, the forward exchange rate must 

be equal to the spot exchange rate adjusted by a factor that depends on the 

ratio between the domestic interest rate and the foreign interest rate. Solving 

for the domestic interest rate, the following equation is obtained: 

 

       
1+ rt,T =

1

St

⋅ 1+ rt,T
∗( )⋅ Ft,T

                       (3) 

 

The right hand side of equation 3 represents the profits obtained from a 

covered foreign investment. That is, profits generated by changing pesos for 

dollars in the spot market, investing dollars in the US, and hedging the 

foreign exchange risk by selling dollars in the forward market. This equation 

shows that the profits obtained from a covered foreign investment have to be 

equal to the cost of a loan in the domestic market. For this reason, this 

equation is known as the covered interest rate parity.  

 

However, the most common equation for the interest rate parity (3) does 

not take into account transaction costs. These costs can be expressed as the 

difference between the bid and ask prices of exchange rates and interest 
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rates; that represent inventory, information and processing costs related to the 

transactions of an asset. An investor pays the ask price when he solicits a 

loan and receives the bid price when he makes a deposit. In the same way, an 

investor pays the ask price of the exchange rate when he buys foreign 

currency and receives the bid price when he sells foreign currency. Taking 

into account the difference between the bid and ask prices of exchange and 

interest rates, the conditions that ensure that there are no profits from circular 

arbitrage are: 

 

1+ rd ≥
1

Sd

⋅ 1+ ro

∗( )⋅ Fo
                                  (4) 

  

1+ rd

∗ ≥ So ⋅ 1+ ro( )⋅ 1

Fd

                             (5)   

 

where the d subscript refers to the ask prices and the o subscript refers to the 

bid prices. Moreover, the maturity date for the contracts in the forward 

exchange market and the loan and deposit transactions are the same. The next 

section explains how to represent the transactions introduced in this section 

using network diagrams.  

 

3. Network Model for the Foreign Exchange Arbitrage Problem 

 

3.1 Network Representation of the Foreign Exchange and Money Markets 

 

Throughout this paper, it is assumed that Mexico is the domestic country 

(Qt) and the US is the foreign country (Q*
t). Moreover, the maturity date for 

deposits, loans and contracts in the forward exchange market is assumed to 

be of three months. Transactions in the spot market can be represented as a 

flow from an initial or head node (the initial position or the quantity of a 

currency given to a bank) to a terminal or tail node (the final position after 

the transaction or the quantity received of the currency from the bank). The 

direction of a transaction is represented by an arrow or arc and the gain 

associated with that arc (the exchange rate or its inverse) is shown beside the 
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arrow. Transactions in the forward exchange market can be represented in 

the same way. The selling of a foreign currency in the forward exchange 

market implies that today (t) a person undertakes to pay an amount of foreign 

currency in the future (T) and in return, he receives an amount of the 

domestic currency in the future. In this case, the initial position is an amount 

QT, the final position is an amount Q
*

T, and the gain is the inverse of the 

forward exchange rate with maturity date T. 

 

For a deposit, the transaction can be represented as a flow from an initial 

node Qt (the amount of money lent today) to a terminal node QT (the amount 

of money received in the future), and the gain corresponds to the effective 

return rate. For a loan, the arc stems from the quantity that has to be paid in 

the future QT to the quantity received today Qt, and the gain corresponds to 

the inverse of the loan rate. The network that combines the four types of 

transactions mentioned before is shown in Figure 11.  

 

 
Fig. 1 

 

Using this diagram, two types of transactions involved in circular 

arbitrage are presented taking into account the difference between the bid and 

ask price in the money markets.  

                                                           
1 The data was obtained from Bloomberg and corresponds to March 15, 2010. The interest rate 
for Mexico corresponds to the three- month CETES rate and for the US corresponds to the 
three-month deposit rate. 
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Arcs that move counterclockwise correspond to the transactions in 

equation (4), and arcs that move clockwise correspond to the transactions in 

equation (5). The value of the flow changes between currencies when it 

moves vertically in the diagram. The value of the flow is increased or 

reduced when it moves horizontally in the diagram via the interest rate. Each 

node is numbered and each arc has a variable assigned to it, which represents 

the value of the flow in that arc. The first subscript in the arc’s variable 

corresponds to the node it comes from and the second subscript corresponds 

to the node it goes to. 

 

3.2 Linear Programming Formulation 

 

The solution to the linear programming problem represents the flow of 

optimal transactions in the arcs and the objective function evaluated at the 

solution represents the riskless gains from arbitrage. The linear programming 

problem that corresponds to the exchange rate network can be formulated 

using three rules:  

 

1) The objective is to maximize the flow out of the node representing the 

period and currency desired. 

 

2) For each node, a constraint is added that represents the flow 

conservation condition. That is, all the flow that enters a node must 

also come out. Flow into a node is considered positive and flow 

outward is considered negative.  

 

3) For each arc, a constraint is added that represent the upper bound for 

the credit and trading limits.2 

 

In this paper, it is assumed that the function to maximize is the gain in 

pesos in three months. In order to specify this objective function, an arc is 

                                                           
2 The credit limits represent the maximum quantity that an investor can lend or borrow without 
changing the interest rate. The trading limits represent the maximum amount a trader can buy 
or sell of currencies without affecting the interest rate. These limits are also associated with 
the maximum quantities that can be traded immediately.  



Garcia & Espinosa 

  

                            39 

added that leaves node 2 (x₂), which is the value to maximize. Moreover, to 

each arc, its corresponding upper bound is added. The complete diagram is 

represented in Figure 2: 

 

 
    Fig. 2 

 

The linear programming problem that corresponds to the network 

diagram of Figure 2 is the following: 

 

 
 

trading limit of pesos in the spot market ≥ x13 

trading limit of dollars in the spot market ≥ x31 

trading limit of pesos in the forward market ≥ x24  

trading limit of dollars in the forward market ≥ x42  

credit limit in México ≥ x12, x21 

credit limit in the US ≥ x34, x43  

xi ≥0∀i 



A Circulation Network Model for the Exchange 

 Rate Arbitrage Problem 

 

40 

Where the first four constraints correspond to the flow conservation 

conditions for nodes 1, 3, 2 and 4 respectively, the rest of the constraints 

correspond to the arcs’ credit and trading limits. If the objective function 

evaluated at the solution of the problem equals zero, it implies that for this 

network there are no gains from circular arbitrage. 

 

There might be more opportunities to obtain gains from arbitrage when 

more currencies and periods are considered simultaneously. An arbitrageur 

could benefit by borrowing in several currencies and depositing the funds in 

others. Exchange rate and interest rate quotes change continually, and they 

could be used directly in the network model to obtain the optimal 

transactions using the solution to the linear programming problem. However, 

network flow algorithms that have a lower computational complexity than 

solution methods for linear programming have been developed.  

 

4. Generalized Maximum Flow Problem 

 

4.1 Definitions 

 

A circulation network is a directed graph G=(N,A,u,s), where N is the set 

of nodes and A is the set of arcs. Each arc a∈A can be represented as a pair 

of order nodes a=(i, j)  such that i, j∈N, where the order of the nodes 

represent the direction of the arc. It is assumed that the cardinality of the set 

of nodes is n and the cardinality of a set of arcs is m. Each arc has an 

associated capacity, which represents the maximum amount of flow that can 

go through the arc. This capacity can be represented by a function u:A→ℝ⁺. 

The graph G has a special node s called the source, which represents the final 

destination of the flow.   

 

A path is a sequence of arcs P=(a1,…,aq-1) with a1=(i1,i2), a2=(i2,i3),…,aq-

1=(iq-1,iq), where q-1 is the length of the path. Node i1 is the initial node of the 

path, and node iq is the final node. An elementary path is a path that does not 

contain a node more than one time. The set of all elementary paths that start 
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in node i1 and end in node iq is denoted by P1,q. 

 

A cycle is a path of length greater than zero such that the initial node and 

the final node is the same. A cycle can be presented as C=(a1,…,aq-1) with 

a1=(i1,i2), a2=(i2,i3),…,aq-1=(iq-1,iq), and i1=iq. An elementary cycle is a cycle 

that does not contain the same node more than once, with the exception of 

the node where the cycle begins. 

 

In the generalized flow problem, each arc has a gain associated to it. This 

gain is given by the function γ:A→ℝ⁺\{0}. In the case of ordinary flows, if k 

units exit node i¸ then k units arrive to node j. This means that the gain is 

always one in every arc of the graph. In the case of generalized flows, if k 

units of flow exit node i, then k*γ(i,j) units arrive to node j. In this case, not 

all gains are necessarily equal to one.  

 

If γ(i,j)>1, then (i,j) is a gain arc, and if γ(i,j)<1, then (i,j) is a loss arc. 

The gain of a path or cycle is given by the product of the gains of the arcs 

that make up the path or cycle, i.e. γ(i, j)
( i, j )∈P{ }
∏ . 

 

A cycle with a unit gain is called a unitary cycle, a cycle with a gain 

greater than one is called a flow-generating cycle, and a cycle with a gain less 

than one is called a flow-absorbing cycle. It is assumed that for each arc (i,j), 

there exist an arc (j,i) where the following condition is satisfied: 

 

γ(i, j) =
1

γ( j,i)
                                                  (6) 

 

This condition is known as the gain antisymmetry constraint. These 

inverse arcs can be introduced without loss of generality because, if these 

arcs are not included in the original graph, they can be added and their 

capacity is set to zero. 

 

A generalized pseudoflow is a function f: A→ℝ⁺ that satisfies the 
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following conditions: 

 

Capacity Constraint:  

 

f(i,j)  ≤ u(i,j)              ∀(i,j)∈A        (7) 

 

Gain Antisymmetry Constraint:  

 

         f(i,j)  = -γ(j,i)*f(j,i)       ∀(i,j)∈A     (8) 

 

Given a generalized pseudoflow f, the residual capacity function uf:A→ℝ⁺ is 

defined as uf(i,j)=u(i,j)-f(i,j). The residual graph with respect to f is given by 

Gf=(N,Af), where Af={(i,j)∈A| uf (i,j)>0}. The excess in a node i with respect 

to the generalized pseudoflow f  is defined as: 

 

e f (i) = − f (i, j)
(i, j )∈A | f (i, j )>0

∑ + γ(i, j)⋅ f (i, j)
( j ,i)∈A | f ( j ,i)>0

∑             (9) 

 

which represent the net flow into a node i. The definition of an excess can be 

simplified by using the gain antisymmetry constraint:  

 

e f ( i ) = − f ( i , j )
( i , j ) ∈ A | f ( i , j ) > 0

∑ + γ ( i , j ) ⋅ f ( i , j )
( j , i ) ∈ A | f ( j , i ) > 0

∑

= − f ( i , j )
( i , j ) ∈ A | f ( i , j ) > 0

∑ + − f ( i , j )
( j , i ) ∈ A | f ( j , i )< 0

∑

= − f ( i , j )
( i , j ) ∈ A

∑

 

 

A node i has an excess if ef(i)>0 and has a deficit if  ef(i)<0. The value of 

a pseudoflow f is given by the excess at the source ef(s).  

 

A generalized flow is a function g: A→ℝ⁺ such that, in addition to 

satisfying the capacity and antisymmetry constraints, it satisfies the 
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following flow conservation constraint: 
 

    eg(i)=0         ∀i∈N\{s}                              (10)  

     
The generalized circulation problem can be represented by the tuple 

(G=(N,A),u,γ,s) where G is a circulation network, u is a capacity function, γ 
is a gain function, and s is the source. The generalized maximum flow 
problem consists in finding the generalized flow g* that maximizes its value: 
 

max e g ( s )

s . t .

e g ( i ) = 0 ∀ ( i , j ) ∈ N \ s{ }
g ( i , j ) ≤ u ( i , j ) ∀ ( i , j ) ∈ A

g ( i , j ) = − γ ( j , i ) ⋅ g ( j , i ) ∀ ( i , j ) ∈ A

 

  

A generalized augmenting path (GAP) is a flow-generating cycle and a 
path from one of the nodes of the cycle to the source. This path can be trivial 
if the source is included in the cycle. Given a generalized flow and a GAP in 
the residual graph, the flow can be augmented along the GAP, therefore 
increases the value of the current circulation. The following theorem shows 
the optimality condition for the generalized maximum flow problem3: 

     
Theorem 1 A generalized flow is optimal if and only if the residual graph 

associated with the flow does not contain any generalized augmenting paths.  
     

4.2 Restricted Problem 

 
The circulation problem is restricted if in the residual graph of the 

pseudoflow f0, defined by f0(i,j)=0 ∀(i,j)∈A, every flow generating cycle 

pass through the source. Using this definition, the optimality condition for a 
generalized flow can be written as4: 

                                                           
3 Onaga, K., 1967, Optimal Flows in General Comunication Networks, Journal of the Franklin 
Institute, 283, 308-327. 
4
 Onaga, K., 1966, Dynamic Programming of Optimum Flows in Lossy Communication Nets, 

IEEE Transactions on Circuit Theory, 13, 282-287. 
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Theorem 2 Given a restricted problem, a generalized flow is optimal if and 

only if the residual graph associated with the flow does not contain any flow 

generating cycles. 

     

The advantage of transforming the problem to its restricted form is that, 

depending on the excess at the nodes of a pseudoflow f, the existence of 

directed paths in the residual graph from every node to the source or from the 

source to every node can be ensured. This result is formalized in the 

following lemma5: 

  

Lemma 1 Let f be a generalized pseudoflow in a restricted network, then: 

 

1) If the excess at every node other than at the source is nonnegative, 

then for every node i there exist a path from node i to the sink in the residual 

graph of the pseudoflow f. 

 

2) If the residual graph of the pseudoflow f has no flow-generating 

cycles and the excess at every node other than at the source is nonpositive, 

then for every node i there exist a path from the source to node i in the 

residual graph of the pseudoflow f. 

  

4.3 Node Labeling 

 

The process of changing the units of measure of a problem in a 

circulation network is called relabeling, and the equivalent problem obtained 

after relabeling is called the relabeled problem. 

 

A label is a function µ:N→ℝ⁺, where µ(i) is the label of i, and denote the 

number of previous units for each new unit in i. Given a generalized 

circulation problem (G=(N,A),u,γ,s) and a function µ:N→ℝ⁺, the relabeled 

problem is given by Gµ=((N,A),uµ,γµ,s) where: 

                                                           
5
 Goldberg, A. V., Plotkin, S. A. y Tardos, É., 1991, Combinatorial Algorithms for the Generalized 

Circulation Problem, Mathematics of Operations Research, 16, 351-381. 
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uµ(i, j) =
u(i, j)

µ(i)
, γµ(i, j) =

γ(i, j)µ(i)

µ( j)
                             (11) 

 

Given a generalized pseudoflow f and a label µ, the relabeled residual 

capacity and the relabeled excess are defined as: 

 

uf ,µ(i, j) =
u(i, j) − f (i, j)

µ(i)
, ef ,µ(i) =

ef (i)

µ(i)
                        (12) 

 

If f is a generalized pseudoflow in a circulation problem (G=(N,A),u,γ,s), 

then fµ(i,j)=((f(i,j))/(µ(i))) is a generalized pseudoflow in the relabeled 

problem Gµ=((N,A),uµ,γµ,s). Moreover, the residual graphs of f and fµ are the 

same.  

 

Two symmetric methods of relabeling are the canonical relabeling from 

the source and the canonical relabeling to the source. The first method is 

used when one wants to send additional flow from the source, and the second 

when one wants to send additional flow to the source. 

 

The method of canonical relabeling from the source can be used when 

every node i∈N can be reached from the source by a path in the residual 

graph of the generalized pseudoflow f.  

 

Define µ(s)=1 and for each node i∈N\{s}, the canonic label µ(i) is 

defined as the highest gain from all the elementary paths from s to i in the 

residual graph, that is: 

 

   
µ (i) = max

Ps , i

γ ( j, k )
( j ,k )∈ Ps , i

∏
 
 
 

  

 
 
 

  
                                   (13)  

 

The canonic label corresponds to the amount of flow that can reach node 

i, if one unit of flow is sent through the most efficient elementary path from s 

to i in the residual graph, ignoring the capacity constraints along the path. 
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The canonical relabeling to the source is defined in a similar way and it 

can be used when the source can be reached from every node i∈N. Define 

µ(s)=1 and for each node i∈N\{s}, the canonic label µ(i) is defined as the 

inverse of the highest gain from all the elementary paths from i to s in the 

residual graph, that is: 

 

           

1

µ(i)
= max

Pi ,s

γ( j,k)
( j,k)∈Pi,s

∏
 
 
 

  

 
 
 

  
                                           (14)             

 

The following properties are useful in determining the optimality of a 

generalized flow6: 

 

Theorem 3 After a canonic relabeling from the source; 

 

1) Every arc (i,j) with a non-zero residual capacity, other than the arcs 

entering the source, has γµ(i,j)≤1. 

 

2) For every node i, there exist a path from s to i in the residual graph 

with γµ(i,j)=1 for all arcs on the path.  

 

3) The most efficient flow-generating cycles consist of paths Ps,i, for 

some i∈N, with γ(j,k)=1 along the path, and the arc (s,i)∈Af such that 

γµ(s,i)=max(γµ(i,j)|(i,j)∈Af) . 

 

Theorem 4 A generalized flow g in a restricted problem is optimal if and 

only if there exist a label µ such that γµ(i,j)≤1 for every arc in the residual 

graph of the generalized flow. 

     

    A label µ is optimal if there exist a generalized flow g such that µ and 

g satisfy the conditions of Theorem 4. Canonic relabeling helps to simplify 

                                                           
6 Goldberg, A. V., Plotkin, S. A. y Tardos, É., 1991, Combinatorial Algorithms for the 
Generalized Circulation Problem. 
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the optimality conditions of a generalized flow, and is a useful method to 

find the most efficient flow-generating cycles. In the next section, the basic 

definitions of the minimum-cost flow and the interpretation of a minimum-

cost flow as a generalized pseudoflow in the generalized maximum flow 

problem are presented. 

 

4.4 Minimum-Cost Flow Problem 

 

The concepts of the minimum-cost flow problem are similar to the 

concepts of the generalized maximum flow problem. The most important 

difference between these two problems is that, in the generalized maximum 

flow problem, the flow is transformed by a factor proportional to the gain 

associated to the arc when it goes from one node to another. On the other 

hand, in the minimum-cost flow problem, the flow stays the same as it goes 

from one node to another. Moreover, in the minimum-cost flow problem, 

each node has a demand or supply that has to be satisfied, and each arc has 

an associated cost.  

 

Let G= (N,A,u,s) be a circulation network and u:A→ℝ⁺ a capacity 

function. A pseudoflow is a function fc:A→ℝ⁺ that satisfies the following 

conditions: 

 

Capacity Constraint:  

 

fc(i,j)  ≤ u(i,j)               ∀(i,j)∈A                        (15)                         

 

Antisymmetry Constraint:  

        

 fc(i,j)  = -fc(j,i)             ∀(i,j)∈A                         (16)  

 

Given a pseudoflow fc, define the residual capacity function ufc:A→ℝ⁺ as 

ufc(i,j)=u(i,j)-fc(i,j). The residual graph with respect to fc is given by 

Gfc=(N,Afc), where: 
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 Afc={(i,j)∈A|ufc(i,j)>0} (17) 

 

A cost function is a function defined on the arcs c: A→ℝ. This function 

represents the cost of each unit of flow that goes through an arc. Without loss 

of generality, the costs are assumed as antisymmetyric, i.e. c(i,j)=-c(j,i) 

∀(i,j)∈A. The cost of a pseudoflow is defined as: 

 

(18) 

 

A supply/demand function is a function defined on the nodes, b: N→ℝ. 

This function represents the supply or demand of flow on each node. If 

b(i)>0 then the node is a supply node, and if b(i)<0 then the node is a 

demand node. 

 

A flow in the minimum-cost flow problem is a function gc: A→ℝ⁺ such 

that, in addition to the capacity and antisymmetry constraints, it satisfies the 

following condition:  

 

(19) 

 

The minimum-cost flow problem can be represented by the tuple (G= (N, 

A), u, c,b) where G is a circulation network, u is a capacity function, c is a 

cost function, and b is a supply/demand function. The minimum-cost flow 

problem consists in finding the flow g*
c that minimizes its cost: 

 

max c ( g c )

s .t .

g c ( i , j ) = b ( i )
( i , j )∈ A

∑ ∀ ( i , j ) ∈ N \ s{ }

g c ( i , j ) ≤ u ( i , j ) ∀ ( i , j ) ∈ A

g c ( i , j ) = − g ( j , i ) ∀ ( i , j ) ∈ A

 

∑
>∈
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The theorem that describes the optimality conditions for a flow is the 

following7: 

 

Theorem 5 A flow is optimal if and only if the residual graph associated 

with that flow does not contain any cycle with a negative cost.  

     

The interpretation of a pseudoflow fc is a generalized pseudoflow f, such 

that:  

 

f (i, j) =
f c(i, j) si f c(i, j) ≥ 0

−γµ ( j,i) f c( j,i) e.o.c

 
 
 

 

  

The following lemma relates a pseudoflow fc with its interpretation8: 

     

Lemma 2 The residual graph of a pseudoflow fc and the residual graph of its 

interpretation are the same.  

     

5. Minimum-Cost Flow Algorithm 

 

In this section, the Minimum-Cost Flow Algorithm (MCF) is presented 

that solves the generalized maximum flow problem. This algorithm was 

developed by Goldberg, Plotkin & Tardos (1991). The algorithm is called as 

minimum-cost flow because it is based on a minimum-cost flow subroutine. 

This algorithm was chosen to solve the network problem of foreign exchange 

arbitrage because it is the first combinatorial algorithm that has a polynomial 

computational complexity. At each iteration, the algorithm solves a more 

simple flow problem and interprets the result as an increase in the flow of the 

generalized circulation network. The algorithm assigns a cost c(i,j)=-

log(γ(i,j)) to each arc and solves the corresponding minimum-cost flow 

problem. 

                                                           
7 Ahuja, R. K., Magnanti, T. L., & Orlin, J., 1993, Network Flows: Theory, Algorithms, and 
Applications, Prentice Hall. 
8 Goldberg, A. V., Plotkin, S. A. & Tardos, É., 1991, Combinatorial Algorithms for the 
Generalized Circulation Problem. 
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5.1 Algorithm 

 

The first step of the algorithm is to transform the problem into its 

restricted form and start with the pseudoflow g₀, defined by g0(i,j)=0, 

∀(i,j)∈A.  During the first iteration, the algorithm takes advantage of the fact 

that all flow-generating cycles pass through the source in order to generate a 

positive excess at the source. Subsequent iterations use this excess to balance 

out the deficits in the rest of the nodes of the graph by relabeling canonically 

the residual graph. Then, the algorithm solves the corresponding minimum-

cost flow problem that satisfies the deficits generated in the previous iteration 

and interprets the result as a generalized pseudoflow. The algorithm stops 

when the canonical labels of the residual graph corresponding to the next 

iteration satisfy that γµ(i,j)≤1 ∀(i,j), and there is no excess in any node except 

at the source. The steps of the algorithm are detailed below: 

    

MCF Algorithm 

 

1) Transform the generalized circulation problem into its restricted 

form and start with the generalized flow g, defined by g(i,j)=0  

∀(i,j)∈A. 

 

2) Find the canonical labels from the source µ. If γµ(i,j)≤1 for every arc 

in the residual graph and ∀i∈N\{s} eµg(i)=0, then stop the algorithm. 

The current generalized flow is optimal. Otherwise, go to step 3. 

 

3) Introduce the costs c(i,j)=-log(γµ(i,j)) on every arc in the graph. 

 

4) Find the minimum-cost pseudoflow fc′ of the relabeled residual graph 

with capacity µ. The supply in every node equals b(i)=-eµg(i)  

∀i∈N\{s}. 

 

5) Let g′ be the interpretation of fc′. Update the solution as 
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g(i,j)=g(i,j)+g′(i,j)µ(i)  ∀(i,j)∈A. Go back to step 2. 

 

In the next section, some results are shown that provide a better 
understanding of the algorithm and present its computational complexity. 
Afterwards, an example of the implementation of the algorithm is shown. 

 
5.2 Analysis of the MCF Algorithm 

  

The most relevant property of an optimal minimum-cost flow, for its 
application in the generalized maximum flow problem, is that the residual 
graph of the optimum flow has no negative cost cycles (theorem 5). This 
property together with lemma 2 gives the following result9: 

     
Corollary 1 The residual graphs of the generalized pseudoflows generated 

in step 5 of the algorithm have no flow-generating cycles.. 
     
A problem that could arise when implementing the algorithm is not being 

able to use the canonical relabeling from the source. However, using the 
result from the previous corollary, and taking into account that the problem is 
in its restricted form, then, by lemma 1, for every node i there exist a path 
from the source to node i in the residual graph of the pseudoflows generated 
by the algorithm. Therefore, at every iteration, the canonical relabeling from 
the source can always be used. This result and other two results are presented 
below10: 

     
Lemma 3 The following results are true for a generalized pseudoflow g 

generated by the MCF algorithm: 

 

1) The canonical relabeling from the source can always be used in the 

residual graph of g. 

 

2) All excesses, except at the source, are non-positive. 

                                                           
9 Goldberg, A. V., Plotkin, S. A. y Tardos, É., 1991, Combinatorial Algorithms for the 
Generalized Circulation Problem. 
10 Ibid. 
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3) For the relabeled problem, there exist a minimum-cost pseudoflow fc 

such that: 

 

fc(i, j) =−eg,µ(i) ∀i∈N \
(i, j)∈A

∑ s{}
 

 

Consider a generalized pseudoflow f at the beginning of some iteration of 

the MCF algorithm. The fact that there are only deficits in the nodes of the 

residual graph of f, except at the source, and that there are no flow generating 

cycles, implies that the excess at the source is an overestimate of the 

maximum possible excess. The algorithm stops when it finds a generalized 

flow g for which the excess at every node, except at the source, is zero, and 

every relabeled gain of the arcs in the residual graph is less than one. 

Therefore, by theorem 4, the generalized flow obtained from the algorithm is 

optimal. This result is formalized below11: 

     

Theorem 6 Every iteration of the algorithm can be implemented in 

polynomial time and the generalized flow g
 *

 obtained from the algorithm is 

optimal.  

     

To obtain a limit on the running time of the MFC algorithm, it is 

necessary to decide which minimum-cost algorithm is used as a subroutine. 

In the work of Golberg, Plotkin and Tardos (1991), they find that the 

algorithm that provides the best running time is the polynomial algorithm by 

Orlin (1993). The following theorem presents the minimum running time for 

the MCF algorithm12. 

 

Theorem 7 The MCF algorithm can be implemented to use at most 

O(n²m(m+nlogn)lognlogB) arithmetic operations on numbers whose size is 

bounded by O(mlogB), where n is the number of nodes, m is the number of 

arcs and B is the maximum of all the gains and capacities associated to the 

                                                           
11 Ibid. 
12 Ibid. 
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arcs.  

 

6. Programming, Data and Implementation 

 

6.1 Matlab Programming 

     

The MCF algorithm was programmed in Matlab using a sequence of 
subroutines that correspond to the different transformations of the original 
generalized maximum flow problem. 

 
Once an optimum minimum-cost flow is obtained, the result is 

interpreted as a generalized pseudoflow and the solution to the generalized 
maximum flow problem is updated. The algorithm repeats the sequence of 
subroutines until it finds a generalized flow that satisfies the conditions of 
theorem 4. 
 

6.2 Data on Foreign Exchange Rates and Interest Rates 

  
Data on spot and forward exchange rates with a three-month maturity for 

the Mexican peso, the American dollar and the Canadian dollar was obtained 
from Bloomberg. The database covers every working day from November 
24, 2008 to May 11, 2010. These dates were chosen because it was a period 
of high volatility in the exchange rates and interest rates as a result of the 
2007-09 crisis. For each foreign currency, bid and ask prices were obtained.  

 
For the interest rates, the arbitrage problem requires that the interest rates 

have to be over assets with similar characteristics (liquidity, risk, etc.). Data 
on three different interest rates was obtained: the bid and ask rate for the 
three-month government bonds of Mexico and the US; the three-month 
interbank interest rate for Mexico and the US; and the three-month deposit 
rate of the US and Canada. The interest rates were obtained from Bloomberg. 
These rates cover the same period as the foreign exchange rate quotes. 

 
Using this database, three exercises were carried out to determine 

whether there were opportunities of obtaining riskless profits from circular 
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arbitrage during the period corresponding to the data. The first exercise takes 
into account the interest rates on government bonds of Mexico and the US. 
The second uses the interbank interest rates of Mexico and the US, and the 
last one, the deposit rates of Canada and the US. 

 
6.3 Implementation and Results 

 

The model presented in section 3 (figure 2) was used to implement the 
MCF algorithm in order to find arbitrage profits in an exchange rate network. 
However, the generalized maximum flow problem formulation requires that 
if γ(i,j) is the gain of arc (i,j), then the gain of arc (j,i) has to be (1/(γ(i,j))). 
This is not true when there is a difference between the bid and ask price of 
the exchange rates and interest rates. For example, if dollars were exchanged 
for pesos at a rate of So, the transaction of buying dollars would not be done 
at an exchange rate of (1/(So)), but at a rate of (1/(Sd)). To solve this problem, 
for each node, another node is added to represent the difference between the 
bid and ask transactions. Each pair of bid and ask nodes represent a currency 
for a given period. In this way, the return arcs can be added, the inverse gain 
of the original arc can be assigned to them and their capacity can be set to 
zero. Moreover, between each bid and ask node, an arc with a unitary gain is 
added and with a large enough capacity to allow the free flow between these 
nodes. Once the corresponding arcs and nodes are introduced, the circulation 

 

  
 Fig. 3 
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network can be introduced into the MCF algorithm to calculate the circular 
arbitrage opportunities. An example of a circulation network with augmented 
nodes and arcs is shown in figure 3.  

 

For the 297 days considered using the interest rates of government bonds 

of Mexico and the US, there were 136 days when there were opportunities of 

obtaining profits from circular arbitrage. The longest period in which there 

was arbitrage was the period between the 24th of November and the 8th of 

December of 2008 (18 days). Figure 4 show the interest rates corresponding 

to this period and the four longest periods where arbitrage was observed are 

circled.  

 

 
Fig. 4 

 

The second exercise uses the interbank rate for Mexico and the US. In 

this case, the bid and ask rate is the same. For the 291 days considered, there 

were opportunities of circular arbitrage in 207 days. The longest period 

where circular arbitrage was observed was from the 26th of May to the 30th 

of July of 2009 (46 days). In both cases, using the interbank rate or using the 

bonds rate, the transactions involved in the periods with the longest arbitrage 

opportunities consisted in borrowing in Mexico and investing in the US. 

Moreover, in the longest period where arbitrage was observed using the 

bonds rate, there were also arbitrage opportunities using the interbank rate.  

 

Figure 5 graphs the relations of the interest rate parity of equations (4) 
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and (5) with data of the bonds rate. The relations were normalized such that a 

value greater than one represent the existence of arbitrage opportunities. A 

value less than one does not represent arbitrage opportunities, it represents 

that there would be losses when performing these transactions. Moreover, the 

graph allows seeing the extent of the deviations from the interest rate parity. 

The bigger this deviation, the higher the profits are from arbitrage.  

 

 
Fig. 5 

 

One of the reasons why more arbitrage opportunities were found in the 

second exercise is that the bid and ask rates considered were the same. In this 

way, the transaction costs implicit in the difference between the bid and ask 

price was eliminated and it was feasible to find more arbitrage profits. Even 

though the first exercise considers the difference between the bid and ask 

rates, this difference represents a lower bound of the transaction costs 

involved in these transactions. Moreover, when analyzing the interest rates, 

another factor that has to be taken into consideration is the liquidity of the 

loan and deposit contracts. Even if the implicit risk of the domestic and 

foreign contracts is the same, the difference in the liquidity of the assets 

would reduce the opportunities of obtaining profits from arbitrage. This leads 

to the conclusion that, although arbitrage opportunities were found in a little 

less than half the days in the first exercise and a little more than two thirds of 

the days for the second exercise, these results must be interpreted as an upper 

bound on the arbitrage opportunities that could be carried out in practice.  
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For the third exercise, the deposit rates as reported by Bloomberg for the 

US and Canada were used. In this exercise Mexico was not considered 

because a similar interest rate could not be found. Also, as the authors 

wanted to analyze two economies with a similar country risk and where the 

liquidity of the deposit contracts was the same.  

 

The results show that during the 297 days considered, there were 

arbitrage opportunities in only 16 of them. The longest period with arbitrage 

was from the 22nd to the 24th of December of 2008. The transactions 

corresponding to this period involved borrowing in the US and investing in 

Canada. Figure 6 shows the interest rate parity deviations using the data from 

this exercise. It can be noted that the deviations and their magnitude are 

smaller than in the first exercise.  

 
Fig. 6 

 
From this exercise, it can be concluded that the interest rates used as 

reference to calculate arbitrage opportunities is essential in analyzing the 

results. When deciding in which asset to invest and in which asset to borrow, 

profits from arbitrage cannot be attributed if the composition of the assets is 

not similar. 

 

7. Conclusions     

 

In this paper, the foreign exchange arbitrage problem is analyzed using a 
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circulation network approach. A network model was presented and the MCF 

algorithm was suggested to solve it. The model presented in this paper can be 

extended to consider a greater number of currencies and financial 

instruments. 

 

In the examples analyzed, the possibility of circular arbitrage is 

observed. Circular arbitrage consists of simultaneous transactions in four 

markets: the spot exchange rate market, the forward exchange rate market, 

the domestic assets market and the foreign assets market. The arbitrageur 

examines the current quotes for the exchange rates and interest rates, and 

searches for the possibility of obtaining an instantaneous riskless gain using 

an appropriate combination of transactions in the markets. The speed at 

which the exchange and interest rates quotes change and the volume of 

transactions that take place in the exchange and asset markets are increasing 

over time; hence the relevance of this type of modeling. The circulation 

network approach facilitates the analysis of the arbitrage problem and helps 

to understand the transactions involved in a visual way.  

 

The MCF algorithm obtains the transactions that an arbitrageur must 

perform to take advantage of the temporary gains that he can obtain by 

buying and selling currencies in the spot and forward markets, and by 

borrowing and lending in the domestic and international financial markets. It 

is important to note that this algorithm can solve any type of maximum flow 

problems and it can be applied to solve other types of financial problems 

such as management of cash flows, multinational payment systems or the 

development of investment portfolios.  

 

As an extension to this paper, it would be of interest to include in the 

model the transaction costs involved in the exchange rate and financial 

markets operations. Moreover, another extension would be to model the 

subjective probability distributions over the future exchange rates to 

implement the speculative network model.  

 

Market efficiency implies that there should not exist opportunities of 
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obtaining profits from arbitrage. However, if there were no opportunities of 

arbitrage then the market would not have a mechanism through which it 

could reach the equilibrium. The study of exchange rate networks and the 

development of more efficient algorithms that search for deviations in the 

interest rate parity is essential in improving our understanding on the 

operation of markets.  
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